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ABSTRACT: Evidence theory provides a natural framework for analyzing imprecise probabilities. 
Evidence theory enables the explicit recognition of ignorance and is therefore suited for the analysis of 
missing or incomplete data. This paper examines the characteristics of uncertainty beyond traditional 
probability theory, and is motivated by three primary objectives: (i) introducing appropriate roles for 
uncertainty theories and their associated relevance, (ii) developing guidance and methods for data 
combination applications using evidence theory, and (iii) developing evidence theory applications within 
structural design. The paper reviews the development and applications of evidence theory in order to 
motivate further development for specific practical applications. Potential structural design applications 
for evidence theory include dynamic loading and performance-based design. The continued development 
of data combination methods using evidence theory can reduce the additional efforts required to apply 
evidence theory and make future evidence theory applications more efficient and effective. 

1 INRODUCTION   
The need for an improved assessment of 
uncertainty within our society has never been 
greater. The design of infrastructure has been 
constrained recently by limited resources and 
tested frequently by extreme weather events. 
More frequent and destructive hazards, driven by 
anthropogenic practices that increase both 
possible damages and our vulnerability to hazard, 
pose a threat to our communities and 
infrastructure not adequately addressed by our 
prior development and design practices. The 
development of a method for an improved 
assessment of uncertainty would be greatly 
beneficial to infrastructure design for which many 
uncertainties exist. 

Infrastructure owners face uncertainties 
with respect to past, present, and future states of 

their assets. They are uncertain of the past because 
of incomplete or insufficient records. They are 
uncertain of the present because of variable 
material properties, construction idiosyncrasies, 
and unpredictable deterioration. They are 
uncertain about the future because of variable 
environmental conditions, loads, and maintenance 
funding. Infrastructure owners are required, 
however, to make important decisions regarding 
critical assets within this state of uncertainty. The 
recognition and proper management of 
uncertainty is therefore necessary in order to best 
inform decision making, reduce exposure to risk, 
and guarantee continual functioning of infra-
structure. The acknowledgement of this fact has 
led to the adoption of uncertainty analysis using 
mathematical formulations to represent 
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uncertainties, resulting in a quantitative analysis 
of uncertainty based on probability theory. 

Probability theory-based methods used in 
the analysis of uncertainty are difficult to apply in 
situations characterized by ignorance, where lack 
of information makes estimates of initial 
probabilities or probability distributions to use in 
the quantitative analysis difficult to justify (Faes 
et al. 2019; Shafer 2016). The influence of 
ignorance on uncertainty is recognized by the 
definition of two types of uncertainty: aleatory 
and epistemic uncertainty. Aleatory uncertainty is 
the uncertainty pertaining to randomness and 
chance, also referred to as irreducible uncertainty, 
stochastic uncertainty, and variability uncertainty. 
Aleatory uncertainty is defined as the inherent 
variation associated with a system (Oberkampf et 
al. 2002). Epistemic uncertainty is the state of 
imperfect knowledge that arises from ignorance 
and has been de-fined as a potential inaccuracy in 
any activity that is due to lack of knowledge 
(Oberkampf et al. 2002). Aleatory uncertainty is 
well addressed by existing probability theory, 
because of the applicability of probability 
distributions to model the different states of the 
system (Oberkampf and Helton 2002). Epistemic 
uncertainty, the state of imperfect knowledge, 
however, remains difficult to accurately analyze 
using probability theory. This is because 
judgments based on probability theory suggest 
there is precise information not only about the 
event itself, but also about its contrary, which is 
often not appropriate in cases of limited 
quantitative knowledge (Corotis 2015).  

Novel methods of uncertainty assessment 
are needed to address this shortcoming of 
probability theory. One field that inspires the 
development of novel methods of uncertainty 
assessment is the field of Artificial Intelligence 
(AI), notably in the development of knowledge 
representation in expert systems. In fact, the 
application of algorithms developed for use in 
expert systems could provide significant 
improvements in engineering system reliability 
and design (Bonissone 1989). One framework of 
assessing uncertainty is evidence theory, also 

known as Dempster-Shafer theory or the theory of 
belief functions. Evidence theory was originally 
conceived in the 1970s (Dempster 1968; Shafer 
1976), and saw initial applications and concept 
development within the AI community. Evidence 
theory has recently seen expanded applications to 
practical problems typically addressed by 
traditional engineering methods (Behrouz and 
Alimohammadi 2018; Seites-Rundlett et al. 
2022a). Despite some practical applications 
(Behrouz and Alimohammadi 2018; Xu et al. 
2018; Zhou et al. 2018), Evidence Theory still 
lacks clear methods of application (Seites-
Rundlett et al. 2022b). Evidence Theory requires 
further guidance regarding data combination 
methods and additional practical applications, 
such as structural design, in order to expand its 
applications and use within the infrastructure 
design community. 

The motivation of this paper is (i) 
introducing appropriate roles for uncertainty 
theories and their associated relevance, (ii) 
developing guidance and methods for data 
combination applications using evidence theory, 
and (iii) developing evidence theory applications 
within structural design. This paper echoes the 
call during recent times for an improved 
understanding of uncertainty, particularly as it 
relates to infrastructure design (Gardoni and 
LaFave 2016). An im-proved understanding of 
uncertainty needs to address the inability of 
probability theory to adequately capture 
incomplete knowledge, i.e., epistemic 
uncertainty. Evidence theory is one such method 
that offers the ability to systematically incorporate 
incomplete knowledge into an analysis. This 
paper will explore evidence theory through a 
critical review of practical applications of 
evidence theory in published research, in order to 
guide future research into the use of evidence 
theory for infrastructure systems. In so doing, this 
paper will identify a direction for future research 
into practical applications of evidence theory.    

 
2 BACKGROUND 
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2.1 Aleatoric and Epistemic Uncertainty 
 

The assessment of uncertainty continues to be 
dominated by the application of probability 
theory. The assessment of uncertainty, however, 
addresses both aleatoric and epistemic 
uncertainty. Aleatoric uncertainty utilizes 
probability theory to address inherent variation or 
the randomness of input data. The possible states 
of this variation can be modeled with a specified 
distribution once sufficient information or prior 
knowledge of the system is available to estimate 
the distribution (Agarwal et al. 2004). Aleatoric 
uncertainty is described as irreducible because 
once the distribution is well known, obtaining 
more information will not change the range or 
shape of the distribution. The applicability of 
probability theory to assess aleatoric uncertainty 
has resulted in probability theory as the preferred 
method of addressing all uncertainty, including 
epistemic uncertainty (Agarwal et al. 2004; 
Behrouz and Alimohammadi 2018; Khalaj et al. 
2018; Oberkampf et al. 2002). 

Epistemic uncertainty, however, remains 
difficult to incorporate into probability theory be-
cause lack of information makes it difficult to 
estimate a distribution and its parameters. These 
limitations have been widely recognized and are 
summarized well by Martz and Waller (1988) “the 
quality and quantity of more-or-less relevant 
available data for use in a probabilistic safe-ty 
assessment is almost never of the precise form and 
format required for using classical statis-tical 
methods.” The recognition of these limitations has 
fostered a debate over the proper method of 
calculating probability and performing statistical 
inference. The debate originally focused on the 
difference between the classical objective 
frequentist interpretation of probability and the 
Bayesian subjective degree of belief interpretation 
of probability (Martz and Waller 1988). The 
classical frequentist interpretation considers that 
probability is objective and represents the long-
run relative frequencies of events. The Bayesian 
subjectivist interpretation considers probability as 

a subjective degree-of-belief about events, based 
on available information and reasoning.  

Many have advocated for the application 
of the Bayesian interpretation to treat epistemic 
uncertainty. Arguments supporting the 
applicability of the Bayesian interpretation 
include the inability of the frequentist 
interpretation to treat low probability, high 
consequence events, the uncertainty present in 
estimating parameters for distributions, and the 
ability to incorporate additional sources of 
information such as expert opinions or qualitative 
assessments (Martz and Waller 1988). These 
arguments have resulted in epistemic 
uncertainties traditionally modeled as a random 
variable with subjective probability distributions 
(Oberkampf and Helton 2002).  

The Bayesian interpretation is a 
recognized improvement on the frequentist 
interpretation in many applications of uncertainty 
analysis (Apostolakis 1990). This approach, 
however, has still been challenged as inadequate 
for the treatment of epistemic uncertainty (Faes et 
al. 2019; Shafer 2016). Challenges to the 
Bayesian interpretation include the existence of 
mental biases present in calculating subjective 
probabilities (Capen 1976; Tversky and 
Kahneman 1974), the inability to quantify 
ignorance (Khalaj et al. 2018), and the lack of 
complete prior knowledge makes the choice of an 
initial distribution and parameters difficult to 
justify, often contributing to misleading results 
(Agarwal et al. 2004; Oberkampf and Helton 
2002). Recognition of these limitations motivated 
research into a broader conception of uncertainty 
and the development of new statistical methods to 
apply to epistemic uncertainty (Corotis 2015). 
One such method is evidence theory. 

 
2.2 Evidence Theory 
 
One method of assessing epistemic uncertainty is 
evidence theory, also known as Dempster-Shafer 
theory or the theory of belief functions. The 
theory was conceptualized initially by Dempster 
(1968) who interpreted statistical inference based 
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on the concepts of upper and lower probabilities, 
as opposed to the confidence intervals developed 
by Neyman (Lehmann 2011). The theory was then 
further developed by Shafer (1976) with his 
introduction of a theory of evidence based on 
belief functions. Dempster had interpreted upper 
and lower probabilities as bounds on degrees of 
knowledge, however Shafer interpreted these 
upper and lower probabilities as bounds on 
degrees of belief and renamed these limits belief 
functions. The historical development of the 
theory, including a collection of published 
research critical to its development, is provided by 
Yager and Liu (2008).  

Evidence theory is often described as a 
generalization of the Bayesian subjective degree 
of belief interpretation. A distinguishing feature 
of evidence theory is that belief functions allow 
the calculation of three probabilities for any given 
event: the probability for, the probability against, 
and the probability of don’t know (i.e., ignorance) 
(Dempster 2008). This explicit recognition of 
ignorance as a probability to quantify is a special 
feature of evidence theory, as the probabilities for 
and against (i.e., its complement) for a given event 
must sum to unity in probability theory. Another 
beneficial feature of evidence theory is the 
calculation of probabilities on the power set (all 
possible sets) of potential outcomes. The 
calculation of probabilities on sets allows 
information to be applied to a set of events, 
without a complete distribution to individual 
events themselves, as is done in probability 
theory. The mechanics of the theory are best 
summarized by Shafer (2016): “The theory of 
belief functions suggest that we try break our 
evidence down into such relatively simple 
components that we make probability judgements 
separately on the basis of each of these 
components, and that we then think about how to 
combine these judgements.” 

The computational complexity and 
demand required to compute belief functions on 
power sets of many variables was not practical 
when the theory was first proposed in the 1970s 
(Reineking 2014). These computational 

limitations kept initial practical applications of 
evidence theory in the field of artificial 
intelligence, i.e., the development of expert 
systems (Bonissone 1989). Fortunately, recent 
advances in computational power and the 
development of algorithms have made evidence 
theory more practically viable. These 
advancements include the application of Monte 
Carlo simulation to approximate belief functions 
and the capability to share and expand evidence 
theory calculation packages using open source 
software, such as Python (Behrouz and 
Alimohammadi 2018; Reineking 2014). This 
new-found computational viability has seen an 
expansion of the application and exploration of 
evidence theory to practical engineering problems 
in recent research. Although, evidence theory has 
yet to be employed in actual engineering 
applications, as its application has been mostly 
confined to conceptual re-search. 

 
2.3 Practical Applications of Evidence Theory 

 
Evidence theory has seen many uses for 
uncertainty analysis in engineering applications in 
recent years. The following section provides an 
example of many of these practical applications. 
The list is not comprehensive nor complete, but 
provides an overview of practical applications of 
evidence theory. These applications cover many 
topics important to an infrastructure asset owner, 
including system reliability, structural 
assessment, natural hazard impact as-assessment, 
and multicriteria optimization. 

Initially, evidence theory was primarily 
applied to engineering system safety and 
reliability. Bogler (1987) looked at evidence 
theory for the fusion of data from multiple sensors 
on an aircraft. Inagaki (1993) looked at the use of 
evidence theory in decision making using the 
Challenger space shuttle explosion as an example. 
Hester (2012) analyzes aircraft maintenance times 
by combining expert opinions of failure sources 
using evidence theory.  

Recently, evidence theory has been 
incorporated into aspects of structural capacity 
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assessments. Ballent et al. (2019) apply evidence 
theory in the estimation of structural damages 
following an earthquake by combining estimates 
of the extent of damage by different groups. Bao 
et al. (2012) experimentally analyze a rigid truss 
structure and demonstrate the applicability of 
evidence theory in the process of damage 
detection, by using evidence theory to com-bine 
the damage at multiple elements in the truss to 
quantify overall damage. Xu et al. (2018) 
predicted vortex-induced vibration of bridges by 
combining wind sensor data across the span of a 
bridge using evidence theory. Fetz et al. (2000) 
explored to application of evidence theory to 
uncertain parameters included in finite element 
models of foundations. 

Evidence theory has even seen particularly 
beneficial applications to natural hazard 
assessment. Alim (1988) explored the use of 
evidence theory in seismic analysis, motivated by 
the inherent imprecision of seismic parameters 
and the frequent use of linguistic labels to confer 
quantitative data. Behrouz and Alimohammadi 
(2018) analyze flood design problems by first 
calculating design discharge using probability 
theory and then comparing the results to a range 
for design discharge calculated using evidence 
theory, citing the design advantage of applying 
the ranges created using evidence theory to 
communicate information about possible flood 
levels.  

Evidence theory has also been applied to 
multi-criteria optimization problems. Agarwal et 
al. (2004) apply evidence theory to optimization, 
using belief functions as constraints in an ex-
ample sizing an aircraft subject to performance 
requirements. Chen and Rao (1998) apply 
evidence theory to multi-criteria optimization as 
well, analyzing a four-bar mechanical linkage for 
an optimum path of travel. Fetz et al. (2000) 
analyze queuing times for transport vehicles given 
constraints on excavator capacity. 

The discussion above demonstrates the 
numerous broad applications of evidence theory 
to engineering systems. Evidence theory, 
however, has yet to be applied to many 

applications relevant to infrastructure design, as 
most applications simply combine incomplete 
information using evidence theory. Recent 
research has produced many other practical and 
applied methods of uncertainty analysis, but 
evidence theory has not yet been used in 
conjunction with these methods. These other 
methods of uncertainty analysis include Markov 
models of deterioration (e.g. Corotis et al. (2005)), 
multicriteria optimization (e.g. Bocchini and 
Frangopol (2012)), and risk-based asset 
management (e.g., Yang and Frangopol (2019)), 
which have been applied in performing analyses 
of infrastructure network and structural reliability.  

Network and structural reliability 
analyses, however, must incorporate significant 
epistemic uncertainty, which limits the utility of 
current methods of uncertainty analysis. The 
presence of epistemic uncertainty in these 
analyses has changed the analytic paradigm away 
from an assumption of a stationary and prescribed 
future and motivated the development of methods 
of uncertainty analysis that can account for the 
existence of multiple plausible futures (Yang and 
Frangopol 2019). Research in structural reliability 
has led to the development of many innovative 
and practical methods of accounting for 
uncertainty, but still this research has yet to 
explicitly explore the broad benefits of evidence 
theory to improve these methods. The application 
of evidence to practical problems has been mostly 
limited to the fusion of data using evidence 
theory’s rule of combination, i.e., Dempster’s rule 
of combination (Altieri et al. 2017; Ballent et al. 
2019; Hou 2021; Soua et al. 2016; Xu et al. 2018). 

 
3 DEVELOPMENT OF DATA  
COMBINATION METHODS FOR FUTURE 
APPLICATIONS 

 
3.1 Data Combination in Evidence Theory 

 
Practical applications of evidence theory in 
research have demonstrated the beneficial ability 
of evidence theory to combine information from 
different sources (Ballent et al. 2019; Xu et al. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 6 

2018). The ability to incorporate data not 
restricted by the constraints of probability theory 
offers an opportunity for expanded analysis in 
cases of high epistemic uncertainty. Evidence 
theory has the capability to incorporate expert 
opinions into quantitative analysis (Hester 2012). 
Evidence theory provides a framework to 
combine expert estimates to address in-complete 
data using set-based mathematics. The benefit of 
evidence theory in this case is the explicit 
acknowledgment of the use of experts and a 
systematic justification for how their beliefs are 
incorporated into assessments. 

One of the primary differences between 
probability theory and evidence theory is in the 
combination of evidence. This difference will be 
illustrated using the example provided by Xu et al. 
(2018). In the example, the probabilities of 
vortex-induced vibration from three sensors were 
67.7%, 59.4%, and 64.3%. The combination of 
these probabilities using probability theory would 
result in the application of an averaging method, 
such as the arithmetic mean or the geometric 
mean. The averaging method would produce an 
estimate of the overall probability of vortex-
induced vibration that is not greater than the 
maximum probability calculated by any single 
sensor, in this case 67.7%. The combination rules 
of evidence theory allow each piece of evidence 
to be represented by a separate belief function. 
Each belief function is then combined to capture 
the total belief provided by the sensors. The result 
of the combination using evidence theory is an 
estimated probability of 84.6% for vortex-induced 
vibration. This result is greater than the 
probability calculated by any single sensor, 
demonstrating how aggregation of belief in the 
vortex-induced vibration resulted in a probability 
greater than that calculated by any single sensor.  

The combination rule of evidence theory, 
however, has been criticized for its inability to 
intuitively combine conflicting evidence 
(Reineking 2014). This criticism was first raised 
by Zadeh (1979), by providing an example where 
two doctors are attempting to diagnose a patient 
given three diseases, A, B and C. Doctor one 

diagnoses a 99% probability of disease A and a 
1% probability of disease B. Doctor 2 diagnoses a 
1% probability of disease B and a 99% probability 
of disease C. The combination rules of evidence 
theory result in the conflicting evidence nullifying 
any belief in disease A and C, resulting in a 100% 
probability of disease B.  

The non-intuitive nature of Zadeh’s 
(1979) combination result has motivated research 
into new combination schemes for evidence 
theory. Some popular combination schemes 
include Yager’s rule of applying all conflicting 
evidence to the universal set or the conjunctive 
rule of not applying a normalization factor to 
conflicting evidence (Yager and Liu 2008). 
Several additional rules have been proposed, 
however, no combination rule has been 
universally accepted or found to be devoid of any 
non-intuitive results. This is not because already 
proposed rules are all deficient, but rather each 
combination method proposed offers a tradeoff 
between analytical precision and explicit 
recognition of ignorance The default combination 
rule in evidence theory reassigns belief associated 
with conflict, producing a convergence of belief 
on certain outcomes (Seites-Rundlett et al. 
2022b). Alternative rules, such as Yager’s rule, 
retain belief associated with conflict in ignorance, 
thereby explicitly recognizing the potential for 
epistemic uncertainty in the analysis. The 
application of several combination rules, 
therefore, provides a means of sensitivity analysis 
and evaluation of output from certain methods 
(Seites-Rundlett et al. 2022b). Future research 
providing guidance on combination rules 
selection addressing specific engineering 
applications of evidence theory are needed to both 
demonstrate the viability of the theory and 
motivate further practical applications of evidence 
theory. 
3.2 Evidence Theory to Address Weaknesses 
in Current Uncertainty Analysis Methods 

 
Evidence theory offers a promising framework 
that can be used in conjunction with recently 
developed practical methods of uncertainty 
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analysis used in the assessment of infrastructure 
network and structural reliability. These methods 
have dramatically improved and expanded our 
ability to assess uncertainty, yet they still have 
recognized weaknesses in their assessment of 
epistemic uncertainties.  

Markov models, for example, have such 
weaknesses, which could be tackled using 
evidence theory to quantify partial observability. 
Corotis et al. (2005) discusses the tradeoff be-
tween accuracy and cost of data collected to 
inform Markov models. Markov models, 
however-er, cannot be used to provide an 
assessment of the net value of information 
gathered from different sources and future costs to 
obtain information in order to best determine a 
management policy of an infrastructure asset. 
Evidence theory provides a framework that can 
enhance the analysis of potential information 
sources and update estimates on future cost and 
information needs as partial evidence becomes 
available. Research in other fields has explored 
the use of evidence theory in Markov models, 
particularly hidden Markov models (Pieczynski 
2007). Despite these advances, limited research 
has yet been conducted into practical applications 
of evidence theory in Markov models of 
deterioration commonly used in infrastructure 
asset management. 

Multicriteria optimization is another 
example of a method that could be enhanced with 
the use of evidence theory. A recognized 
deficiency of optimization is that the outcome can 
be highly dependent on a few key parameters, 
such as discount rate in the case of cost-based 
optimization (Yang and Frangopol 2019). 
Evidence theory offers the possibility of modeling 
these key parameters with belief functions and 
updating their values, which could prove more 
useful than traditional sensitivity analysis. 
Furthermore, evidence theory has been applied in 
research to multicriteria optimization (Agarwal et 
al. 2004; Chen and Rao 1998), yet not in these 
infrastructure applications. 

Finally, evidence theory offers the ability 
to combine improved assessments of 

infrastructure network reliability in regard to 
natural hazards, the analysis of which introduces 
many un-certainties. The presence of significant 
epistemic uncertainty in hazards means that 
linguistic or qualitative data are often the best data 
available to describe certain processes or 
parameters (Alim 1988). The use of evidence 
theory can address these uncertainties and data 
restrictions through the incorporation of new 
sources of information. For example, Soua et al. 
(2016)) fuse the evidence provided by tweets with 
historic traffic data in order to update traffic flow 
pre-dictions. This method is recognized to be 
particularly useful during times of disaster, when 
historic data are less reliable for predictions (Soua 
et al. 2016). This application could also be 
expanded to address more complex problems, 
such as evacuations. Indicators of social 
vulnerability that have been shown to affect 
evacuation behavior are known to be excluded 
from evacuation models (Seites-Rundlett et al. 
2020). The incorporation of these indicators into 
models of evacuation behavior can improve 
evacuation planning and community vulnerability 
analyses. Additionally, output from transportation 
network analyses (e.g., Bocchini and Frangopol 
2012 a, b) could be expanded from quantitative 
measures related only to delay times and 
population affected by the incorporation of 
affected population vulnerability. 

 
3.3 Future Research in Evidence Theory 

 
Evidence theory offers many benefits to the 
analysis of uncertainty. However, there remain 
some areas of the theory which could be improved 
upon, in order to facilitate the real application of 
evidence theory to structural design. One of the 
primary differences between commonly applied 
probability theory-based methods and evidence 
theory-based methods is in the collection and 
processing of data (Seites-Rundlett et al. 2022b). 
Probability theory-based methods require one to 
pre-process data in order to address imprecise or 
incomplete data included in the analysis. 
Evidence theory-based methods, however, utilize 
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the imprecision and incompleteness of data to 
assign belief to the appropriate sets. One 
important branch of future re-search, therefore, is 
continued application to real practical problems in 
order to establish procedures and guidance to 
facilitate future applications. Well defined 
methods of applying evidence theory need to be 
developed for specific fields and tasks. 

One of the primary areas of research is in 
the use of evidence theory to make decisions 
(Yager and Liu 2008). Significant efforts have 
been made to identify decision making procedures 
using evidence theory when making decisions 
under ignorance, i.e., epistemic uncertainty 
(Yager and Liu 2008). These efforts have focused 
on how to use belief functions to make decisions. 
A common method developed with evidence 
theory is the concept of pignistic trans-formations, 
which use belief functions to maximize expected 
utility (Smets 2005). The output of a pignistic 
transformation is defined as a probability that can 
be used in decision making as if one were placing 
a wager (Smets 2005). The original concept of 
evidence theory did not consider the problem of 
decision making essential, and no particular 
method of decision making has been proposed. 
Nonetheless, the original theory has been applied 
to multiple-criteria optimization and the creation 
of confidence intervals, which can be used to 
inform decisions (Dempster 2008).  

Moreover, given the variety of 
calculations that can be performed with evidence 
theory and the variety of decisions that are 
supported by existing probabilistic methods, the 
creation of general methods for using evidence 
theory for decision making can be difficult to 
explain and justify to practitioners. Therefore, in 
order for evidence theory to be used in 
infrastructure systems, specific outcome-oriented 
decision-making procedures using evidence 
theory are needed. 

 
4 FUTURE APPLICATIONS OF 
EVIDENCE THEORY IN STRUCTURAL 
DESIGN 

4.1 Application of Evidence Theory Suitable 
to Risk Management and Communication 

 
The day-to-day side of structural design requires 
the acceptance of a great deal of epistemic 
uncertainty. For example, epistemic uncertainty 
could stem from uncertain material quality, weld 
strength, or loads. One must generally accept 
these uncertainties, however, to complete daily 
tasks of structural analyses and calculations. But 
at an organizational or societal level, one must 
take the time to develop methods that analyze 
these epistemic uncertainties in order to mitigate 
disasters and structural losses over the long term. 
Therefore, there is a need to develop alternative 
methods of uncertainty analysis, such as evidence 
theory, in order to guaran-tee long-term 
robustness and resilience of structural designs. 

The development of alternative methods 
of uncertainty analysis is hindered by the both the 
extra effort required in analysis and the perceived 
potential for overdesign. The identification and 
explicit recognition of epistemic uncertainty will 
always require extra effort during engineering 
analysis and design. Furthermore, the novelty and 
difference in application compared to 
probabilistic methods (Seites-Rundlett et al. 
2022b) will require extra time and quality control 
efforts when applying alternative methods of 
uncertainty analysis. Furthermore, since evidence 
theory and alternative methods of uncertainty 
analysis are often used to analyze low frequency 
events, there is a perceived potential for 
overdesign. Modern structures are increasingly 
designed up to their performance limits, and 
therefore there is an emphasis on recognizing 
conservative design philosophies and optimizing 
structural designs (Faes and Valdebenito 2020). 
This highlights, however, the role of these 
alternative methods to characterize risk, as they 
can evaluate potentially overlooked risks and 
potentially underestimated design capacity.  

The practical application of evidence 
theory, therefore, may not improve upon current 
ana-lytic or computational aspects employed 
within structural design. However, the explicit 
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recognition and quantification of epistemic 
uncertainty, enabled by applying evidence theory, 
could improve risk management and the ability of 
engineers to communicate risk to the public. This 
is because of the ability of evidence theory to 
incorporate epistemic uncertainties pertaining to 
future events, for which one only has incomplete 
knowledge (Riley et al. 2016). Evidence theory 
goes beyond simple integrated updating 
approaches, which compare statistical modeling 
and observational data (Riley et al. 2016), and 
improves upon probabilistic outputs created from 
incomplete data sources. The application of 
Evidence Theory is recognized to facilitate 
modeling and processing uncertainty (Beer et al. 
2013). Evidence Theory can also be applied to 
better capture mental habits and characterize 
uncertainty, reliability, and conflicting evidence 
(Huang et al. 2017). Communication of risks 
arising from identifying epistemic uncertainty can 
facilitate communication between engineers, 
various stakeholders, and the public. 

 
4.2 Dynamic Loads 

 
Significant epistemic uncertainty can arise when 
evaluating loads, and particularly dynamic loads. 
Epistemic uncertainty stems from both the 
characterization of loadings, including intensity, 
duration, point of application, and the unknown 
possibility of certain loading conditions, such as a 
change in building use or unanticipated natural 
hazards. Since many loading conditions can be 
characterized by epistemic uncertainty, evidence 
theory is a suitable method of comprehensively 
evaluating potential loading conditions over the 
design life and beyond of a structure. The 
application of evidence theory can provide richer 
context to an analysis of loading conditions. This 
context provides additional information 
concerning risk by quantifying epistemic 
uncertainty, which can inform future 
redevelopment or rehabilitation plans.  

The combination of data using evidence 
theory is motivated by the logical process of 
gathering evidence to determine an uncertain 

outcome (Shafer 2016). Evidence theory 
evaluates uncertainty by gathering and collecting 
data to update initial beliefs. Therefore, evidence 
theory is a suitable method to evaluate and update 
initial beliefs and evaluate organizational 
performance over the long-term. Potential 
uncertainties could be analyzed to determine the 
possibility of a given loading condition inducing 
peak stresses and deflection. Although such a 
possibility may not be determined by probabilistic 
approaches, the identification of related epistemic 
uncertainty, can identify the risk and allow for 
discussion for the need of mitigating measures. 

 
4.3 Performance Based Structural Design 

 
Evidence theory has seen many applications in 
system reliability. Evidence theory applications 
therefore offer an opportunity to evaluate the 
reliability of each element of a structural system, 
for example reliability of the loads or reliability of 
the materials. Evidence theory, therefore, has 
potential for application to performance based 
structural design. Epistemic un-certainties that 
could affect the achievement of performance 
objectives can be identified and analyzed within 
an evidence theory application. Furthermore, 
these initial beliefs concerning performance 
objectives can be evaluated and updated over 
time. Such an analysis can influence the 
management of infrastructure over its design life 
and provide guidance on potential maintenance 
and design modifications. 

Evidence Theory also has potential 
applications in reliability-based optimization. One 
important aspect of reliability-based optimization 
is the nested nature of both deterministic 
optimization and reliability/risk analysis. The 
decoupling of these nested problems can reduce 
computational complexity and the number of 
analyses required (Faes and Valdebenito 2020). 
The decoupling of the reliability and optimization 
analysis is also an area of application for Evidence 
Theory. Evidence Theory is well suited for 
reliability-based optimization based on its 
generalizability (Huang et al. 2017). If 
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information is complete and does not conflict, the 
results of an evidence theory analysis will 
generalize to the same results as a probabilistic 
approach. The versatility of evidence theory 
facilitates its use in reliability-based optimization, 
both in the evaluation of reliability characterized 
by epistemic uncertainty and the optimization 
analysis characterized by a need for a more 
deterministic approach.  

 
5 CONCLUSION  

 
As entities responsible for continuous functioning 
of infrastructure, engineers have a mandate to 
account for uncertainty in order to ensure the 
ultimate sustainability of communities and the 
built-environment included therein. However, in 
order to ensure the adequacy of community 
infrastructure, engineering decision-makers need 
novel methods of assessing uncertainty. Evidence 
theory offers one promising method, although 
there is still a need for further research into the use 
of evidence theory to make decisions and combine 
sources of conflicting evidence. The improvement 
of these concepts can lead to the creation of an 
applied and practical form of evidence theory that 
can transform the safety and security of our built 
environment and our understanding of 
uncertainty. 

 
6. REFERENCES 
 
Agarwal, H., J. E. Renaud, E. L. Preston, and D. 

Padmanabhan (2004). “Uncertainty 
quantification using evidence theory in 
multidisciplinary design optimization.” 
Reliab. Eng. Syst. Saf., Alternative 
Representations of Epistemic Uncertainty, 85 
(1): 281–294. 
https://doi.org/10.1016/j.ress.2004.03.017. 

Alim, S. (1988). “Application of Dempster‐Shafer 
Theory for Interpretation of Seismic 
Parameters.” J. Struct. Eng., 114 (9): 2070–
2084. https://doi.org/10.1061/(ASCE)0733-
9445(1988)114:9(2070). 

Altieri, M. G., M. Dell’Orco, M. Marinelli, and S. 
Sinesi (2017). “Evidence (Dempster – Shafer) 
Theory-Based evaluation of different 

Transport Modes under Uncertainty.: 
Theoretical basis and first findings.” Transp. 
Res. Procedia, 20th EURO Working Group on 
Transportation Meeting, EWGT 2017, 4-6 
Sept. 2017, Budapest, Hungary, 27: 508–515. 
https://doi.org/10.1016/j.trpro.2017.12.117. 

Apostolakis, G. (1990). “The concept of probability in 
safety assessments of technological systems.” 
Science, 250 (4986): 1359–1364. 
https://doi.org/10.1126/science.2255906. 

Ballent, W., R. B. Corotis, and C. Torres-Machi 
(2019). “Dempster–Shafer Theory 
applications in post-seismic structural damage 
and social vulnerability assessment.” Sustain. 
Resilient Infrastruct., (0): 1–13. https:// 
doi.org/10.1080/23789689.2019.1583488. 

Bao, Y., H. Li, Y. An, and J. Ou (2012). “Dempster–
Shafer evidence theory approach to structural 
damage detection.” Struct. Health Monit., 11 
(1): 13–26. 
https://doi.org/10.1177/1475921710395813. 

Beer, M., Y. Zhang, S. T. Quek, and K. K. Phoon 
(2013). “Reliability analysis with scarce 
information: Comparing alternative 
approaches in a geotechnical engineering 
context.” Struct. Saf., 41: 1–10. 
https://doi.org/10.1016/j.strusafe.2012.10.003
. 

Behrouz, M., and S. Alimohammadi (2018). 
“Uncertainty Analysis of Flood Control 
Measures Including Epistemic and Aleatory 
Uncertainties: Probability Theory and 
Evidence Theory.” J. Hydrol. Eng., 23 (8): 
04018033. https://doi.org/ 
10.1061/(ASCE)HE.1943-5584.0001675. 

Bocchini, P., and D. M. Frangopol (2012). “Optimal 
Resilience- and Cost-Based Postdisaster 
Intervention Prioritization for Bridges along a 
Highway Segment.” J. Bridge Eng., 17 (1): 
117–129. https://doi.org 
/10.1061/(ASCE)BE.1943-5592.0000201. 

Bogler, P. L. (1987). “Shafer-dempster reasoning with 
applications to multisensor target 
identification systems.” IEEE Trans. Syst. 
Man Cybern., 17 (6): 968–977. 
https://doi.org/10.1109/TSMC.1987.6499307
. 

Bonissone, P. P. (1989). “Evidence and Belief in 
Expert Systems (Dempster-Shafer: A 
Simplified View).” Ex-pert Syst. Struct. Saf. 
Assess., Lecture Notes in Engineering, A. S. 

https://doi.org/
https://doi.org/


14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 11 

Jovanović, K. F. Kussmaul, A. C. Lucia, and 
P. P. Bonissone, eds., 113–130. Berlin, 
Heidelberg: Springer. 

Capen, E. C. (1976). “The Difficulty of Assessing 
Uncertainty.” J. Pet. Technol., 28 (08): 843–
850. https://doi.org/10.2118/5579-PA. 

Chen, L., and S. S. Rao (1998). “A Modified 
Dempster-Shafer Theory for Multicriteria 
Optimization.” Eng. Optim., 30 (3–4): 177–
201. 
https://doi.org/10.1080/03052159808941243. 

Corotis, R. B. (2015). “An Overview of Uncertainty 
Concepts Related to Mechanical and Civil 
Engineering.” ASCE-ASME J. Risk 
Uncertain. Eng. Syst. Part B Mech. Eng., 1 
(4): 040801. 
https://doi.org/10.1115/1.4030461. 

Corotis, R. B., J. Hugh Ellis, and M. Jiang (2005). 
“Modeling of risk-based inspection, 
maintenance and life-cycle cost with partially 
observable Markov decision processes.” 
Struct. Infrastruct. Eng., 1 (1): 75–84. 
https://doi.org/10.1080/15732470412331289
305. 

Dempster, A. P. (1968). “A Generalization of 
Bayesian Inference.” J. R. Stat. Soc. Ser. B 
Methodol., 30 (2): 205–247. 

Dempster, A. P. (2008). “The Dempster–Shafer 
calculus for statisticians.” Int. J. Approx. 
Reason., 48 (2): 365–377. 
https://doi.org/10.1016/j.ijar.2007.03.004. 

Faes, M., M. Broggi, E. Patelli, Y. Govers, J. 
Mottershead, M. Beer, and D. Moens (2019). 
“A multivariate interval approach for inverse 
uncertainty quantification with limited 
experimental data.” Mech. Syst. Signal 
Process., 118: 534–548. 
https://doi.org/10.1016/j.ymssp.2018.08.050. 

Faes, M. G. R., and M. A. Valdebenito (2020). “Fully 
decoupled reliability-based design 
optimization of structural systems subject to 
uncertain loads.” Comput. Methods Appl. 
Mech. Eng., 371: 113313. 
https://doi.org/10.1016/j.cma.2020.113313. 

Fetz, T., M. Oberguggenberger, and S. Pittschmann 
(2000). “Applications of possibility and 
evidence theory in civil engineering.” Int. J. 
Uncertain. Fuzziness Knowl.-Based Syst., 08 
(03): 295–309. 
https://doi.org/10.1142/S0218488500000216. 

Gardoni, P., and J. M. LaFave (2016). “Multi-hazard 
Approaches to Civil Infrastructure 
Engineering: Mitigating Risks and Promoting 
Resilence.” Multi-Hazard Approaches Civ. 
Infrastruct. Eng., P. Gardoni and J. M. 
LaFave, eds., 3–12. Cham: Springer 
International Publishing. 

Hester, P. (2012). “Epistemic Uncertainty Analysis: 
An Approach Using Expert Judgment and 
Evidential Credibility.” J. Qual. Reliab. Eng. 
https://doi.org/DOI: 10.1155/2012/617481. 

Hou, Y. (2021). “Sensitivity Analysis of Epistemic 
Uncertainty on Input Parameters and System 
Structure Using Dempster-Shafer Theory.” 
ASCE-ASME J Risk Uncert Engrg Sys Part B 
Mech Engrg, 7 (2). 
https://doi.org/10.1115/1.4050166. 

Huang, Z. L., C. Jiang, Z. Zhang, T. Fang, and X. Han 
(2017). “A decoupling approach for evidence-
theory-based reliability design optimization.” 
Struct. Multidiscip. Optim., 56 (3): 647–661. 
https://doi.org/10.1007/s00158-017-1680-x. 

Inagaki, T. (1993). “CHAPTER 15 - Dempster-Shafer 
Theory and its Applications.” Fundam. Stud. 
Eng., New Trends in System Reliability 
Evaluation, K. B. Misra, ed., 587–624. 
Elsevier. 

Khalaj, F., E. Pasha, R. Tavakkoli-Moghaddam, and 
M. Khalaj (2018). “Interval-Valued 
Uncertainty Based on Entropy and Dempster–
Shafer Theory.” J. Stat. Theory Appl., 17 (4): 
627–635. 
https://doi.org/10.2991/jsta.2018.17.4.5. 

Lehmann, E. L. (2011). Fisher, Neyman, and the 
Creation of Classical Statistics. Springer 
Science & Business Media. 

Martz, H. F., and R. A. Waller (1988). “On the 
meaning of probability.” Reliab. Eng. Syst. 
Saf., 23 (4): 299–304. 
https://doi.org/10.1016/0951-8320(88)90042-
7. 

Oberkampf, W. L., S. M. DeLand, B. M. Rutherford, 
K. V. Diegert, and K. F. Alvin (2002). “Error 
and uncertainty in modeling and simulation.” 
Reliab. Eng. Syst. Saf., 75 (3): 333–357. 
https://doi.org/10.1016/S0951-
8320(01)00120-X. 

Oberkampf, W. L., and J. C. Helton (2002). “Evidence 
Theory for Engineering Applications.” 
American Institute of Aeronautics and 
Astronautics. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 12 

Pieczynski, W. (2007). “Multisensor triplet Markov 
chains and theory of evidence.” Int. J. Approx. 
Reason., 45 (1): 1–16. 
https://doi.org/10.1016/j.ijar.2006.05.001. 

Reineking, T. (2014). Belief Functions: Theory and 
Algorithms. Dissertation Report Universitat 
Bremen. 

Riley, K., M. Thompson, P. Webley, and K. D. Hyde 
(2016). “Uncertainty in Natural Hazards, 
Modeling and Decision Support.” Nat. Hazard 
Uncertain. Assess., 1–8. American 
Geophysical Union (AGU). 

Seites-Rundlett, W., M. Z. Bashar, C. Torres-Machi, 
and R. B. Corotis (2022a). “Combined 
evidence model to enhance pavement 
condition prediction from highly uncertain 
sensor data.” Reliab. Eng. Syst. Saf., 217: 
108031. 
https://doi.org/10.1016/j.ress.2021.108031. 

Seites-Rundlett, W., R. B. Corotis, and C. Torres-
Machi (2022b). “Development of a Protocol 
for Engineering Applications of Evidence 
Theory.” ASCE-ASME J. Risk Uncertain. 
Eng. Syst. Part Civ. Eng., 8 (3): 04022036. 
American Society of Civil Engineers. 
https://doi.org/10.1061/AJRUA6.0001241. 

Seites-Rundlett, W., E. Garcia-Bande, A. Álvarez-
Mingo, C. Torres-Machi, and R. B. Corotis 
(2020). “Social Indicators to Inform 
Community Evacuation Modeling and 
Planning.” ASCE-ASME J. Risk Uncertain. 
Eng. Syst. Part Civ. Eng., 6 (3): 03120001. 
American Society of Civil Engineers. 
https://doi.org/10.1061/AJRUA6.0001069. 

Shafer, G. (1976). A Mathematical Theory of 
Evidence. Princeton University Press. 

Shafer, G. (2016). “A Mathematical Theory of 
Evidence turns 40.” Int. J. Approx. Reason., 
40 years of Re-search on Dempster-Shafer 
Theory, 79: 7–25. 
https://doi.org/10.1016/j.ijar.2016.07.009. 

Smets, P. (2005). “Decision making in the TBM: the 
necessity of the pignistic transformation.” Int. 
J. Approx. Reason., 38 (2): 133–147. 
https://doi.org/10.1016/j.ijar.2004.05.003. 

Soua, R., A. Koesdwiady, and F. Karray (2016). “Big-
data-generated traffic flow prediction using 
deep learning and dempster-shafer theory.” 
2016 Int. Jt. Conf. Neural Netw. IJCNN, 
3195–3202. 

Tversky, A., and D. Kahneman (1974). “Judgment 
under Uncertainty: Heuristics and Biases.” 
Science, 185 (4157): 1124–1131. 
https://doi.org/10.1126/science.185.4157.112
4. 

Xu, S., D. Wang, R. Ma, A. Chen, and H. Tian (2018). 
“Vortex-induced Vibration Prediction of 
Bridges Based on Data Fusion Theory.” 
Maint. Saf. Risk Manag. Life-Cycle Perform. 
Bridg. CRC Press. 

Yager, R. R., and L. Liu (Eds.) (2008). Classic Works 
of the Dempster-Shafer Theory of Belief 
Functions. Studies in Fuzziness and Soft 
Computing. Berlin Heidelberg: Springer-
Verlag. 

Yang, D. Y., and D. M. Frangopol (2019). “Risk-based 
portfolio management of civil infrastructure 
assets un-der deep uncertainties associated 
with climate change: a robust optimisation 
approach.” Struct. Infrastruct. Eng., 0 (0): 1–
16. https://doi.org 
/10.1080/15732479.2019.1639776. 

Zadeh, L. A. (1979). On the Validity of Dempster’s 
Rule of Combination of Evidence. Electronics 
Research Laboratory, College of Engineering, 
University of California, Berkeley. 

Zhou, D., Wei Tingting, Zhang Huisheng, Ma Shixi, 
and Wei Fang (2018). “An Information Fusion 
Model Based on Dempster–Shafer Evidence 
Theory for Equipment Diagnosis.” ASCE-
ASME J. Risk Uncertain. Eng. Syst. Part B 
Mech. Eng., 4 (2): 021005. American Society 
of Mechanical Engineers. 
https://doi.org/10.1115/1.4037328. 

https://doi.org/

