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ABSTRACT: The purpose of this paper is to quantify the effect of the uncertainty regarding building 

class assignments on the overall uncertainty of the projected losses in a hurricane wind risk model for 

residential infrastructure in Florida. The Florida Public Hurricane Loss Model is used as a case study, 

where the modelers have developed sets of exposure statistics that have become increasingly exhaustive 

and accurate over the years. The latest set of statistics covers the entire State of Florida, whereas the 

previous versions included a limited number of counties, and missing information was extrapolated from 

neighboring counties. The authors ran portfolio analyses using previous and the most recent statistics to 

demonstrate and quantify the range of uncertainty associated with inventory characterization. They did 

this for multiple scenario events in regions of Florida for which they have the associated claim data.  The 

comparisons of the aggregated modeled losses against actual losses and their contrast with the spread 

among like-structures help quantify the uncertainty due to imperfect building characterization and should 

inform strategies to reduce that uncertainty. 

1. INTRODUCTION 

Catastrophe (cat) models for man-made 

infrastructure have four main components: a 

hazard component, which models the hazards, for 

example, hurricane or earthquake; an exposure 

component, which categorizes the exposure (e.g. 

buildings) into generic classes; a vulnerability 

component, which models the effects of the 

hazard on the exposure and defines vulnerability 

functions for each building class (or other type of 

exposure); and an actuarial component, which 

combines the vulnerability, the hazard, and the 

exposure, to quantify the risk in terms of physical 

damage, economic damage, or insured losses. Cat 

models address the needs of different user groups, 

including the insurance industry and insurance 

regulators (Dong 2002; Shah et al. 2018). In this 

case, insurance portfolios of exposure are input to 

the models, and the outputs are projected insured 

losses. Most of the cat models addressing the 

needs of the insurance industry are proprietary 

models from companies such as Risk 

Management Solutions (2019) and others. A 

notable exception is the Florida Public Hurricane 

Loss Model (FPHLM, 2019).  

Significant epistemic uncertainties exist in 

cat models (Der Kiureghian and Ditlevsen, 2009), 

and the uncertainty in the output of a cat model is 

highly dependent on the quality of the data 
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(Roueche et al. 2018; Kaczmarska et al. 2018).  

Typically, in a hurricane risk model like the 

FPHLM, uncertainty is related to: the hazard 

characterization; the interaction between the 

structure and the wind and rain; the strength 

capacities of the external components of the 

building; the water absorption capacities of the 

interior and contents of the building; the cost of 

installation and repair of the different 

components; the actual replacement values of the 

exposure; the orientation of the building with 

respect to the storm; and the characterization of 

the exposure.  The latter implies the matching of 

every building in the exposure set (e.g. insurance 

portfolio) with its proper building class (the 

quality of construction with respect to wind 

resistance) in the library of vulnerability models 

of the FPHLM.   

The purpose of this paper is to quantify the 

effect of the uncertainty regarding the building 

class assignment on the overall uncertainty of the 

projected loss. The modelers of the FPHLM have 

developed sets of exposure statistics for the 

Florida inventory that have become increasingly 

exhaustive and accurate over the years. The 

statistics govern the matching of the policy to the 

most appropriate building class, even in cases 

where relevant information is missing in the 

portfolio. The latest set of statistics covers the 

entire State of Florida, whereas the previous 

versions included a limited number of counties. 

Missing information for any unaccounted-for 

county was extrapolated from neighboring 

counties, introducing uncertainty of unknown 

magnitude. The authors ran portfolio analyses 

using previous and the most recent statistics to 

demonstrate and quantify the range of uncertainty 

associated with characterization of community 

residential building inventory.  They did this for 

multiple scenario events in Florida for which they 

have the associated claim data.  The comparisons 

of the aggregated modeled losses against actual 

losses and their contrast with the spread among 

like-structures help quantify the uncertainty due 

to building characterization and should inform 

strategies to reduce that uncertainty. 

2. FLORIDA PUBLIC HURRICANE LOSS 

MODEL 

2.1. Overview 

The Florida Office of Insurance Regulation 

(FLOIR) sponsors the Florida Public Hurricane 

Loss Model (Hamid et al., 2011). Every two years, 

the model goes under the certification process of 

the Florida Commission on Hurricane Loss 

Projection Methodology (FCPHLM). The 

certified version at the time of this writing is 

version 8.1 (FPHLM, 2021). There are three 

distinct independent vulnerability models within 

the FPHLM framework: personal residential (PR) 

single-family homes, including manufactured 

homes (Pinelli et al., 2011), commercial 

residential low-rise buildings (CR-LR) (Pita et al., 

2012; Johnson et al., 2018; Silva de Abreu et al., 

2020), and commercial residential mid/high-rise 

buildings (MHR) (4 stories and higher) (Pita et al., 

2016). The purpose of the FPHLM is to predict 

aggregated insured losses for insurance portfolios 

of residential properties in the form of annual 

expected losses (AEL) and probable maximum 

losses (PML). Insurance companies and state 

regulators use such loss estimates to define and 

evaluate rate filings and verify solvency 

(Nicholson et al. 2018). The model can also 

conduct scenario analyses to estimate losses for 

hypothetical and historical storms. 

2.2. Vulnerability matrices 

The output of the vulnerability model of the 

FPHLM are vulnerability matrices.  The cells of a 

vulnerability matrix for a particular structural type 

represent the probability of a given damage ratio 

(defined as cost of repair over overall value of the 

building) occurring at a given wind speed. The 

columns of the matrix represent three-second gust 

wind speeds at 10 m, from 50 mph to 250 mph in 

5 mph bands. The rows of the matrix correspond 

to damage ratios (DR) up to 100%.  An important 

plot derived from the vulnerability matrix is the 

vulnerability curve. The vulnerability curve for 

any structural type is the plot of the mean damage 

ratio vs. wind speed.  



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 3 

2.3. Weighted vulnerability matrices. 

Building vulnerability matrices were created 

for every combination of Florida region (Keys, 

South, Central, and North Florida), and subregion 

(inland, wind-borne debris region, or high 

velocity hurricane zone) for different building 

classes defined by a set of building parameters.  

These include year built, construction type 

(masonry, wood, or other), roof shape (gable or 

hip), roof cover (tile, shingle or metal), roof-to-

wall connections, number of stories (one or two), 

and opening protection (e.g. with or without 

shutters).  

Region, subregion, construction type, and 

year built are determined from the insurance files.  

The year the home was built is used to assist in 

defining the strength to be assigned to the home 

via building code era. For simplicity, consider 

wind resistance to be classified as weak, medium 

or strong, determined by year built and location. 

This leaves the roof shape, roof cover, number of 

stories, and shutter options undefined. From the 

exposure study of Florida counties (next section), 

the statistical distribution of construction type, 

number of stories, roof shapes, and roof cover by 

year built and region can be extrapolated. For a 

series of age groups, we define a weighted matrix 

for each construction type in each county 

belonging to a region and subregion. The 

weighted matrices are the sum of the 

corresponding vulnerability model matrices 

weighted based on their statistical distribution. 

For example, consider a masonry home built in 

the wind-borne debris region of central Florida in 

1990. The exposure study indicates that 66% of 

such homes have gable roofs, 85% have shingle 

roof cover, and 20% have window shutters. 

Weight factors can be computed for each model 

matrix based on these statistics. The Central 

Florida, gable, tile, no shutters, masonry matrix 

would have a weight factor of 66% (masonry 

percent gable) x 15% (percent tile) x 80% (percent 

without shutters) = 7.9%; this is the percentage of 

that home type that would be expected in this 

region, for that year built. Each model matrix is 

multiplied by its weight factor, and the results are 

summed. The result is a weighted matrix that is a 

combination of all the model matrices and can be 

applied to an insurance policy if only the ZIP 

Code, year built, and Insurance Services Office 

(ISO) (Stanovich, 2015) classification are known. 

As a result, for each county in each subregion 

(inland, wind-borne debris region, and high 

velocity hurricane zone) of each region (Keys, 

South, Central, and North), there will be sets of 

weighted matrices (masonry, wood, and others) 

for weak, medium, and strong structures, for six 

different eras from pre-1960 to post-2002.   If, in 

addition, the year built or year of last upgrade of a 

structure in a portfolio is not available, it becomes 

necessary to combine weak, medium, and strong 

weighted matrices into age-weighted matrices, 

based on the statistical distribution of ages in the 

county. The many possible combinations of all the 

building descriptors discussed so far (age, 

location, construction type, roof cover, etc.), lead 

to a library of 4356 building classes, each with 

their own un-weighted vulnerability matrix.    

Their weighted combinations result in a total of 

5517 FPHLM model variations in each of the 67 

counties, meant to represent the vast majority of 

residential construction in Florida. 

2.4. Portfolio analyses 

The first step in a portfolio analysis is to match 

every building in the insurance portfolio with the 

proper building class within the library of FPHLM 

vulnerability models. Typically, most of the 

building parameters are missing from insurance 

portfolios, except construction type and year built, 

and the modelers rely on statistical studies of the 

regional exposure to make-up for missing 

information, based on location and year-built if 

available.  The missing information for any given 

property is assigned based on statistics, and the 

appropriate weighted vulnerability matrix is 

subsequently assigned to the property. Any 

incorrect assignment shall affect the accuracy of 

the projected insured loss. The actuarial 

component assigns a maximum wind speed from 

the hazard model to each property location, which 

combined with the vulnerability assignment leads 

to a projected loss. 
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3. EXPOSURE STATISTICAL STUDIES 

The FPHLM engineers used several sources of 

information for getting up-to-date building 

structural type information in Florida. One 

important source is the Florida counties property 

tax appraisers’ databases. Property appraisers' 

databases (CPTA) are the most comprehensive 

and accurate information of building structural 

characteristics accessible at the present time. 

Although the databases’ contents and format vary 

county to county, many of them contain the 

critical structural information to define the most 

common structural types in each county 

Since the inception of the FPHLM, its 

developers have conducted studies that produced 

an initial and then three revisions of the exposure 

of Florida residential inventory based on the 

CPTA’s. Each revision incorporated additional 

counties as that data become available, and if 

possible updated the data of counties previously 

available,  progressively increasing the coverage 

of the exposure study.  As the coverage of the 

exposure study increased, so did the accuracy of 

the statistics from the study. The four studies are 

summarized below. 

Tax appraiser databases contain large 

quantities of building information, and it was 

necessary to extract those characteristics related 

to the vulnerability of the buildings to wind. First, 

all the buildings in each county database were 

divided into three major categories: single family 

personal residential (PR) buildings, commercial 

residential buildings (apartment and 

condominium buildings), and manufactured 

homes. Under each category, the authors chose to 

extract information on 6 critical building 

characteristics for analysis and statistical 

distribution. They are roof cover, roof shape, 

exterior wall material, number of stories, year 

built and building area.  This paper focuses on the 

statistics for PR buildings. 

3.1. Exposure study of 9 Florida counties (2003) 

The aim of the original survey was to generate a 

manageable number of building classes or models 

to cover the majority of the Florida building stock 

(Zhang, 2003).  The team divided Florida into four 

regions: North, Central, South, and the Keys. 

Geography and the statistics from the Florida 

Hurricane Catastrophe Fund (FHCF) (Pacini & 

Marlett, 2001) guided them in defining regions 

that would have a similar building mix throughout 

their counties (Hamid et al., 2011).  For example, 

the FHCF shows that northern Florida has a 

preponderance of frame houses.   

Databases from nine counties were processed 

(Fig.1 a). Escambia, Walton, and Leon counties in 

the Northern region; Brevard, Pinellas, and 

Hillsborough in the Central region; Palm Beach, 

and Broward in the Southeast region. Monroe 

County fully covers the Keys region. 

To define the structural types, the modelers 

chose a combination of 4 characteristics: number 

of stories (1 or 2), roof cover (shingle/tile), roof 

type (gable or hip) and structural material 

(concrete blocks or timber). Based on the 

information contained in the databases, the team 

computed the statistics for each structural type in 

every sample county and then used weighted 

average techniques to extrapolate the results to 

each region.  These statistics were used in the 

initial certified versions of the FPHLM up to v3.1. 

3.2. Exposure study of 33 Florida counties 

(2011) 
The 52 most populous counties were contacted to 

acquire their tax appraiser database, producing 

information from 33 counties (Torkian et al., 

2011). These 33 counties account for more than 

90% of Florida’s population.  Fig. 1 b) shows the 

regions, with each county for which data were 

available marked with a star and shaded. 

The available building characteristics vary 

from county to county and include some 

combination of the following: exterior wall 

material, interior wall material, roof shape, roof 

cover, floor covering, foundation, opening 

protection, year built, number of stories, area per 

floor, area per unit, and geometry of the building. 

The parameters important for modeling are roof 

cover, roof shape, exterior wall material, number of 

stories, year built, and building area. For each of 

these categories, the authors extracted statistical 

information. The dependency between critical 
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building characteristics was also investigated. For 

example, it was found that roof shape and area of the 

building are strongly dependent on the year built. 

The survey statistics were calculated for different 

eras to account for the correlation between various 

factors and year built.   

These statistics were used in the certified 

versions of the FPHLM v4.1 to v6.1. The 

significant increase in number of counties (from 9 

to 33), changes in the year built eras, and a better 

understanding of dependency between different 

building’s characteristics resulted in a new 

weighting scheme, which takes into account the 

dependencies mentioned above.  In addition, the 

matrices were now weighted county by county 

instead than region by region. 

3.3. Exposure study of 51 Florida counties 

(2016) 

In this new round, an additional 18 counties were 

added to the database which yielded a total of 51 

counties. These 51 counties account for 

approximately 97% of Florida’s population.  Fig. 

1 c) shows the regions, with each county for which 

data were available shaded. Databases 

representing the 2014 tax roll are shaded in green. 

Databases collected prior to 2014 are shaded in 

yellow (Michalski, 2016).  

Statistics were computed for each structural 

type in every sampled county. Weighted average 

techniques were used to extrapolate the results to 

the remaining counties in each region. The 

statistics from this new study were used in the 

certified versions of the FPHLM v6.2 up to the 

current v8.2.   

3.4. Exposure study of 62 Florida counties 

(2021) 

In this last study, the FPHLM team collected tax 

appraiser (TA) datasets for 62 out of 67 Florida 

counties comprising approximately 99% of the 

state’s population. Only 5 small rural counties did 

not provide databases: Highlands, Holmes, 

Lafayette, Suwannee and Union. The TA 

databases vary in size from 457,492 properties for 

large urban counties like Broward, to 4584 

properties for small rural counties like Madison.  

Fig. 1 d) shows each county for which data were 

available as shaded. In addition, the team 

processed two other main sources of data: 

National Flood Insurance Protection (NFIP) 

portfolios, and wind insurance portfolios. The 

data from these different sources were 

reformatted and processed, and the insurance 

databases were separately cross-referenced at the 

county level with tax appraiser databases.  The 

results are augmented CPTA databases (Pinelli et 

al., 2020; Otarola Farah, 2021). 

The outcome are more accurate building 

population statistics, which results in a better 

weighting of the vulnerability functions and a 

more accurate random assignment of missing 

parameters in the insurance portfolios.  The five 

missing counties were assigned the same stats 

than neighboring rural counties. These statistics 

have not been implemented yet in a certified 

version of the FPHLM.  They have been tested in 

a beta version. 

 
a)   b) 

 
c)   d) 

Figure 1: Regional classification of Florida with 

surveyed counties(shaded): a) Zhang, 2003; b) 
Torkian, 2011; c) Michalski; 2016; d) Otarola, 2021 

4. IMPACTS OF THE DIFFERENT 

EXPOSURE STUDIES 

The FPHLM processes insurance portfolios from 

many different insurance companies. In many 

cases most of the building structural information 

in a portfolio is unknown since, in general, 

detailed records of building characteristics are not 
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recorded. In a minority of cases, parameters are 

known, but they do not match any value in the 

library of the FPHLM. In this case these 

parameters are classified as “other.” For example, 

the FPHLM models only timber or masonry 

residential single-family homes. A steel structure 

would be classified as other.  The “other” matrices 

are an average of timber and masonry matrices. 

This lack of knowledge of important 

structural characteristics within insurance 

portfolios makes the mapping of existing portfolio 

policies to available vulnerability matrices 

challenging. The FPHLM team designed a 

mapping tool to read a policy and assign building 

characteristics, if unknown or other, based on the 

building population statistics and year built, 

where year built serves as a proxy for the strength 

of the building. Table 1 summarizes the process.   

 
Table 1: Assignment of vulnerability matrix 

depending on data availability in insurance 

portfolios. 

 
 

Once all the unknown parameters in the 

policy have been identified, an unweighted 

vulnerability matrix based on the corresponding 

combination of parameters is assigned. If the 

number of unknown parameters exceeds a certain 

threshold defined by actuarial considerations, a 

weighted matrix or age-weighted matrix is used 

instead. Because building statistics govern the 

assignment of missing parameters, and the make-

up of the weighted matrices, they have a direct 

influence on the vulnerability and actuarial 

outputs of the FPHLM.  

4.1. Weighted vulnerability curves 

This section compares the changes in weighted 

vulnerability curves due to changes in exposure 

statistics, all other things being equal. For 

example, the only change between the PR 

vulnerabilities of FPHLM v3.1 and 4.1 were the 

statistics: PR v3.1 uses the (Zhang, 2003) stats 

while PR v4.1 uses the (Torkian, 2011) stats. This 

is true also of changes between FPHLM v6.1 and 

v6.2.  The only change between these versions 

were that PR v6.1 used the (Torkian, 2011) stats 

while PR v6.2 uses (Michalski, 2016) stats. 

Finally, while v8.2 uses (Michalski, 2016) stats, 

the team also produced alternative weighted PR 

vulnerabilities for v8.2 using the (Otarola, 2021) 

stats (the beta version). Fig. 2 illustrates the 

changes in weighted vulnerabilities for the case of 

masonry buildings in Martin county.  Within each 

county, for different eras, the magnitude of the 

changes in vulnerabilities depend on the 

magnitude of the changes in the building stats. 

 
Figure 2: Comparisons for weighted vulnerabilities 

between v8.2 with (Michalski, 2016) stats and v beta 
with (Otarola, 2021) stats (dashed lines) 

4.2. Portfolio analyses 

This section compares the changes in insured 

losses due to changes in statistics, all other things 

being equal. For this purpose, it was necessary to 

run the same version of the FPHLM model, v8.2, 

with the 4 different sets of building statistics.  

Figure 2 shows a comparison of the modeled 

losses for v8.2 with both the (Michalski, 2016) 

stats (red squares) and the (Otarola, 2021) stats 
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(blue triangles), vs. the actual claims for 66 

portfolios from different insurance companies, for 

different hurricanes, including Andrew and the 

2004 and 2005 storms. 

 

 
Figure 2: Modeled losses with (Michalski, 2016) stats 
(red squares) and the (Otarola, 2021) stats (blue 

triangles), vs. actual losses 

Fig. 2 shows that the FPHLM v8.2 with the 

(Otarola, 2021) stats produces higher losses.  The 

increases in model losses with the new stats for 

the different portfolios range from 445% to 11%.  

The differences are explained by the use of 

different statistics to randomly assign missing 

building parameters to the policies, or the use of 

weighted matrices derived from different stats.  

The percentage differences are not uniform 

because the differences in stats between the old 

and the new sets differ greatly from county to 

county, and era to era.  

Table 2 lists several metrics that quantify the 

differences between modeled losses and actual 

losses. The better the agreement between the 

modeled and actual losses, the better and more 

accurate the model should be.  Fig. 2 and Table 2 

indicate a reasonable agreement between the actual 

and modeled losses for v8.2 with the (Michalski, 

2016) stats. The correlation between actual and 

modeled losses is found to be 0.970, which shows a 

strong positive linear relationship between actual 

and modeled losses. We tested whether the 

difference in paired mean values equals zero using 

the paired t test (t = 1.43, df = 65, p-value = 0.158) 

and Wilcoxon signed rank test (V= 1249, p-value = 

0.364). Based on these tests, we fail to reject the null 

hypothesis of equality of paired means and conclude 

that there is insufficient evidence to suggest a 

difference between actual and modeled losses. 

Table 2 also shows that about 52% of the actual 

losses are less than the corresponding modeled 

losses, and 48% is the inverse. This shows that the 

modeling process is not biased. Following Lin 

(1989), the bias correction factor (measure of 

accuracy) is obtained as 0.944, and the sample 

concordance correlation coefficient is found to be 

0.916, which again shows a strong agreement 

between actual and modeled losses. 
By contrast, Table 2 shows that there is a 

clear degradation of the accuracy of the loss 

prediction when the same model uses the 

(Otarola, 2021) stats (referred to as the beta 

model). The results of the paired t test and the 

Wilcoxon signed rank test show that there is no 

agreement between actual and modeled losses.  

Table 2 shows that about 73% of the actual losses 

are less than the corresponding modeled losses. This 

shows that the modeling process tends to 

overpredict the losses. 

The results highlight how the inaccuracy and 

incompleteness of the exposure characterization can 

produce a bias in the results, and how this bias can 

hide or cancel an existing bias in the model itself.  

  
Table 2: Metrics evaluating modeled losses with v8.2 

and vBeta (Otarola, 2021)  vs. actual losses  

 

5. CONCLUSIONS 

This paper shows that the loss projections of the 

FPHLM are highly dependent on the quality of the 

building statistics used to either assign missing 

parameters to insurance exposure data, or to 

weight vulnerability matrices to be assigned to 
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properties with incomplete or missing data in a 

portfolio. The resulting uncertainty is highly 

dependent on the quality of the insurance data, 

and on the accuracy of the community 

characterization through its statistical descriptors.  

If the insurance data were complete and accurate, 

there would be no need for the statistics.  If the 

statistics were 100% accurate, for a sufficiently 

large number of properties, the effect on the loss 

projections would be minimal. 

It is difficult to quantify the external 

contribution of community characterization to the 

overall model uncertainty. This is a work in 

progress, but the preliminary results clearly show 

that an incomplete community characterization 

can hide a substantial bias in the model, and 

modelers should pay attention to this issue. 
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