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ABSTRACT: In this paper, we focus on polycyclic fatigue of structures in a reliability context. First, we
identify the random material parameters of the two-scale non linear cumulative damage fatigue model
from S-N curves. Then, we compare linear and non linear cumulative damage on a plate for three loads.
Finally, we propose to build a multi-fidelity meta-model to control computation costs of the estimation
of the final probability of failure.

1. INTRODUCTION

Fatigue has a major impact on the lifetime of
many industrial structures subjected to large repe-
tition of low amplitude oscillating loads (offshore
wind turbines or platforms, air crafts, train rails,
...). Unfortunately, the prediction of fatigue degra-
dation is very difficult because uncertainties affect
the loads and the material parameters. This is the
reason why reliability-based design and assessment
of structures are crucial to take into account those
uncertainties. Linear damage accumulation (Miner
(2021)) is a widespread approach to compute at
low cost the fatigue damage evolution. The local
stress at one hotspot (computed or measured thanks
to monitoring) is decomposed thanks to Rainflow
counting (Hong (1991)) and the Palmgreen and
Miner’s rule associated to the use of S-N curves
enables to compute the damage. However, this ap-

proach leads to the same damage whatever the or-
der of the cycles, which may lead to large approxi-
mation errors. Continuous damage approaches (Al-
lix et al. (1989); Francfort and Marigo (1993)) of-
fer the possibility to take into account the loading
history and are more general than the ones based
on empirical studies (Fatemi and Yang (1998)). In
this article, we propose to used the fatigue damage
Lemaitre and Doghri (1994) which considers elas-
tic behaviour at a macroscopic scale and elastoplas-
tic behaviour with damage evolution law at a micro-
scopic scale to model micro-cracks caused by fa-
tigue phenomenon. This model is briefly presented
in Section 2. The objective of this article is to com-
pare the linear damage accumulation model with
the two-scale fatigue damage model in a stochastic
framework. In order to perform this comparison,
we first identify the random material parameters of
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the two-scale fatigue domain from the random S-
N curves using a Bayesian approach in Section 3.
By improving the methodology proposed in Rocher
et al. (2020), we obtain a better conservative ap-
proximation of the S-N curves. Then, in Section 4,
the two models (linear and non-linear damage accu-
mulation) are compared on a two-dimensional me-
chanical example for three different loads in terms
of final damage and final probability of failure. Fi-
nally, we propose in Section 5 a strategy to build a
meta-model of the damage that will be used to esti-
mate instantaneous and final probability of failure
while keeping numerical costs under control and
offering a stochastic approximation of fatigue dam-
age.

2. TWO-SCALE FATIGUE MODEL

We consider the model proposed by Lemaitre and
Doghri Lemaitre and Doghri (1994). Two different
scales are defined: the macroscopic scale and the
microscopic scale. At the macroscopic scale the be-
haviour is linear isotropic elastic with Young mod-
ulus E and Poisson coefficient ν . Therefore the re-
lation between the stress σ and the small strain ε

is

σ =

(
E

1−2ν
PH +

E
1+ν

PD
)

: ε (1)

Where PH and PD are the hydrostatic and deviatoric
projectors. Only the macroscopic scale affects the
microscopic scale via the Lin-Taylor relationship:
εµ = ε (all quantities of the microscopic scale have
an exponent µ). At the microscopic scale, the be-
haviour is elastoplastic with damage evolution. We
assume the partition of elastic and plastic strains:

ε
µ = ε

µe + ε
µ p (2)

The elastic properties are the same at both scales
so that, at the microscopic scale, the Hooke’s law
reads:

σ
µ = (1−Dµ)

(
E

1−2ν
PH +

E
1+ν

PD
)

: ε
µe

= (1−Dµ)σ̃ µ

(3)
where Dµ is the damage. We consider elasto-
plasticity with kinematic hardening of modulus C

and yield strength σ
µ
y and damage evolution when

the cumulative plastic strain p is equal to pD. The
evolutions of plasticity and damage are given by the
following equations:

f =

√
3
2
∥PD : σ̃

µ −X µ∥−σ
µ
y

dX µ =
2
3

C(1−Dµ)dε
µ p

d pµ =

√
2
3
||dε

µ p||

dDµ =
1

2S
(σ̃ µ : ε

µe)d pµ

(4)

where S is a damage parameter and ||x||2 = ∑
i, j

x2
i j.

The critical damage DC is the upper bound of the
microscopic damage Dµ . The case Dµ = DC cor-
responds to the coalescence of microscopic cracks
leading to macroscopic crack and to failure after
few cycles.

The elastic properties are usually well-known so
that we consider E = 210 GPa and ν = 0.3 deter-
ministic. σ

µ
y is the fatigue limit and is considered

deterministic. Therefore, 4 random material param-
eters (S, C, Dc, and pD) are modelled as random
variable.

3. IDENTIFICATION OF RANDOM MATERIAL

PARAMETERS
The objective of this subsection is to identify the

distributions of the random parameters C,S,Dc and
pD from the S-N curves using Monte Carlo Markov
Chain (MCMC) (Hastings (1970)) as a Bayesian
calibration technique. To do this, we need:

• Observations Nobs for different stress ampli-
tudes ∆σi

• A priori distribution for each random variable
S, C, Dc, and pD

• A model that enables to compute the number
of cycles N̂ from S, C, Dc, and pD

• The application of the Bayes’s theorem

• The generation of a population with
Metropolis-Hastings algorithm

Each of these ingredients is detailed in the follow-
ing subsections.
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3.1. Observations
In Det Norske Veritas (DNV (2014)) the distribu-

tion of the number of cycles to failure N for a stress
range ∆σi is approximated by:

log10(N) =

{
alog10(∆σi)+ log10(b) if ∆σi ≥ 2σ

µ
y

+∞ otherwise
(5)

Where a is deterministic and b follows a log-
normal law of variance 0.04. Here, we consider
the case of a tubular joint whose asymptotic fa-
tigue limit is 106 cycles so that a = −3 and σ

µ
y =

41.703MPa. The deterministic S-N curve associ-
ated to the quantile 2.3% is obtained for a realiza-
tion b of 12.164. We consider I = 10 stress ampli-
tudes ∆σi in the interval [93.4;493.4]MPa. At each
amplitude ∆σi, we generate K = 104 observations
of the number of cycles Nobs,k(∆σi) using (5).

3.2. A priori distributions
From literature (Lemaître (2001); Lemaître and

Desmorat (2005)) and after a one at time elastic
sensitivity analysis, we propose the following uni-
form a priori distributions for the random mate-
rial parameters: C ∼ U (2.106,3.106) (MPa), S ∼
U (10−3,1) (MPa), Dc ∼U (0,0.5), pD ∼U (0,1).

3.3. Model N̂
We consider the two-scale damage model pre-

sented in Section 2 in a one-dimensional frame-
work (that is to say all variables are scalar). For
sinusoidal macroscopic stress centered in zero with
a constant stress amplitude ∆σi, we can derive the
following expression of the number of cycles N̂ for
which D = Dc:

N̂(∆σi) =
2C+3E

6(∆σi −2σ
µ
y )

pD +
2CES(

σ̃
µ3

i − (2σ
µ
y − σ̃

µ

i )
3
)DC

(6)

where σ̃
µ

i =
C∆σi+3Eσ

µ
y

2C+3E the effective stress at the
microscopic scale.

3.4. Bayes’s theorem
To account for both modeling and measurement

errors, we introduce the error ξ ∼ N (0,Vξ ) be-
tween the model and the observations:

Nobs(∆σi) = N̂(∆σi)+ξ (7)

The variance Vξ is unknown and will be identified
during the MCMC algorithm. The a priori density

of probability of Vξ is U (0,1). We note ϕξ the
density probability function of ξ . We gather the 5
scalars C, S, DC, pD and Vξ in a vector z.

Bayes’ theorem expresses the posterior distribu-
tion fZ(z) from the prior distribution pZ(z):

fZ(z) = cpZ(z)L (z,Nobs) (8)

c is a normalization factor that can be computed at
the end of the procedure easily by normalizing the
a posteriori probability densities. L (z,Nobs) is the
likelihood function defined as:

L (z,Nobs) =
I

∏
i=1

ϕξ (ξi)

ξi = min
k∈J1;KK

|log10(Nobs,k(∆σi))− log10(N̂(∆σi))|

(9)

3.5. Metropolis-Hastings algorithm
The objective of the Metropolis-Hastings algo-

rithm is to generate a population gathering qmax re-
alizations of z leading to the same distribution N̂
than Nobs. The principle is to generate candidates
z̃ using the a priori distributions and decide if they
are kept in the final generated population by com-
paring their likelihood with the observations. The
candidate is generated from the previous conserved
realization by changing only one of the 5 random
variables at a time. The main steps are described in
Algorithm 1.

Algorithm 1: MCMC algorithm
Set q = 0;
Initialize zq with the mean of the a priori
distribution of each random variable;

Define the size of the final population qmax;
while q < qmax do

Generate a candidate z̃ from zq;

Compute α = min
(

1, L (z̃,Nobs)
L (zq,Nobs)

)
;

Generate a realization β of U (0,1);
if β < α then

q = q+1;
zq+1 = z̃; // candidate is kept
Append zq+1 to the population ;

end
end
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We consider L = 10 sets of observations. For
each of them, we perform the MCMC approach
M = 10 times using the Algorithm 1. For each of
the L×M generated populations of Z, we can com-
pute the number of cycles N̂ and estimate the quan-
tile 2.3%. We decide that the most accurate popu-
lation is the one that both:

• minimizes the relative error with S-N curve
(quantile 2.3%) built from the observations

• underestimates the number of cycles on the
range [138.1;493.4]MPa to obtain conserva-
tive results

The variability of the L × M populations is illus-
trated on Figure 1. We also give the quantile plotted
from the L sets of observations (they all superim-
posed) and the one obtained from the chosen pop-
ulation. We observe that for ∆σi = 93.4MPa, the
error is large. This can be explained by the fact that
the chosen S-N curve is bilinear, whereas the fa-
tigue two-scale model is of class C1 and designed
only for polycyclic fatigue.

MCMC output variability domain
S-N curve (Q2.3%) built from best 
conservative population

S-N curve (Q2.3%) built from observations

Figure 1: S-N curves (Q2.3%) computed from observa-
tions Nobs and from the most accurate population

3.6. Results

Once the population is selected, we can compute
the means, standards deviations, correlations coef-
ficients as well as joint and marginal distributions
of S, C, Dc and pD. They are presented in Tables 1
and 2 and Figure 2.

We observe that only DC and S are correlated.
The obtained distribution of C and pD are both uni-
form.

C (MPa) S (MPa) DC pD

Mean 2.507 106 0.612 0.303 0.554
std 2.900 105 0.2313 0.116 0.260

Table 1: Means and standard deviations (std)

R C (MPa) S (MPa) DC pD

C (MPa) 1 −0.058 −0.039 0.003
S (MPa) −0.058 1 −0.260 −0.022

DC −0.039 −0.260 1 −0.019
pD 0.003 −0.022 −0.019 1

Table 2: Bravais-Pearson correlation coefficients

Figure 2: Joint and marginal distributions of ZZZ

4. COMPARISON BETWEEN LINEAR AND NON-
LINEAR DAMAGE ACCUMULATION

In this section, we compare the damage com-
puted with the two-scale fatigue model presented in
Section 2 which accounts for loading history, with
the damage obtained with the standard Rainflow
counting and Palmgreen and Miner linear damage
accumulation. In the first subsection, we present
the case study. In the second subsection, we define
the three loads considered. In the third subsection,
we explain the computation of the damage for both
models. In the fourth subsection, we give the re-
sults.
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4.1. Description of the structure
We consider a rectangular structure clamped on

the left-hand side. A sollicitation F(t) with t ∈
[0; tend] is imposed on the right-hand side. The
structure is meshed with linear quadrangular el-
ements and only one element is damageable (in
black in Figure 3, bottom-left). We assume plane
stress. The deterministic parameters are E =
210GPa, ν = 0.3, σ

µ
y = 41.703MPa.

Figure 3: Meshed structure with boundary conditions
and damageable element

4.2. Definition of the loads
We define 3 three loads F1(t), F2(t) and F3(t)

with growing complexity that lead to equivalent
number of cycles and equivalent damage at t = tend
with linear damage accumulation. All loads are
centered in 0. The first load F1(t) is centered on
0 generating a local constant stress amplitude ∆σ1
such that there are n∗ cycles in the time interval
[0; tend]. The final damage is D∗ = n∗

N(∆σ1)
. The

second signal F2(t) is a realization of a Gaussian
process with Gaussian correlation. The variance,
expected value and correlation lengths are chosen
such that the number of cycles is n∗ and the final
damage is D∗. The third load F3(t) is the same as
F2(t) but with Matern correlation.

We give truncated series of the three local
stresses associated to the three loads in Figure 4.

4.3. Computation of damage
In the case of linear accumulation fatigue model,

the material uncertainty comes from the random
variable b in (5). Thus, 5000 realizations b are gen-
erated and the damage is computed with Palmgreen
and Miner’s rule (Miner (2021)):

D(tend) =
cycles

∑
q

n(∆σq)

b∆σa
q

(10)
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Figure 4: Truncated series of the local stresses associ-
ated to the three loads

where n(∆σq) is the number of cycles of ampli-
tude ∆σq that can be obtained by Rainflow counting
(Hong (1991)). Failure occurs when D = 1.

In the case of the non-linear accumulation fatigue
model, a sample of 5000 realizations of the material
parameters C, S, pD and DC is generated from the
distributions identified in subsection 3. Then, a ra-
dial return algorithm with time step δ t = 0.005 is
used to compute the evolution of plasticity in dam-
age, following equations presented in subsection 2.
Failure occurs when D = DC.

4.4. Comparison of final damage
In Tables 3 and 4, we give the number of trajecto-

ries leading to failure and the probability of failure
at t = tend for both models.

F1 F2 F3
non-linear accumulation 166 206 662
linear accumulation 109 109 263

Table 3: Number of failed realizations at t = tend

F1 F2 F3
non-linear accumulation 3.5 4.3 13.1
linear accumulation 2.3 2.3 5.5

Table 4: Probability of failure (%) at t = tend

We observe that linear damage accumulation
give equivalent results for loads 1 and 2. This is
expected as the second load has been defined to ob-
tain the same final damage as the first load. Note
that the Maters correlation introduces more cycles
which doubles the number of trajectories leading
to failure. Moreover, for the second load, the non-
linear damage accumulation leads final probability
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of failure twice as large as the linear accumulation
model. The difference is even more significant for
the third load with a factor of almost 3 between the
two models. This clearly shows that it is crucial to
take into account the loading history. We also give
the total computational time required to obtain the
probability of failure at t = tend in Table 5. As ex-
pected, that the linear accumulation is far cheaper
than the non-linear accumulation.

F1 F2 F3
non-linear accumulation 167 167 167
linear accumulation 1.39 1.39 1.39

Table 5: Computational time (hours)

It is then interesting to perform a time variant
sensitivity analysis using Borgonovo’s method Pi-
anosi et al. (2014). The time variant sensitivity in-
dex δ (Dµ(t),Z j) of Dµ(t) with respect of Z j is then
written:

δ =
1
2

∫ Z jmax

Z jmin

fZ j (z j)
∫ DCmax

DCmin

∣∣∣ fDµ (t)(D
µ (t))− fDµ (t)|Z j (D

µ (t)|z j)
∣∣∣dDµ (t)dz j

(11)

where fZ j and fDµ (t) are the probability distribution
functions of Z j and Dµ(t), respectively. In Figure
5, we give the time variant sensitivity indexes of the
damage δ (Dµ) with respect to each of the random
material parameters.

Figure 5: Sensitivity for loads 1 (left), 2 (center) and 3
(right)

We observe that the damage is weakly sensitive
to S and C. On the contrary, the sensitivity index
of Dµ with respect to pD increases with time be-
fore decreasing. Indeed, pD only affects the begin-
ning of the damage evolution as it is the threshold
for damage initiation. The sensitivity index of Dµ

with respect to DC increases with time because DC
is only used in the model as the maximum critical
value of Dµ . Once, Dµ = Dc, the damage is con-
stant, failure occurs and the computation is stopped.

5. META-MODELLING OF DAMAGE EVOLU-
TION

The comparison done in subsection 4.4 shows
that taking into account loading history is cru-
cial for fatigue damage prediction. The two-scale
model is incremental and both material parameters
and loading are random. As a consequence, the es-
timation of the instantaneous probability of failure
Pf (t)= Prob(Dc ≤Dµ(t)) using crude Monte Carlo
estimation is impossible due to prohibitive com-
putational costs. Therefore, we propose to build
a multi-fidelity kriging-based meta-model of the
damage Dµ from observations on two levels: the
first (cheap coarse) level is the linear damage ac-
cumulation (equation 10) and the second (accurate
expensive) level is the two-scale non linear cumu-
lative damage (presented in Section 2).

5.1. Brief description of kriging meta-
modelization

Let consider that m observations (or computa-
tions) at xobs

1 . . .xobs
m of a model g are gathered in a

vector of observations gobs. Kriging (Krige (1951))
relies on the hypothesis that the objective function
g is the realization of a stationary Gaussian process
G

G(x) = y(x)+Z(x) (12)

where x ∈ Rd , y(x) is the mean of G(x) and Z(x)
is a random variable distributed as a centered Gaus-
sian. Here, we consider ordinary kriging so that
y(x) = β where β is an unknown constant. The es-
timation ĝ of g is chosen as a linear combination of
observations: ĝ(x) = w(x)T gobs, where w(x) are the
kriging coefficients to be determined.

ĝ is searched as the best linear unbiased predic-
tor, which reads :{

E [ĝ−G] = 0

β = argminE
[
(ĝ−G)2

] (13)

where E is the expectation.
Before solving system (13) the covariance ma-

trix of the data has to be computed. In this paper,
we use a Matern-correlation function which intro-
duces the following hyperparameters: the variance
s2 and the correlation lengths θ = [θ1, . . . ,θd]. Sev-
eral techniques exist to estimate them. Here we use
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the maximum likelyhood estimation (Wasserman,
2013, p. 124). Once the hyperparameters are deter-
mined, the optimization system (13) is solved: the
meta-model is built.

5.2. Construction of the multi-fidelity meta-model
To ease the illustrations, we choose to fix C =

2.106MPa, S = 0.3MPa, Dc=0.4. pD is the only ma-
terial random variable following uniform distribu-
tion between 0 and 1, as identified in subsection 3.6.
The meta-models are functions of the time t and
of pD. Following the standard auto-regressive co-
kriging approach (Kennedy and O’Hagan (2000))
the multi-fidelity meta-model reads:

D̂µ(t, pD) = ρD̂(t, pD)+ ẑ(t, pD) (14)

D̂(t, pD) is the meta-model built from r evalua-
tions D(ti, pD,i) of the linear cumulative damage on
r observation points (ti, pD,i)i=1..r. ẑ(t, pD) is the
meta-model of the error between the two levels built
from the observed error z(ti, pD,i) = Dµ(ti, pD,i)−
D(ti, pD,i) on q observations points (ti, pD,i)i=1..q.
The objective is to choose q << r as the computa-
tion of the error z is more expensive than the com-
putation of D. The q observations points are in-
cluded in the r observations points at the coarse
level. ρ is an additional hyperparameter due to
the use of different levels. The multi-fidelity meta-
model is obtained by doing the sum described in
Equation (14).

5.3. Results
We illustrate the strategy on the study case of the

plate with the third load. r = 80 observations points
are generated thanks to Latin Hypercube Sampling
(LHS). Among those points, q = 16 are chosen
with LHS. The two kriging-based meta-models are
built with anisotropic Matern-3/2 kernel and hy-
perparatemers (ρ and correlation lengths) are com-
puted using the likelyhood function.

In Figure 5.3, we give the meta-modelization
D̂(t), the multi-fidelity meta-modelization
D̂µ(t, pD) and the reference damage Dµ(t, pd)
computed with the non-linear cumulative damage.

We observe that the multi-fidelity meta-model
D̂µ is a very good approximation of Dµ(t, pD). We
notice that the meta-model leads to non monotonic

Figure 6: Meta-models and reference damage : black
dots are the observations

damage. This can be partially solved by using more
observations points without re running computa-
tions. Indeed, as the two-scale model is incremtal,
if D(ti, pD,i) is known, ∀t ∈ [0; ti], D(t, pD,i is also
known.

In Table 6, we give the probability of failure
at t = tend computed from the multi-fidelity meta-
model D̂µ , the low mono-fidelity meta-model D̂,
the reference Dµ . Only 16 evaluationw of the two-
scale damage model are realized. The three proba-
bilities of failure are computed by Monte Carlo es-
timation on a population of 103 realizations of pD.

Pf (tend) computed with D̂µ 0.449
Pf (tend) computed with D̂ 0.000

Pf (tend) computed with Dµ 0.469

Table 6: Final probability of failure obtained with the
meta-models and with the reference

Note that the reference probability of failure
0.469 is different from the one obtained in subsec-
tion 4.4 where all material parameters were ran-
dom. Using linear cumulative damage, the final
probability of failure is 0. This was expected as
Figure shows that D̂ never exceeds 0.35 < DC.
The probability of failure estimated with the multi-
fidelity meta-model is very close to the one ob-
tained with the reference (relative error about 5%).

Finally, in Table 7, we give the total computa-
tional time required to estimate the probability of
failure at t = tend with the multi-fidelity meta-model
D̂µ , the low mono-fidelity meta-model D̂ and the
reference Dµ .

We observe that the total computational time to
compute Pf (tend) is very close to the computational
time necessary to realize the observations (calls to
the model). The construction of the meta-model
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Using D̂µ 400
Using D̂ 80

Using Dµ 20 000

Table 7: Total computational time required for the esi-
mation fo Pf (tend) (minutes)

are the Monte Carlo estimation are negligible. We
observe that the multi-fidelity meta-model offers a
speed up of 50 compared to the reference.

6. CONCLUSIONS
In this article, we used a continuous damage

model in a stochastic framework to assess the fa-
tigue lifetime of structure. After a Bayesian cal-
ibration of the random material parameters from
S-N curves, we observe that taking into account
the loading history is crucial to accurately estimate
the final damage in case of complex loads. More-
over, the time variant sensitivity analysis enables to
understand the role of each material random vari-
able of the two-scale fatigue model. Finally, in
a first application, we built a multi-fidelity meta-
model from cheap computations with linear dam-
age accumulation model and a few expensive com-
putations on the expensive two-scale fatigue model.
The exploitation of this meta-model show its abil-
ity to control numerical cost on the estimation of
the probability of failure. Future works will consist
in developing the metamodeling strategy of dam-
age by studying the enrichment procedure, include
all random material parameters and take advantage
from the knowledge obtained with the sensibility
analysis to optimize the computational costs.
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