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ABSTRACT: Reliability assessments of penstocks performed at EDF lead to particular geometries of 

failure sets, that may be challenging for usual sampling methods. Two corresponding idealized 

geometries are investigated: a multidimensional narrow strip between two hyperplanes and two secant 

lines separated by a variable angle. For the narrow strip, an improvement of FORM-IS is presented in 

detail. It consists in building an instrumental density that enables to concentrate the sampled points in 

the strip. For the secant lines, line sampling, FORM-IS and subset simulation in their standard versions 

are investigated. First Line sampling and then FORM-IS have the most pronounced effect of the angle 

on the number of G-function calls Ncalls, and the lowest  Ncalls.

1. INTRODUCTION 

System events (intersection or union of events - 

failure or safety domains in this case) are of 

frequent interest in Structural Reliability, even for 

simple structures that are not mechanical systems. 

Unions of failure sets appear in the calculation of 

global risk of failure on a set of elements of a 

given population (Ardillon 2022a). Intersections 

can be found when taking into account temporal 

aspects (e.g. calculation of annual probability of 

failure) or information about the structural state 

(conditional probability of failure). These events 

may result in irregular shapes of the failure set, 

and this may impact seriously the efficiency of the 

standard versions of the sampling methods used 

for reliability assessment. 

Such a situation appeared in the penstock 

reliability assessments recently performed at 

EDF, where annual, potentially conditional, 

failure probabilities are calculated. Simple or 

double intersection events had to be considered 

for this, resulting in two kinds of failure set 

geometries: narrow strips and high curvature limit 

state surfaces (LSS). To handle these cases, a 

specific method was developed: the FISTARR 

method based on FORM-IS (importance sampling 

around a relevant U* point, see (Melchers 1989)). 

As a complement, line sampling was also 

investigated and proved to be successful on this 

use case, provided an appropriate multiple root 

search algorithm was used. These methods are 

shortly presented in this paper. 

However, for some penstock configurations 

these methods may converge slowly or not, and 

possible improvements were investigated. For 

doing this, idealized cases were considered, 

corresponding to the afore mentioned geometries: 

multidimensional narrow strip and high curvature 

LSS. The last one was represented by two 

intersecting lines. 

This article presents some investigations 

performed on these two idealized cases. To our 

knowledge these specific failure sets have not 

been investigated so far in that way. 

2. RELIABILITY ANALYSIS OF EDF 

PENSTOCKS 

Steel penstocks, used for conveying water from 

dam to hydropower plants, are subjected to loss of 

thickness due to corrosion. EDF operates more 

than 500 penstocks (total length > 300 km).  
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Penstocks are pipes made of steel used to 

transport water under pressure from the water dam 

to the hydroelectric turbine. Due to thickness loss 

resulting from corrosion, their mechanical 

integrity must be justified. The usual justification 

relies on diagnoses involving thickness 

measurements and the evaluation of a 

deterministic margin factor (MF) which is a ratio 

of an allowable mechanical stress over the 

mechanical stress present in the pipe during 

operation. If this ratio is greater that one, then the 

penstock is considered as fit for service. The 

evaluation of MF depends on many variables 

which mainly pertain to mechanical and 

geometrical properties. The integrity needs to be 

justified for a very large panel of penstocks with 

different properties which justifies the need of a 

mechanical model. Uncertainty on some variables 

may affect a deterministic evaluation of the 

model. The conservative approach consists in 

evaluating MF when attributing penalized values 

on the uncertain variables.  

To optimize MF, a general reliability 

approach was developed to assess the probability 

of failure at year N of a given penstock. Two 

failure modes have been identified and 

investigated: plastic collapse (affecting parent 

metal) and brittle failure (affecting welds), due to 

the presence of cracks appearing during the 

welding process. In the present paper, only the 

second failure mode is considered since its 

reliability analysis is more complex:  

• the limit-state function is locally 

nondifferentiable and can be discontinuous; 

• the annual probability of failure estimated 

here is a conditional probability considering that 

the penstock passed a hydraulic pressure test 

(HPT) after its production in the workshop.  

By making the simplification Gi =Gi(X), the 

conditional failure probability at year N +1 can be 

expressed as: 

𝑃f cond(𝑀𝐹,𝑁) = 
𝑃rob((𝐺𝑁+1 < 0)  ∩ (𝐺𝑁 ≥ 0) | (𝐺𝐻𝑃𝑇 >

0) )                                                                   (1) 
which leads to : 

𝑃f cond(𝑀𝐹,𝑁) =
𝑃rob((𝐺𝑁+1<0) ∩(𝐺𝑁≥0)∩(𝐺𝐻𝑃𝑇≥0) )

1−Prob(𝐺𝐻𝑃𝑇<0 )
                    (2) 

where GN+1 is the limit state function at the 

beginning of year N + 1, GN is the limit state 

function at the beginning of year N and GHPT 

denotes the application of the limit state function 

at the hydrostatic pressure with the initial 

thickness tHPT (is the event that the penstock 

successfully passed the hydraulic pressure test). 

More details about the mechanical and 

probabilistic models for penstock reliability 

assessments can be found in (Bryla 2020). They 

follow the framework given by (BS 7910 2015). 

3. AN ADVANCED METHOD FOR 

MULTIPLE INTERSECTION EVENTS: 

THE FISTARR METHOD 

This method has been developed specifically for 

penstok reliability assessments. It is based on 

FORM-IS: although many simulation and 

importance sampling techniques exist, FORM-IS 

(Meclchers 1989) is a popular and well-

established method in the structural reliability 

community, which fits to the need of EDF 

industrial context. 

Due to the particular geometrical shape of the 

failure set, {𝐺𝑁+1 < 0 ∩ 𝐺𝑁 ≥ 0 ∩ 𝐺𝐻𝑃𝑇 ≥ 0} , 

(an intersection of 3 events: 1 failure set 

intersected by 2 safe sets), the aforementioned 

methods, including SYS-FORM-IS, experienced 

convergence problems in some cases. 

Indeed, as mentioned earlier the G-function 

is decreasing with time (for both plastic collapse 

and brittle fracture), which results in the following 

inclusion: {𝐺𝑁(𝑢) ≤ 0} ⊂ {𝐺𝑁+1(𝑢) ≤ 0} 
Consequently, in the physical space as well as in 

the standard space, the failure set is a band 

intersected by another failure surface, as 

described in Figure 1 below. In many cases (cf. 

Figure 1), sampling around the individual MPFPs 

as with SYS-FORM-IS may not be a good 

strategy as it will lead to many irrelevant sampled 

values, falling far from the triple intersection. For 

such cases, the relevant MPFP to be used for 

sampling around can be found by adapting the 

usual FORM beta-point search for a single event 
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to multiple failure surfaces: this is the principle of 

Multi-constraint-FORM. In this approach, we 

search for U*
Multi-constraint, such that it minimizes 

‖𝑢‖2 submitted to the three constraints 

{𝐺𝑁+1(𝑢) ≤ 0}, {𝐺𝑁(𝑢) ≥ 0} and {𝐺𝐻𝑃𝑇(𝑢) ≥
0} (cf. Figure 1). 

Note that the usual algorithms suitable for a 

single event MPFP-search, such as Abdo-

Rackwitz and Cobyla, are not appropriate in this 

case. Multi-constraint optimization algorithms 

available in the NLOPT Python Library are used 

instead, such as LD_AUGLAG (Augmented 

Lagrangian Algorithm), LD_MMA (Method of 

moving asymptotes), LD_SLSQP, and LN-

COBYLA. LD means that the optimization is 

based on the local gradient. Once U*
Multi-constraint is 

found, an usual importance sampling auxiliary 

density is used to sample around it (Melchers 

1989). 

 
Figure 1 - Illustration of a possible failure set for 

penstock reliability assessments (hatched), principle 

of Multiconstraint-FORM used in FISTARR 

Finally, to account for both situations where 

SYS-FORM-IS works well and those (a majority) 

where Multi-constraint-FORM-IS is preferable, a 

global sequential algorithm testing sequentially 

both types of algorithms is applied. 

Two algorithms for SYS-FORM-IS are 

integrated (MPFP search with Abdo-Rackwitz or 

Cobyla). The four abovementioned algorithms 

with Multi-constraint-FORM are integrated. 

These algorithms are applied sequentially in a 

predefined order, and the method stops when an  

algorithm returns satisfactory results 

(convergence, acceptable precision - coefficient 

of variation - with the given computational 

budget). Note that the predefined order of the 

algorithms has been optimized regarding the 

convergence criterion: for that purpose a 

reference Design of Experiment comprising the 

most relevant penstock configurations (864 in 

total for brittle fracture and a surface-breaking 

crack) has been issued and the best performance 

algorithms have been identified (in our case 

LD_AUGLAG, followed by LD_MMA, and 

Abdo-Rackwitz). 

This describes the FISTARR method 

(FORM-IS - Tested Automatically - Rapid 

seaRch). It is implemented in Persalys-Penstock 

(Ardillon 2022b). 

4. CASE OF A NARROW STRIP 

4.1. Description of the case 

This case is an idealized representation of the red 
narrow strip of Figure 1 representing the failure 
set corresponding to the annual failure. It is a strip 
located between 2 parallel hyperplanes orthogonal 
to the line ( 𝑂𝛼⃗⃗⃗⃗  ⃗ ), located respectively at the 
distance  and +d from O, and thus with 
respective equations:   

∑ 𝛼𝑖 . 𝑢𝑖
𝑝
𝑖=1 =  𝛽                                              (3) 

and 

∑ 𝛼𝑖 . 𝑢𝑖
𝑝
𝑖=1 =  𝛽 + 𝑑𝛽                                   (4)  

The corresponding failure set is presented in 

Figure 2. 

Its failure probability Pf is easy to compute 

and equals (-) - (-( + d)), which can be 

approximated by (-).d for d sufficiently 

small, where  and  denote the probability 

density function (PDF) and cumulative 

distribution function (CDF) of the normal 

standard law respectively. It should be noted that 

in this case, only 1 iteration (multiplied by the 

number of iterions needed for the search of the 2 

intersections with the limit state surfaces) is 

necessary for the Line Sampling estimator to 

obtain the value of Pf. More generally, it is well 

known that the Line Sampling technique is well 

suited to limit state surfaces. For that reason, it is 
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proposed in the following to concentrate only on 

FORM-IS. 

Figure 2 – Illustration of a narrow band in 

dimension 2 

4.2. Improved FORM-IS for the narrow strip 

(dimension p): mathematical resolution 

The idea is to build an instrumental density such 
that the sampled points are concentrated in the 
strip, or close to it. Note that a general adaptive 
density as proposed in (Bucher 1988) would not 
be relevant, since the first step would anyway 
require a large number of calls to get sufficiently 
numerous points in the narrow strip. On the 
contrary, a better approach is to take account of 
the knowledge about the failure set geometry. For 
this purpose, the density should be: 

• Centered around the U* point, such that 

𝑂𝑈∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝛽 +
𝑑𝛽

2
). 𝛼  (cf. figure 2); 

• With a standard deviation equal to 
𝑑𝛽

2
 in 

the direction 𝛼 , and “almost” equal to 1 in 

the directions comprised in the orthogonal 

hyperplan ∑ 𝛼𝑖. 𝑢𝑖
𝑝
𝑖=1 = constant 

 

Let us denote 𝛽′ = 𝛽 +
𝑑𝛽

2
 

To build this density, the following 4 steps are 
proposed: 

1 Identification of an i0 index corresponding 

to the maximum value of |𝛼𝑖=1…𝑝|; it should be 

noted that in no structural reliability problem 

all the coefficients have the same sign; 

2 Starting from n standard normal variables ui, 
independent and identically distirbuted, the 
proposed new importance density consists in 

introducing the following variables: 
a. For i ≠ i0, 𝑢′

𝑖 = 𝑢𝑖 + 𝑢𝑖
∗, with 𝑢𝑖

∗ =
 𝛽′. 𝛼𝑖  (cf. (Lemaire 2009)) 

b. 𝑢′
𝑖0 =

(𝛽′+ 𝜎.𝑢𝑖0  − ∑ 𝛼𝑖.𝑢𝑖
′𝑝

𝑖≠𝑖0 )

𝛼𝑖0
, with for 

example  = 
𝑑𝛽

2
 

   In other words, the p-1 first variables 

correspond to the standard FORM-IS method, 

whereas the last one will be in a way that the 

sampled point falls in a band with standard 

deviation equal  = 
𝑑𝛽

2
 around the hyperplane of 

equation  
∑ 𝛼𝑖 . 𝑢′𝑖

𝑝
𝑖=1 =  𝛽 + 𝑑𝛽/2            (5) 

This selection of  is inspired from the adaptive 
importance sampling procedure proposed in 
(Bucher 1988). 

3 Then, it is necessary to compute the ratio of 
the initial f and instrumental g densities R(u’1, …, 
u’p) = f(u’1, …, u’p)/g(u’1, …, u’p), on which is 
based the IS probability estimator; this calculation 
is detailed below; 

4 Finally the estimator is as follows: 

𝑃𝑓̃ =

 
1

𝑁
 . ∑ 𝑅(𝑢′

1
(𝑘)

, … , 𝑢′
𝑝
(𝑘)

). 1𝐷𝑓
(𝑢′

1
(𝑘)

, … , 𝑢′
𝑝
(𝑘)

) 𝑁
𝑘=1             (6) 

 

Calculation of the likelihood ratio R : 

Various general remarks will help to perform this 
calculation: 

• For i ≠ i0, the variables 𝑢′
𝑖 𝑜𝑟 𝑢𝑖  are 

independent ; 

• For i = 1…p, the variables ui are independant 

and the joint density f is the product of the p 

marginal densities ;  

• For g we have to distinguish u’i0 from the 

remaining p-1 variables: we have  

g (u’1, …, u’p) = 

∏ 𝜑(𝑢𝑖) .  ℎ(𝑢′
𝑖0|𝑢

′
𝑖 ≠  𝑖0,𝑖=1…𝑝)𝑝

𝑖≠𝑖0                  (7) 

where 

ℎ(𝑢′
𝑖0|𝑢

′
𝑖 ≠  𝑖0,𝑖=1…𝑝) is the density of a normal 

law: 
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- with mean :  
(𝛽′  − ∑ 𝛼𝑖.𝑢𝑖

′𝑝
𝑖≠𝑖0 )

𝛼𝑖0
 

- with standard deviation : 
𝜎

|𝛼𝑖0|
 

The likelihood ratio R is finally the product of two 

ratios: one ratio R1 concerning the ui ≠ ui0 

multiplied by a ratio involving only ui0. 

Calculation of R1 

It is inspired from (Lemaire 2009). 

One gets: 

𝑅1 = ∏
𝜑(𝑢𝑖+𝑢𝑖

∗)

𝜑(𝑢𝑖)

𝑝
𝑖#𝑖0 = exp (−𝛽′. ∑ 𝛼𝑖 . 𝑢𝑖

𝑝
𝑖≠𝑖0 −

 
𝛽′2.(1−𝛼𝑖0

2 )

2
 )     (8) 

Calculation of R2 

One gets: 

𝑅2 = 
𝜑(𝑢′

𝑖0)

ℎ(𝑢′
𝑖0|𝑢

′
𝑖 # 𝑖0,𝑖=1…𝑝) 

                                      (9)  

=

exp(−
𝑢𝑖0

′ 2

2 )

1
𝜎

|𝛼𝑖0|

. exp

(

 
 

−
1
2 .

[
 
 
 𝑢𝑖0

′ − 
(𝛽′   − ∑ 𝛼𝑖 . 𝑢𝑖

′𝑝
𝑖≠𝑖0 )

𝛼𝑖0
𝜎
𝛼𝑖0 ]

 
 
 
2

)

 
 

 

And finally (10): 

𝑅2 =
𝜎

|𝛼𝑖0|
. exp (−

1

2
[𝑢𝑖0

′ 2
− (

(∑ 𝛼𝑖. 𝑢𝑖
′𝑝

𝑖=1 − 𝛽′)

𝜎
)

2

] 

Calculation of the standard deviation and 

variation coefficient of the estimator 

It is based on the variance estimation given in 

(Lemaire 2009) for the standard FORM-IS 

estimator. 

𝑣𝑎𝑟(̃𝑃𝑓,𝑁 )̃                                                                (11)

=
1

𝑁 − 1
 [

1

𝑁
 . ∑

𝑅 (𝑢′
1
(𝑘)

, … , 𝑢′
𝑝
(𝑘)

)
2

.

1𝐷𝑓
(𝑢′

1
(𝑘)

, … , 𝑢′
𝑝
(𝑘)

) − 𝑃̃𝑓,𝑁
2 ]

𝑁

𝑘=1

 

Note that the estimator and its coefficient of 

variation can be calculated iteratively. 

In any case, it appears that it is not necessary 

to replace the bottom of the component, it is 

sufficient to repair some points (8 to 11). 

4.3. Some results 

First the following figure in dimension 2 

confirms that the sampled points are concentrated 

around the narrow strip, as intended. It 

corresponds to (1 = -0.5; 2 = 0.86). The target 

coefficient of variation cv is fixed to 0.1; 35 

sampled points over 48 are in the failure set 

(narrow strip). 

 
Figure 3 – Sampled points by improved FORM-IS for 

a narrow strip in dimension 2 

The numerical results presented below are 

obtained for  = 4, and d = 10-1,  10-2, 10-3, and 

10-4. The standard deviation equals d/2 in the 

direction 𝛼 , and almost 1 in the directions located 

in the orthogonal hyperplane ∑ 𝛼𝑖. 𝑢𝑖
𝑝
𝑖=1 = 

constant. It is reminded that ∑ 𝛼𝑖
2𝑝

𝑖=1 = 1 . The 

target coefficient of variation cv is fixed to 1. Note 

that for the two examples, the reference 

probabilies are identical as they only depend on  

and d. Moreover, these probabilities can be 

approximated by (-).d as seen in §4.1 and 

consequently, they are divided by 10 if d is 

divided by 10. 

Two results are given: the first one in 

dimension 5 and the second one in dimension 10. 

Pf, ref stands for the reference probability 

obtained with FORM. As mentioned before, the 

probability is (almost) proportional to the band 
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width d for d << 1, which is clearly confirmed 

by the numerical results. 

Ncalls denotes the number of calls of the G-

function. 

 

First example (p=5)  

It corresponds to ( = −    =   

 = −   =   = ) 

 
Table 1: Number of limit state function calls with the 

improved FORM-IS for narrow strips of different 

widths (p=5) 

dβ Time(s) Pf,ref 𝑃𝑓̃ 

Standard 

deviation 

(𝑃𝑓̃) 
Ncalls 

10−1 0,0052 
1,10 

E-05 

1,19  

E-05 
1,19E-06 60 

 10−2 0,0018 
1,31 

E-06 

1,43 

E-06 
1,42E-07 57 

10−3 0,0017 
1,34 

E-07 

1,46 

E-07 
1,44E-08 57 

10−4 0,0053 
1,34 

E-08 

1,46 

E-08 
1,44E-09 57 

 

Second example (p=10)  

It corresponds to ( = −    =    

 = −   =   =   =   = 

  =   =   = −) 
 

Table 2: Number of LSF calls with the improved 

FORM-IS for narrow strips of different widths 

(p=10) 

dβ 
Time 

(s) 
Pf,ref 𝑃𝑓̃ 

Standard 

deviatio

n (𝑃𝑓̃) 
Ncalls 

10−1 
0,014

4 

1,10E-05 
1,00E-05 1,00E-06 143 

 10−2 
0,001

8 
1,31E-06 1,27E-06 1,26E-07 132 

10−3 
0,001

7 
1,34E-07 1,45E-07 1,44E-08 125 

10−4 
0,005

3 
1,34E-08 1,29E-08 1,29E-09 132 

 

It can be noted that Ncalls is almost 

independent from the band width d since the 

standard deviation in the direction 𝛼  orthogonal 

to the strip is directly related to d, whereas Ncalls 

would increase significantly when d decreases if 

the standard deviation was constant, as in standard 

FORM-IS. Indeed, a similar study performed in 

dimension 2 showed the following Ncalls for 

standard FORM-IS and improved FORM-IS. It 

can be seen that standard FORM-IS is irrelevant 

for narrow strips, whereas improved FORM-IS 

performs very well. 

 
Table 3: Number of LSF calls with the standard and 

improved FORM-IS for horizontal narrow strips of 

different widths (p=2) 

d 10-1 10-2 10-3 10-4 

Ncalls 

(Standard 

FORM-IS) 

3260 34775 302245 2620580 

Ncalls 

(Improved 

FORM-IS) 

80 75 75 75 

 

This property is particularly interesting for 

low values of d. Moreover, Ncalls slightly 

increases with the dimension p, but this may be 

caused by the particular values of the i factors. 

Considering the successful performance of 

this improved FORM-IS for the idealized narrow 

strips investigated, an adapted version is being 

integrated to the new version of Persalys-

Penstock (V1.7) under development. 

5. CASE OF TWO SECANT LINES 

(DIMENSION 2) 

The objective is to quantify the potential impact 

of the angle  between the two lines. This angle 

represents in a certain sense the LSS curvature at 

the beta-point U*. Note that this notion of angle 

between two hyperplanes is also defined in any 

dimension, since it is possible to define the angle 

between the two vectors orthogonal to each 

hyperplane. 

5.1. Description of the case 

It is presented in figure 4 below. 

The two lines intersect at U*(0, =4) 
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 = 180° corresponds to a linear LSS. The 

most acute angle studied is  = 18°, corresponding 

to high “curvature” and non linearity. 

 

 
Figure 4: case of two secant lines 

For this case the reference probability can be 

obtained by System-FORM, denoted SYS-FORM 

(Lemaire 2009). The simple FOR method is of 

course irrelevant here. The other methods 

compared are: Monte Carlo, FORM-IS (standard 

version), Subset Simulation (SS), and Line 

Sampling (LS). The simulation results are given 

for a similar precision for all methods (target cv = 

10%). Two ratios R1 and R2 are defined: for each 

method, R1 = Ncalls()/Ncalls(180°), and R2 = 

Pf()/Pf(180°). For LS, it is possible in our 

example to find immediately the root (intersection 

between the line and the LSS); usually about 6 

iterations may be necessary, therefore for a 

general evaluation of the LS performance, 

Ncalls(LS) should be multiplied by 6 (Ajenjo 

2022). 

5.2. Some results 

They are presented in Table 4 below. 

All probabilities Pf are consistent with the 

reference value from SYS-FORM. For all 

methods, the ratios R2 are almost identical since 

they refer to the same probabilities. 

For Monte Carlo, R1 and R2 are identical as 

expected, since cv is fixed and 𝑐𝑣 ≈  
1

√𝑁.𝑃𝑓
. The 

increase of Ncalls is only due to the decrease of Pf, 

this is not a matter of angle (curvature). 

For SS, R1 increases slowly when  

decreases, but Ncalls is high. 

For LS, R1 is not relevant since it may induce 

erroneous conclusions regarding the performance 

of LS (R1 would have very high values whereas 

LS has the lowest Ncalls). Contrary to MC, the 

increase of Ncalls is only due to the decrease of the 

angle (curvature), not to the decrease of Pf. LS 

exhibits the most rapid convergence except for 

vary acute angles (high curvatures), even when 

multiplying Ncalls by 6 as suggested before. For  

= 18°, LS and FORM-IS provide a similar 

performance (Ncalls). 

 
Table 4: Number of LSF calls and Pf evolution as a 

function of the angle  for each method 

 (deg) Method Ncalls Pf 
R1 

(Ncalls) 
R2 
(Pf) 

180 

SYS-FORM 26 3,17E-05 1,00 1,00 

MC 3381144 2,96E-05 1,00 1,00 

SS 57435 3,18E-05 1,00 1,00 

FORM-IS 600 2,71E-05 1,00 1,00 

LS 1 3,17E-05  1,00 

144 

SYS-FORM 20 1,35E-05 0,77 2,35 

MC 7916853 1,26E-05 2,34 2,35 

SS 60465 1,39E-05 1,05 2,29 

FORM-IS 800 1,39E-05 1,33 1,95 

LS 23 1,50E-05  
2,11 

90 

SYS-FORM 13 5,47E-06 0,50 5,80 

MC 19078585 5,24E-06 5,64 5,65 

SS 76800 6,41E-06 1,34 4,96 

FORM-IS 1905 5,43E-06 3,18 4,99 

LS 205 5,06E-06  6,26 

54 

SYS-FORM 7 2,87E-06 0,27 11,05 

MC 36058783 2,77E-06 10,66 10,69 

SS 94368 2,70E-06 1,64 11,78 

FORM-IS 4150 2,76E-06 6,92 9,82 

LS 390 3,06E-06  10,36 

18 

SYS-FORM 7 9,02E-07 0,27 35,14 

MC 119651769 8,36E-07 35,39 35,41 

SS 148380 1,04E-06 2,58 30,58 

FORM-IS 10205 8,89E-07 17,01 30,48 

LS 1750 8,68E-07  36,52 

For standard FORM-IS, the increase of R1 

with decrease of  is significant, but lower than 

with Monte Carlo. Ncalls remains low compared to 

MC and SS, but higher than for LS. 
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It is now necessary to investigate if this 

behavior originates only from the evolution of the 

probability or specifically from the evolution of 

the angle (that induces a decrease of probability). 

The following table gives the comparison of the 

evolution of Ncalls for two cases with similar Pf: 

one for  = 180° (Case 2) and one for  = 18°. 

 
Table 5: Compared evolution of Ncalls for two cases 

with similar failure probabilities 

 Case 1 

=4 

(=180°) 

Case 2 

=5 

(=180°) 

Case 3 

=4 

(=18°) 

𝑷𝒇 3,2 10-5 2,9 10-7 9. 10-7 

SS (Ncalls) 57435 139440 148380 

FORM-IS (Ncalls) 600 765 10205 

LS (Ncalls) 1 1 1750 

  

From this analysis the following conclusions can 

be drawn: 

 
Table 6: Effect of the angle (curvature) on the 

method performance 

Method Effect of the angle 

MC High effect only due to the evolution 

of the probability Pf, not specifically 

to the angle 

SS Low effect basically due to the 

probability, but high number of 

calls 

FORM-

IS 

High effect basically due to the 

angle, low number of simulations 

LS High effect only due to the angle, 

very low number of simulations 

6. CONCLUSION 

Reliability assessments of penstocks 

performed at EDF lead to particular geometries of 

failure sets, that may be challenging for usual 

sampling methods. Two corresponding idealized 

geometries have been investigated: a 

multidimensional narrow strip between two 

hyperplanes and two secant lines separated by a 

variable angle. For the narrow strip, an 

improvement of FORM-IS has presented in detail. 

It consists in building an instrumental density that 

enables to concentrate the sampled points in the 

strip. This development is under integration in the 

software dedicated to penstock reliability 

assessments, Persalys-Penstock. For the secant 

lines, line sampling, FORM-IS and subset 

simulation in their standard versions are 

investigated. First Line sampling and then 

FORM-IS have the most pronounced effect of the 

angle on the number of G-function calls Ncalls, and 

the lowest  Ncalls. These developments could be 

useful for similar failure sets (intersection events).  
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