
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 1 

Evaluation of test loads on existing concrete structures by means of 

Bayes’ Theorem 

 
 

Tom Molkens  
Professor, KU Leuven De Nayer campus, Dep. Civil Engineering, Materials and Constructions Section, 

2860 Sint-Katelijne-Waver, Belgium 

Shana Van Hout 
PhD Student, KU Leuven De Nayer campus, Dep. Civil Engineering, Materials and Constructions 

Section, 2860 Sint-Katelijne-Waver, Belgium 

Els Verstrynge 
Professor, KU Leuven, Dep. Civil Engineering, Materials and Constructions Section, 3001 Leuven, 

Belgium 

 

ABSTRACT: For existing structures, load tests are often carried out to demonstrate the load-bearing 

capacity. Reasons for this can be found in a number of unknowns regarding the design loads, the materials 

used, their current condition, the design assumptions, and even effects linked to system behaviour. An 

analysis of existing standards shows that codes or guidance is lacking as to what load level such a test 

should be carried out for. In this contribution, using the Bayes theorem, the reliability of a structure is 

examined when passing a load test of a given load level. To define the posterior probability of a structure 

that passed a load test, knowledge is needed about the likelihood that a structure survives a test load given 

a certain structural reliability. Prior knowledge about the latter might be based on structural assessment, 

expert judgement and the load history. Most difficult aspect to assess, in the denominator of Bayes rule, 

is the marginal probability related to the condition assessment. Results in this paper show the benefits of 

test loads up to high load levels to estimate the reliability of existing structures. In that way, the approach 

is of great practical importance to enable a valorisation of the existing (historical) building stock.  

 

1. INTRODUCTION 

In the perspective of sustainability, the reuse of 

existing structures is a topic of interest. When 

looking into the assessment of their bearing 

capacity, multiple questions arise concerning 

reliability. ISO 13822 (2010) specifies the 

adjustment of the target reliability for existing 

structures. (fib Bulletin No. 80 2016) provides a 

guideline to modify partial safety factors for the 

adjusted reliability index. However, a challenge in 

the assessment of existing structures is the amount 

of unknowns related to structural modelling and 

load arrangements. The number of knowns may 

increase by surveying techniques and material 

characterization with mechanical testing.  

Using a load test to verify the structure has 

been of interest in the past (Ellingwood 2000; 

Stewart 2001), but seems of lesser interest during 

the last decades. It is preferable to execute a load 

test on a part of the structure that is thoroughly 

investigated. Certain parts can be more difficult to 

examine due to inaccessibility, causing them to 

possibly behave differently because of unknowns 

such as degradation and corrosion. Figure 1 shows 

an example of a load test on an existing building 

by the aid of pools. This paper studies the 
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knowledge gained on the reliability of the 

structure after performing such load tests.  

 

 
Figure 1: Load Test - Leopold II building 

 

Eurocode 0 (EN 1990 2002) allows for a 

design to be based on a combination of tests and 

calculations. Annex D, called “design assisted by 

testing”, elaborates further on this matter. Load 

tests on existing structures can be considered as a 

control test to check the behaviour of an actual 

structure or of structural members after 

completion. This type of test, however, is 

indicated as acceptance test of which no further 

methodology is described since no broad range of 

statistically processable test data is available. 

The European technical specification 

(CEN/TS 17440 2020) is dedicated to the 

assessment of existing structures. Load testing is 

prescribed as a manner of investigation with the 

definition: “Test of a structure or part thereof to 

evaluate its behaviour or properties, to predict or 

determine its load-bearing capacity.” The 

specification acknowledges that the structural 

behaviour and the boundary conditions can be 

different for different load levels. However, at the 

same time suggesting that the load level of the test 

is lower than the design load in ultimate limit 

state. The methodology prescribed herein, is 

limited to the interpretation of a surviving load 

test stating that solely the minimum resistance 

equal to the applied test load can be concluded 

from the test and not the resistance of the 

structure. Yet again, no load level is 

recommended. 

When looking broader to performance tests 

of structural elements, multiple guidelines are 

available prescribing requirements for testing. 

(EN 1997-1 2005), for example, describes 

load tests on piles. The minimum load level of the 

test is the design load. In case of tensile pile 

foundations and/or trial piles, the test should be 

carried out to failure. Another example is the 

performance test of hollow core slabs according 

to EN 1168 (EN 1168 2011). The sample is loaded 

in two cycles: first to 70% of the ultimate load and 

then to the ultimate load and failure. 

  (EN 1363-1 2020) prescribes fire resistance 

tests. Annex D of this guideline is dedicated to the 

selection of test loads. Nevertheless, no definite 

load level is specified. A distinction in fire tests 

between different structural elements is made in 

separate standards. (EN 1365-2 2014) is dedicated 

to floors, where the required load level is 

prescribed as what is to be expected in practice.  

Lastly, guidelines (Standaardbestek 260 

2021) in Belgium are provided for load tests on 

bridges by the aid of predefined trucks. The 

guideline dictates that the load level and load plan 

should result in the characteristic values of the 

calculated load effects for concrete and steel 

bridges. The loads need to decrease to frequent 

values when testing a prestressed concrete bridge.   

Considering the previously mentioned 

European guidelines (EN 1168 2011; EN 1997-1 

2005), there is a tendency to test in a final stage 

till failure when trial samples are available. 

Obviously this cannot be the goal of load tests on 

existing structures. However, it is difficult to 

determine the necessary load level when 

performing a load test on actual structures, that 

will be used afterwards. 

In the American code (ACI 437.1R-07 2016; 

ACI 437.2-13 2016), a procedure is provided for 

test loading of an existing concrete structure. 

When only a part of the structure will be tested, 

the Test Load Magnitude (TLM) is given by 

Eq.(1a) if no roof loads should be taken into 

account. This is compared to the design load 

(ULS) (ACI 318-14 2016) in Eq.(2), symbols are 

explained in the following paragraph. 

  

𝑇𝐿𝑀 = 1,3(𝐷𝑤 + 𝐷𝑠) 

𝑇𝐿𝑀 = 1,0𝐷𝑤 + 1,1𝐷𝑠 + 1,6𝐿 

(1a) 

(1b) 
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𝑈𝐿𝑆 = 1,2(𝐷𝑤 + 𝐷𝑠) + 1,6𝐿 (2) 

According to ACI, the TLM to necessary strength 

ratio should be between 90 and 95 percent in order 

to provide an appropriate level of safety validation 

without causing too much damage. The TLM is 

comparable to the design load except for the 

safety factor of the dead loads. The self-weight 

(Dw) is a known feature of an existing structure,  

hence safety factor 1. In comparison to the design 

load, The safety factor for superimposed dead 

loads (Ds) is smaller in TLM. However, this safety 

factor  must increase if the loads are not yet in 

place on the structure. On the other hand the safety 

factor on the live loads (L) remains the same.  

(CEN/TS 17440, 2020) provides an 

argument for using ultimate design loads by 

stating that the structural behaviour and the 

boundary conditions can differ depending on the 

load level. However, in ULS, non-reversible 

damage (cracking) is allowed, as also 

acknowledged by ACI, which then again opposes 

testing up to this load level.  

By presenting case studies, literature can 

provide a different perspective on conducting load 

tests. (Arangjelovski et al. 2015) used two case 

studies to compare Macedonian to European 

standards. In Macedonia, a load test is obligated if 

a wooden structure is damaged.  For both case 

studies, the load was limited to characteristic 

values. +In a more recent paper (Poutanen et al. 

2021), load tests are considered as a method for 

determining the structure’s reliability. The test 

load reduces uncertainties associated with codes, 

design and execution. This principle, in 

combination with measuring the structure, can be 

interpreted as a method for reducing model and 

geometric uncertainties of the material. 

The uncertainty of degradation also presents 

a challenge when evaluating load testing levels on 

existing structures. Numerous destructive, semi-

destructive, and non-destructive concrete 

compressive strength testing techniques are 

known (Vona 2022; Wróblewska and Kowalski 

2020; Yue Choong Kog 2018). For steel 

reinforcement, in situ estimating the corrosion 

risk or rate is possible (Andrade and Alonso 1996; 

Colozza et al. 2020; Tang et al. 2021; Verstrynge 

et al. 2022) . However, estimating the corrosion 

level and pitting factor is not readily done. In 

addition, testing the rebar yield strength is nearly 

impossible without critically damaging the 

structure, as also stated by (Croce et al. 2020).  

In current paper, two difficulties are 

considered concerning load tests on existing 

structures namely the unclear load level in current 

guidelines and the unknown degradation of the 

structure. With the aid of the theorem of Bayes, 

the reliability of existing structures in view of load 

tests is analysed using the framework of the 

European standards (EN 1990 2002),  

 

 

2. THE THEOREM OF BAYES 

APPLIED ON LOAD TESTS 

Annex B of (CEN/TS 17440 2020) provides a 

conditional formula for updating the failure 

probability after obtaining data through 

inspection, according to the conditional 

probability, see Eq.(3). 

 

𝑃(𝐹|𝐼) =
𝑃(𝐹 ∩ 𝐼)

𝑃(𝐼)
 (3) 

 

F denotes a local or global structural failure and I 

is the inspection data. P(I) is the probability of 

obtaining certain inspection data. 𝑃(𝐹 ∩ 𝐼) is the 

intersection between the failure probability and 

P(I). The probability of failure given the 

inspection data P(F|I) is equal to 1-P(S|I), the 

probability of survival given the inspection data.  

The theorem of Bayes is a derivative of the 

conditional formula, describing the probability of 

an event A given an event B, see Eq.(4).  

 

𝑃(𝐴|𝐵) = 
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4) 

 

P(A|B) is called the posterior probability. P(B|A) 

is the probability of event B when A is given or 

the likelihood of A given a fixed B. P(A) is the 
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prior knowledge based on a substantiated 

estimate. The Bayes Theorem knows many 

application among which Engineering (Feng et al. 

2022). The latter work applies the Bayes Theorem 

to the failure probability of engineering structures. 

The paper is an elaborate and generalized 

application of the theory, where this contribution 

aims to provide a more practical approach.  

The goal is to predict the reliability of a structure 

when performing a load test for both SLS and 

ULS test load levels. In first instance, this might 

seem straightforward: P(A) is the probability of an 

appropriate structural safety level of the structure 

and P(B|A) is the likelihood of structural safety 

compliance of the structure given a successful 

load test. However, multiple difficulties arise in 

the form of unwanted dependencies, an excess of 

unknowns and difficulties in defining the 

probabilities. 

When the target reliability is reached, the 

structure is assumed to be safe, referred to as 

healthy. Any probability function that does not 

reach this reliability target is therefore deemed 

unsafe or unhealthy. The indications healthy and 

unhealthy are applied since the unsafe structure 

can become redefined as safe after succeeding a 

load test.  

To clarify following formulas, Table 1 

explains the abbreviations that will be used. 

 
Table 1: Abbreviations 

Abb. Explanation 

P(A) Probability of A 

Ac
 Complementary probability of A 

P(Ac) = 1-P(A) 

FT Failure at test load 

ST Survival at test load 

FS Failure of the structure - deteriorated 

structure not reaching the target reliability 

SS Safety of the structure – healthy structure 

reaching the target reliability 

 

The posterior probability is P(SS|ST), the 

probability of a reliable structure given a 

successful load test. The desired outcome is the 

failure probability of the structure after a 

successful load test P(FS|ST), which can be 

directly derived through 1-P(SS|ST).  

The numerator of the Bayes formula contains 

P(ST|SS), the probability of a succeeding load test 

given a healthy structure, and P(SS), the prior 

knowledge.  

Defining the denominator, two options are 

possible. The first option uses the probabilities, 

see Eq.(5). The second option looks into the 

likelihood instead of the probability, resulting in 

an integral, see Eq.(6).  

 

𝑃(𝑆𝑇) = 𝑃(𝑆𝑇|𝑆𝑆) ∙ 𝑃(𝑆𝑆) + 𝑃(𝑆𝑇|𝐹𝑆)

∙ 𝑃(𝐹𝑆) 
(5) 

  

𝑃(𝑆𝑇) = ∫ 𝑝(𝑆𝑇|𝑆𝑆) × 𝑝(𝑆𝑆) × 𝑑𝑆𝑆 (6) 

 

The first option, Eq.(5), is used to define P(ST). 

Herein is P(ST|FS) the probability of a successful 

load test given an unhealthy structure. P(FS) is 

then the probability of failure equal to 1 - P(SS). 

The final composition of the formula is shown in 

Eq.(7). The probabilities will be defined in 

Section 3. 

 
𝑃(𝑆𝑆|𝑆𝑇) = 

𝑃(𝑆𝑇|𝑆𝑆) ∙ 𝑃(𝑆𝑆)

𝑃(𝑆𝑇|𝑆𝑆) ∙ 𝑃(𝑆𝑆) + 𝑃(𝑆𝑇|𝐹𝑆) ∙ 𝑃(𝐹𝑆)
 

(7) 

 

3. APPLICATION EXAMPLE 

The concept is summarised in Eq.(7), though the 

probabilities need to be defined. The difficulty 

herein lies in the lack of knowledge about the 

unsafe or unhealthy structure. This results in the 

inability to define the probability of surviving a 

load test given an unhealthy structure P(ST|FS) 

Therefore, it is necessary to model hidden defects, 

typically present in existing structures, in order to 

characterise the unhealthy structure. This is where 

this contribution deviates from generalisation and 

needs to consider a specific case with known 
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parameters. The resulting probabilities will 

therefore only apply in this case. However, this 

case can provide insight into the impact of the 

load level of a load test. The load test is assumed 

to be executed on a RC floor slab with a thickness 

of 200 mm, reinforcement Ø12 every 150 mm or 

754 mm²/m and concrete strength class C30/37. It 

is a simply supported one-way bearing slab with 

span length 5,4m. 

A Monte Carlo simulation is performed using 

15 000 samples to obtain a probability distribution 

of the slabs' bearing capacity. The bending theory 

with a rectangular stress-strain relation is used 

since this represents the failure mechanism. Shear 

failure is shown to be not critical. Table 2 shows 

the parameters, their probability features and the 

source of these data. To simplify, only permanent 

loads are presumed to act on the slab. Therefore, 

all parameters have normal probability density 

functions except for the lognormal probability of 

the yield strength of reinforcement and the 

compressive strength of concrete. The CoV of 

permanent loads is taken 0,10 as can be found in 

(Ellingwood 2000). The source FORM of the 

diameter stands for the first order derivation of 

this CoV from the section As. The mean 

standardized values of each parameter are set to 

one. The execution of the Monte Carlo simulation 

will multiply the random value within this 

probability distribution with the realistic mean 

value of the parameter.  

 
Table 2: Characteristics of the parameters of a new 

RC building - (Ellingwood 2000*; EN 13670 2010; 

JCSS Part 2 2001; JCSS Part 3 2000) 

 unit value μ CoV source 

Load kN/m² 10 1 0,100 * 

Length  m 5,4 1 0,004 EN 

13670 

Height  mm 200 1 0,015 JCSS 

Width  mm 1000 1 0,010 JCSS 

Cover  mm 30 1 0,167 JCSS 

Ø mm 12 1 0,083 Taylor 

As mm² 754 1 0,020 JCSS 

fy N/mm² 560 1 0,060 JCSS 

fc N/mm² 38 1 0,060 JCSS 

A distinction is made between the healthy 

and unhealthy existing structure by adjusting the 

yield strength of steel and the compressive 

strength of concrete according to (Croce et al. 

2020). Assuming concrete material class 3 

(31,8 N/mm² mean compressive strength), the 

coefficient of variation (CoV) is equal to 13%. For 

the reinforcement, the current yield strength is 

adopted, but with an increase in CoV to 13% that 

matches the class 3 reinforcement as proposed by 

(Croce et al. 2020). Taking into account the 

degradation of the structure, the section of the 

reinforcement is reduced by 3% as suggested for 

a 70 year old building with a low degradation rate. 

This reduction in section is applied to the mean 

value, adjusting 1 to 0,97. Table 3 shows the 

adapted parameters for the existing (unhealthy) 

structure. 

 
Table 3: Characteristics of the parameters of an 

existing RC building - (Croce et al. 2020)* 

 unit value μ CoV source 

As mm² 754 0,97 0,020 JCSS * 

fy N/mm² 560 1 0,130 * 

fc N/mm² 31,8 1 0,130 * 

 

Although the concrete strength generally 

increases over time, the reduced value used here 

assumes damage (cracks) due to degradation. 

The bearing capacity of the slab is 

approached by a normal probability density 

function to calculate the standard deviation 

resulting from the Monte Carlo simulation. The 

validity of this approach is checked in Figure 2. In 

this figure, the Monte Carlo simulations for the 

new (blue) and the old (orange) slab are shown 

indicated by the graphs with markers. These 

graphs are then compared to the normal 

probability density function based on the 

calculated standard deviation indicated without 

markers. Though the right tail of the graph is 

somewhat longer, the normal distribution seems 

to approach the results quite well. Only a slight 

shift of graphs can be detected due to the 

application of range sets of 0,5 for the Monte 

Carlo simulation results. 
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Figure 2: Validation of the normal distribution for the 

bearing capacity of the slab - SLS 

 

4. NUMERICAL RESULTS 

In practice, the partial safety factor method is used 

to obtain an adequate structural reliability. (EN 

1990 2002) provides the background of these 

safety factors by defining a reliability index β 

depending on the reliability class (RC). This paper 

will assume RC2 for which β is equal to 3,8 for a 

reference period of 50 years. This value of β 

corresponds with a failure probability P(FS) of 

7,32 x 10-5,  

The safety factor is equal to 1,35 for 

permanent loads, since no live loads are 

considered. The load test in ULS is simulated by 

multiplying the mean value of the load with 1,35. 

This results in shifting the probability density 

function.  The permanent load itself is equal to 10 

kN/m² (5kN/m² self-weight of the slab). 

In practice, the structure would be calculated 

in a simplified manner using the known values of 

the healthy structure. This results in a limited 

shortage of reinforcement. The required 

reinforcement is 772 mm²/m, while 754 mm²/m is 

provided in the existing RC slab. This could be an 

argument for performing a load test. The Monte 

Carlo simulations provide failure probabilities 

under certain load levels, which can be interpreted 

as failure probabilities of the load test. These are 

summarised in Table 4 for SLS and ULS load 

levels, where P(FT|SS) stands for the failure 

probability of the load test given the healthy 

structure and P(FT|FS) for the unhealthy 

structure. In the Eqs. (8) and (9), the probability 

of survival of the test is necessary, which is the 

compliment of the failure given by column 1-Pf. 

 
Table 4: Summarised reliability index for span 5,4m 

Situation Pf 1-Pf β  

P(FT|SS)SLS 1,30 × 10-6 1,000 4,70 

P(FT|SS)ULS 5,48 × 10-2 0,945 1,60 

P(FT|FS)SLS 1,26 × 10-3 0,999 3,02 

P(FT|FS)ULS 2,23 × 10-1 0,773 0,75 

 

P(FS) is the failure probability of the 

unhealthy structure, which is assumed equal to the 

Monte Carlo simulation with the mean value of 

the load. Eqs. (8) and (9) show how the values 

from Table 4 are implemented in the formula. 

 
𝑃(𝑆𝑆|𝑆𝑇)𝑆𝐿𝑆

=  
1,000 ∙ (1 − 1,26 × 10−3)

1,000 ∙ (1 − 1,26 × 10−3) + 0,999 ∙ 1,26 × 10−3 
(8) 

𝑃(𝑆𝑆|𝑆𝑇)𝑈𝐿𝑆

=  
0,945 ∙ (1 − 1,26 × 10−3)

0,945 ∙ (1 − 1,26 × 10−3) + 0,773 ∙ 1,26 × 10−3
 

(9) 

 

The posterior probability P(SS|ST) results in 

0,9987 for SLS and 0,9900 for ULS. The result of 

the Bayes theory P(SS|ST) is the complement of 

P(FS|ST), which is the value of interest. 

Therefore, P(FS|ST) is equal to 1-P(SS|ST) or 

0,0013 for SLS and 0,0010 for ULS. The 

corresponding reliability indexes for test load 

magnitude TLM SLS and TLM ULS are of 

respectively 3,02 and 3,08. The outcome is very 

dependent on the estimated failure probability 

P(FS).  

To compare, a second case is examined with 

similar properties however a larger span of 5,7m. 

This span is chosen so the reliability index of the 

healthy structure approaches 3,8. Table 5 shows 

the results of the Monte Carlo simulation. 

 
Table 5: Summarised reliability index for different 

span 5,7m 

Situation Pf 1-Pf β  

P(FT|SS)SLS 5,91 × 10-5 1,000 3,85 

P(FT|SS)ULS 3,09 × 10-1 0,691 0,50 

P(FT|FS)SLS 1,79 × 10-2 0,982 2,10 

P(FT|FS)ULS 5,04 × 10-1 0,496 -0,01 
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The probabilities are implemented similarly 

to previous Eqs.(8) and (9). The reliability index 

after performing a load test is equal to 2,11 for 

SLS and 2,23 for ULS.  The impact of the load 

test on the reliability of the structure seems to 

increase when the reliability of the structure itself 

decreases. 

It should be noted that common practise in 

load tests is the monitoring of the deformations.  

The results of this monitoring procedure need to 

comply with the acceptance criteria and limit 

values. By measuring the deformations during the 

test, the behaviour of the slab can be examined for 

different load levels and compared to the 

calculation models.  Excessive deformations can 

be a reason to stop the test. These can be 

compared to the expectation and thereby detecting 

any anomalies beforehand.  

 

5. DISCUSSION OF THE RESULTS 

The reliability index is recalculated for an existing 

structure after the load tests. (EN 1990 2002) 

suggests target β values for SLS and ULS 

respectively 1,5 and 3,8. (ISO 13822 2010) allows 

for a reduction of  β from 3,8 to 3,3 in case of 

existing buildings. The reliability of the first 

considered existing structure is 3,02, which is 

insufficient. After performing a load test with the 

design load, the index increases to 3,08. The 

second case results in 2,11 for SLS and 2,23 for 

ULS. 

The influence of the test load suggests that 

the ratio load effect to resistance is significantly 

affected by the load. This can be examined 

through a First Order Reliability Method (FORM) 

by calculating the ratio of the CoV of the 

parameter to the total CoV of the structure 

(M/MR). For the new structure, the load is 

responsible for 69% of the CoV of the structure. 

The second important parameter is the yield 

strength of steel which contributes only 16%. The 

balance is different for the existing structures due 

to higher CoV for steel and concrete strength. The 

load and the yield strength of steel each contribute 

45%.  

 

6. CONCLUSIONS 

This paper aims to formulate the reliability of an 

existing structure after surviving a load test, 

where two load levels are compared: SLS and 

ULS. The main difficulties lie in defining the 

probabilities of various situations. Current 

perspective leads to no increase in the reliability 

index for TLM SLS and only a limited increase 

for TLM ULS. 

These results are only valid for the bending 

theory. Other structural mechanisms like shear 

failure, compression membrane action or tensile 

membrane action will need to be defined as well 

in further research.  

A theoretical example is elaborated to answer 

the problem statement, assuming the execution of 

the test itself does not fail. This approach shows 

the benefit of a testing till ULS, where testing to 

SLS does not make a significant difference.  

The contribution of this paper is not to 

provide an all-in answer. The conclusions are 

solely based on the considered examples, with the 

bending theory as failure mechanism. However, a 

practical framework is proposed out of which a 

certain mindset and perspective on the necessary 

load level emerges. The focus is testing the 

characteristics of the slab rather than its structural 

behaviour. 

Further research will include the influence of 

measuring deformations during the test to shift the 

focus to the structural behaviour.  
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