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ABSTRACT: Past events around the world have highlighted the vulnerability of critical infrastructure to 

natural and anthropogenic hazards, which result in disruptions that have significant societal 

consequences. Many previous studies have focused on developing risk-modeling approaches and 

computational tools for quantifying the consequences of hazard events on critical infrastructure in urban 

environments. However, in the context of climate change, rapid population growth, and increasingly 

interconnected urbanization, there is a need for a novel theoretical framework that designs risk-informed 

critical infrastructure from a forward-looking, dynamic, and people-centered perspective. Furthermore, 

optimizing critical infrastructure design in terms of natural-hazard risk could have additional 

socioeconomic consequences (e.g., gentrification) that are not considered in conventional natural-hazard 

risk-modeling approaches. This paper addresses these two limitations of the state-of-the-art, proposing 

an innovative people-centered, risk-informed decision-making framework for urban infrastructure 

development. The proposed framework captures the (uncertain) performance of infrastructure in terms 

of serving the community’s needs at different pre- and post-hazard temporal instances. In addition, it 

integrates a bespoke agent-based model that accounts for the implications of variations in infrastructure 

development on land values and resulting dynamic residential location decision making, measuring 

macro-scale effects that are not explicitly related to natural-hazard events like gentrification and 

segregation. We demonstrate the proposed framework by optimizing the transportation infrastructure 

design of a hypothetical expanding community of the Global South, balancing competing implications 

in terms of flood risk and the eviction of individuals from their homes due to rising prices. The holistic 

approach to decision making facilitated by this work can be used to guide inclusive risk-sensitive future 

infrastructure planning in tomorrow’s cities. 

1. INTRODUCTION 

Critical infrastructure is vulnerable to natural and 

anthropogenic hazards, which can result in 

significant indirect consequences to communities 

that are many times larger than the direct costs of 

infrastructure repair (e.g., Zhang et al. 2020). 

Many previous studies have focused on 

developing engineering tools to model the 

consequences of hazards on critical infrastructure 

in urban environments. For instance, past work 

has simulated the performance of individual 

infrastructure components, like bridges (e.g., 

Gardoni et al. 2002), and translated damage to 

these components into changes in infrastructure 

functionality (e.g., Nocera et al. 2019). While 

these tools help to identify vulnerabilities and 
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risks associated with current infrastructure, there 

is a need for new risk-modeling approaches that 

inform decision-making around designing 

disaster-resilient infrastructure (Cremen et al. 

2022a). Furthermore, in the context of climate 

change, rapid population growth, and increasingly 

interconnected urbanization, these approaches 

must use a dynamic, forward-looking, and people-

centered perspective, accounting for appropriate 

uncertainties (Cremen et al. 2022b; Filippi et al. 

2023). However, optimizing infrastructure design 

purely in terms of hazard-induced impacts could 

have additional unintended socioeconomic 

consequences (e.g., gentrification or population 

segregation), which are not considered in 

conventional hazard-related risk-modeling 

approaches. Therefore, a so-called risk-informed 

infrastructure design may end up pricing low-

income residents out of their homes and creating 

urban enclaves (e.g., Bagheri-Jebelli et al. 2021). 

In this paper, we propose a people-centered, 

risk-informed decision-making framework for 

urban infrastructure development that addresses 

the current limitations of the literature. The 

framework first quantifies the (uncertain) ability 

of infrastructure to serve a community’s needs, 

using an optimization procedure to balance its 

performance in business-as-usual conditions (i.e., 

before the occurrence of a hazard), in the 

immediate aftermath of a (future) hazard, and 

during the long-term recovery process, 

accounting for specific end-user priorities across 

time. Then, unintended consequences of optimal 

risk-informed infrastructure performance are 

modeled through a bespoke agent-based model 

(ABM) that accounts for the implications of 

infrastructure development on land values and 

resulting dynamic residential location decision 

making. Finally, we select the optimal 

infrastructure design, which (i) maximizes the 

performance of the infrastructure; while (ii) 

limiting unintended socioeconomic consequences 

to a pre-determined, end-user-specific acceptable 

level. 

2. MATHEMATICAL MODELING OF 

INFRASTRUCTURE PERFORMANCE 

This section reviews the general mathematical 

formulation for modeling infrastructure 

performance based on graph theory (Nocera et al. 

2019; Sharma and Gardoni 2022). Networks are 

defined as a graph 𝐺 = (𝑉, 𝐸) that includes 

attributes such as names, types, and state 

variables, as well as the topological information 

represented by the vertices 𝑉 and edges 𝐸 

(Sharma and Gardoni 2022). 

Following Sharma and Gardoni (2022), we 

model infrastructure as a collection of networks, 

each representing a specific function. The 

collection of all networks is 𝒢 = {𝐺[𝑘] =

(𝑉[𝑘], 𝐸[𝑘]): 𝑘 = 1,… , 𝐾}, where superscript [𝑘] 
denotes the function captured by the 𝑘𝑡ℎ network. 

Then, the state of each network is characterized 

by a unique set of vectors: (i) capacity measures 

𝐂[𝑘](𝑡); (ii) demand measures 𝐃[𝑘](𝑡); and (iii) 

supply measures 𝐒[𝑘](𝑡). The triplet 

[𝐂[𝑘](𝑡), 𝐃[𝑘](𝑡), 𝐒[𝑘](𝑡)] is used to compute an 

overall performance measure 𝐐[𝑘](𝑡) of 𝐺[𝑘]. 
Network measures are a function of dynamic state 

variables 𝐱[𝑘](𝑡), where the temporal dependence 

accounts for deterioration/aging processes (e.g., 

Jia and Gardoni 2018) or recovery activities (e.g., 

Sharma et al. 2020). To capture the time-

dependent performance of infrastructure across a 

region, we define an aggregated measure 𝑄(𝑡) of 

the component performances 𝐐[𝑘](𝑡). Then, 

𝕽[𝑄(𝑡)] denotes some specific societal benefit of 

infrastructure performance. 𝕽[𝑄(𝑡)] can be 

disaggregated based on socioeconomic factors 

(e.g., income, age, gender) to capture higher 

resolution effects of infrastructure performance 

(or non-performance) across diverse population 

segments. 

3. AGENT-BASED MODELING OF 

UNINTENDED CONSEQUENCES  

This section describes the ABM for residential 

location decision making (e.g., Alonso 1964). The 

ABM features buyer and seller agents interacting 

with a spatial context of residential units. The 

benefit gained by an agent from a residential unit 
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is quantified using utility values, which depend on 

the agent’s preferences towards various related 

attributes that depend on the state of infrastructure 

provision (e.g., proximity to services). Buyers 

relocate to maximize utility within the limits of 

their available budget (e.g., Magliocca et al. 

2014).  

Mathematically, we write the utility of a 

residential unit as  

𝑈𝑟,𝑖 =∑𝛼𝑖,𝑗 ⋅ 𝑢(𝜆𝑗)

𝑛

𝑗=1

(1) 

where 𝑈𝑟,𝑖 is the total utility of residential unit 𝑟 

for the 𝑖𝑡ℎ agent, 𝛼𝑖,𝑗 is the weight representing 

the preference of the 𝑖𝑡ℎ agent towards attribute 

𝜆𝑗, 𝑢(𝜆𝑗) is the utility associated with the 𝑗𝑡ℎ 

attribute and 𝑛 is the number of attributes. We 

write 𝑢(𝜆𝑗) as  

𝑢(𝜆𝑗) =

{
 
 

 
 

𝜆𝑗

ma x(𝜆𝑗)
 if 𝜆𝑗  ∈ Λ

1 −
𝜆𝑗

max(𝜆𝑗)
 otherwise

(2) 

where Λ is the set of desirable attributes. Next, we 

distinguish between agents as either buyers, 𝑏, or 

sellers, 𝑠, i.e., 𝑖 ∈ {𝑏, s}. We write the 𝑏𝑡ℎ buyer’s 

willingness to pay for the 𝑟𝑡ℎ residential unit 

𝑊𝑇𝑃𝑟,𝑏, as 

𝑊𝑇𝑃𝑟,𝑏 =
𝐻𝑏 ⋅ 𝑈𝑟,𝑏

2

𝛽𝑏 + 𝑈𝑟,𝑏
2

(3) 

where 𝐻𝑏 is the 𝑏𝑡ℎ buyer’s available budget, 𝛽𝑏 

is a parameter controlling the convexity of 

𝑊𝑇𝑃𝑟,𝑏, reflecting the risk appetite of the buyer. 

The range of 𝛽𝑏 is the same as that of 𝑈𝑟,𝑏; high 

𝛽𝑏 indicates risk-averse behavior and low 𝛽𝑏 

indicates risk-taking behavior. We write the price 

of the 𝑟𝑡ℎ residential unit set by the 𝑠𝑡ℎ seller, 𝑃𝑟,𝑠 
as 

𝑃𝑟,𝑠 =
𝐻𝑠. 𝑈𝑟,𝑠

2

𝛽𝑠 + 𝑈𝑟,𝑠2
(4) 

where 𝐻𝑠 is the expected budget of the buyer, and 

𝛽𝑠 is analogous to 𝛽𝑏 .  

3.1. Modeling details 

The ABM captures the behavior of household 

agents in the form of a relocation action. 

Relocation occurs for the 𝑏𝑡ℎ household buyer 

agent when 𝑃𝑟,𝑠 > 𝑊𝑇𝑃𝑟,𝑏. Relocating 

households move to the first residential unit 𝑟∗ 
(within a set of 𝜃 residential units in their current 

neighborhood) that satisfies (i) 𝑊𝑇𝑃𝑟,𝑏 ≥ 𝑃𝑟,s and 

(ii) 𝑈𝑟,𝑏 ≥ 𝑈𝑏
∗, where 𝑈𝑏

∗ is a utility threshold 

equal to the average utility value of the 𝜃 

residential units. If none of the 𝜃 residential units 

meet these conditions, the household instead 

emigrates out of the urban system. Thus, 

relocations are triggered by changes in 𝑃𝑟,𝑠 and/or 

𝑊𝑇𝑃𝑟,𝑏; these result from changes to 𝜆𝑗 that arise 

from infrastructure development. Unintended 

consequences of infrastructure development are 

quantified in terms of the total number of 

triggered relocations 𝜀 (i.e., the number of times 

𝑃𝑟,𝑠 > 𝑊𝑇𝑃𝑟,𝑏 is valid for household buyer 

agents). In summary, 𝜀 can be thought of as forced 

evictions, which are a proxy for gentrification.  

4. PROPOSED FRAMEWORK 

This section presents the proposed framework for 

facilitating people-centered, risk-informed 

infrastructure design, accounting for unintended 

consequences. The framework integrates the 

mathematical modeling of infrastructure 

(reviewed in Section 2) with the ABM for 

residential relocation decision making (detailed in 

Section 3). We formulate the infrastructure 

design/development as an optimization problem, 

maximizing the overall performance of the 

infrastructure across three temporal phases, i.e., 

(i) business-as-usual operations; (ii) in the 

immediate aftermath of a hazard event (i.e., the 

response phase); and (iii) during long-term 

recovery efforts (i.e., the recovery phase) that are 

prioritized according to end-user input. The 

design process further considers the tolerable 

level of unintended gentrification consequences 𝜀 

resulting from the infrastructure layout.  
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4.1. Mathematical formulation of the 

optimization process  

We write the objective function 𝑍 of the 

optimization problem as  

max𝑍 = 𝔼[(𝛾1 ⋅ 𝑍1 + 𝛾2 ⋅ 𝑍2 + 𝛾3 ⋅ 𝑍3)] (5) 
where 𝔼[∙] is the expected value operator; γ1, γ2, 

and γ3 are weights, defining the end-user-

dependent relative importance of the business-as-

usual operations, response, and recovery phase in 

the infrastructure design; and 𝑍1, 𝑍2, and 𝑍3 

represent infrastructure performance in the three 

corresponding temporal phases. 𝑍1 is formulated 

as 

𝑍1 =
1

𝑛𝑎
∑𝜔𝑎

𝑛𝑎

𝑎=1

1

𝑁𝐻
∑𝑤𝑖𝕽𝑖,𝑎[𝑄(𝑡0−; 𝐠)]

𝑁𝐻

𝑖=1

(6) 

where 𝑛𝑎 is the number of considered 

infrastructure needs (types), ω𝑎 is the weight 

(priority) placed on the 𝑎𝑡ℎ infrastructure need, 

𝑁𝐻 is the number of household agents in the 

community, 𝑤𝑖 is the weight (priority) placed on 

meeting the 𝑖𝑡ℎ household’s infrastructure needs. 

𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] describes a specific aspect 

(benefit) of infrastructure performance at 

household-level during 𝑡0−  (before the occurrence 

of the hazard event) and 𝐠 is the set of 𝐸[𝑘] to be 

added as part of the infrastructure development, 

such that different 𝐺[𝑘] will result in different 

values of 𝕽𝑖,𝑎[𝑄(𝑡0−; 𝐠)]. In the example case of 

using a topology-based approach to measure the 

performance of transportation infrastructure, we 

can define 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] as 

𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] =
𝜂𝑖,𝑎
(𝐻)(𝑡0− , 𝐠)

𝜂𝑖,𝑎
∗ (𝑡0− , 𝐠)

=

=
1

𝑁(𝑖)
∑

𝑑𝑖,𝑎(𝑚)
∗

𝑑𝑖,𝑎(𝑚)

𝑁(𝑖)

𝑚=1

(7)

 

where 𝑁(𝑖) is the number of individuals in 

household 𝑖 that have infrastructure need 𝑎, 

𝑑𝑖,𝑎(𝑚) is the distance from the residence of 

household agent 𝑖 to the activity (location) of 

interest of the 𝑚𝑡ℎ individual in household 𝑖, and 

𝑑𝑖,𝑎(𝑚)
∗  is a reference value for normalizing 𝑑𝑖,𝑎(𝑚) 

(e.g., the maximum value of 𝑑𝑖,𝑎(𝑚) within the 

corresponding socioeconomic group) so that each 

component of the objective function in Eq. (5) can 

be added together. 𝑍2 is expressed as 

𝑍2 =
1

𝑛𝑎′
∑𝜔𝑎′

𝑛𝑎′

𝑎′=1

1

𝑁𝐻
∑ 𝑤𝑖𝕽𝑖,𝑎′

[𝑄(𝑡0+), 𝐠]

𝑁𝐻

𝑖=1,

𝑝(𝑖)⊆𝑖∈Ω
𝑎′

(8) 

where ω𝑎′ is the weight associated with the 𝑎′𝑡ℎ 

infrastructure need in the response phase 𝑡0+ , 

𝑝(𝑖) ⊆ 𝑖 ∈ Ω𝑎′ identifies the individuals (in 

household 𝑖) associated with the 𝑎′𝑡ℎ 

infrastructure need in the response phase, and 

𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] describes some aspects of 

infrastructure performance in the response phase. 

In the context of using a topology-based approach 

to measure the performance of transportation 

infrastructure, we can define 𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] =

𝜂
𝑖,𝑎′
(𝐻)(𝑡0+ , 𝐠) 𝜂𝑖,𝑎′

(𝐻)(𝑡0− , 𝐠)⁄ , capturing the increase 

in distance to each location of interest at the 

household level compared to those distances at 

𝑡0− . Since at 𝑡0+  the focus could be on preserving 

life, locations of interest captured by 

𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] may be different to those 

captured by 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] in Eq. (7), and could 

be limited to shelters (for those who are displaced) 

and hospitals (for those who are injured), for 

instance. Finally, Z3 is expressed as 

𝑍3 =
1

𝑇𝑅
∑

1

𝑛𝑎
∑𝜔𝑎

𝑛𝑎

𝑎=1

1

𝑁𝐻
∑𝑤𝑖𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)]

𝑁𝐻

𝑖=1

𝑇𝑅

𝜏=𝑡0+

(9) 

where 𝑇𝑅 represents the time at which recovery 

activities are completed, and 𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)] is a 

time-varying measure of some aspect of 

infrastructure performance during the recovery 

process. Considering a topology-based approach 

to measuring transportation infrastructure 

performance, we can define 𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)] =

𝜂𝑖,𝑎
(𝐻)(𝑡, 𝐠) 𝜂𝑖,𝑎

(𝐻)(𝑡0− , 𝐠)⁄  analogous to 

𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] in Eq. (8), where the locations of 

interest are the same as those captured by 

𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] in Eq. (7).  

The first constraint of the optimization is 
𝐶𝑝 ≤ 𝑀𝑝 (10) 

where 𝐶𝑝 is the cost of implementing a specific 

infrastructure design, and 𝑀𝑝 is the budget 
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allocated to the infrastructure development 

process. We also force the resulting 𝐺[𝑘] to be a 

connected network, which can be written as  

∀𝑣1, 𝑣2 ∈ 𝑉
[𝑘], ∃ 𝜑(𝑣1, 𝑣2) (11) 

where 𝑣1 and 𝑣2 are two generic nodes in 𝑉[𝑘], 
and 𝜑(𝑣1, 𝑣2) is a path between them. We include 

additional non-negative constraints 𝜔𝑎 ≥ 0, ∀𝑎, 

𝑤𝑖 ≥ 0, ∀𝑖, 𝜔𝑎′ ≥ 0, ∀𝑎′, and 𝛾1, 𝛾2, 𝛾3 ≥ 0, and 

ensure that sets of weights 𝜔𝑎, 𝑤𝑖, 𝜔𝑎′, and 𝛾1, 𝛾2 

and 𝛾3 sum to one. The final constraint of the 

optimization is 𝜂𝑖,𝑎
(𝐻)(𝜏∗, 𝐠) 𝜂𝑖,𝑎

(𝐻)(𝑡0− , 𝐠)⁄ ≥

𝜉(𝜏∗), ∀𝜏∗, where 𝜉(𝜏∗) represents a lower 

threshold for infrastructure performance at time 

𝜏∗, facilitating a possible requirement for the 

infrastructure to be restored to pre-hazard 

performance levels within a certain period from 

the occurrence of the hazard event.   

4.2. Solving for the final infrastructure design 

The proposed infrastructure development 

formulation in Section 4.1 is a combinatorial 

optimization problem. The optimal infrastructure 

layout (topology) results from a finite set of 

possible infrastructure interventions, i.e., added 

edges, such as new roads in a transportation 

infrastructure. The overall workflow is laid out in 

Figure 1. We start with an augmented 

infrastructure layout that includes the existing 

infrastructure components and the full set of 

potential (candidate) edges for development. 

Several procedures can be used to obtain the 

augmented layout, such as (i) manually digitizing 

the candidate edges in a geographic information 

system, (ii) defining a grid of points based on 

digitized geospatial data in a geographic 

information system and finding the least cost 

paths among all the points in the grid or (iii) using 

a fully-automated interactive procedural 

modelling approach based on tensor field theory 

(e.g., Chen et al. 2008). First, we find the 

combination of new edges to be added that 

maximizes the objective function in Eq. (5) and 

satisfies the constraints discussed in Section 4.1. 

An exhaustive search of every possible 

combination of new edges is not feasible because 

of several computational complexities, such as  

Figure 1: Workflow for finding the final 

infrastructure design 

 

nonlinearity, non-convexity, and non-

differentiability of the objective function in Eq. 

(5). However, heuristic approaches can be used to 

obtain near-optimal solutions, and we propose 

using a simulated annealing (SA)-based 

metaheuristic procedure in our framework. SA-

based heuristics maximize/minimize an objective 

function by applying small random changes to the 

decision variable 𝐠, i.e., the edges to add from the 

full set of candidates. If a new solution improves 

the value of the objective function, a further 

search is initiated in the neighborhood of this 

point to determine a solution that further improves 

the objective function. If a further solution cannot 

be found, the current solution is accepted with a 

certain probability, i.e., exp(−𝑍/𝑇), in which 𝑍 is 

the objective function in Eq. (5), and 𝑇 is one of 

the hyperparameters of the optimization 

algorithm, typically known as the temperature. 

We start the search for the optimal 

infrastructure layout by randomly selecting a 

subset of candidate edges that satisfy the 

constraints discussed in Section 4.1. We evaluate 

the objective function using this subset as the 

initial optimization solution. Then, the initial 

solution is perturbed by making small changes to 

the current subset of candidates. For each 

perturbation, we randomly select one of the 
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following options: add, remove, or replace. If add 

is selected, we randomly add a new edge 

candidate from the full set of candidates to the 

current subset. If remove is selected, we randomly 

remove a candidate from the current subset. If 

replace is selected, we randomly replace a 

candidate from the current subset with a new 

candidate from the full set of candidates.  

Next, we avoid infeasible solutions that 

violate the constraints discussed in Section 4.1 by 

adding a dynamic penalty function (Michalewicz 

and Schoenauer 1996) to the solution of the 

objective function. Mathematically, this means 

that we rewrite Eq. (5) as  

𝑍′ = {
𝑍         if 𝐠 ∈ Ω𝑓 

𝑍 + 𝑃(𝐠) otherwise
(12) 

where Ω𝑓 is the set of feasible solutions, and the 

penalty function 𝑃(𝐠) is introduced if there is a 

violation of the constraints discussed in Section 

4.1. Following Michalewicz and Schoenauer 

(1996), 𝑃(𝐠) can be expressed as 𝑃(𝐠) =
(1 2𝑇⁄ ) ⋅ [𝑌(𝐠)2], where 𝑌(𝐠) is a constraint of 𝑍, 

and all other variables are as previously defined. 

The optimization result is a sorted list of 

infrastructure development layouts ranked in 

terms of the value of the objective function in Eq. 

(5) and is the optimized infrastructure set shown 

in Figure 1. The final selected infrastructure 

layout is the one ranked highest by the 

optimization that yields 𝜀 ≤ 𝜀𝑇, where 𝜀𝑇 is a pre-

determined, end-user-specific acceptable level of 

unintended consequences, and 𝜀 is quantified 

using the ABM described in Section 3. 

4.3. A participatory process 

The proposed framework is inherently 

participatory in nature. Infrastructure needs 𝑎 and 

𝑎′ can be identified through discussions with 

affected communities, ensuring that the 

infrastructure development process is based on 

local people’s requirements. Values of γ1, γ2, γ3, 

𝜔𝑎, and 𝜔𝑎′ should be defined by relevant local 

decision makers. Values of 𝑤𝑖 can be assigned 

based on socioeconomic characteristics such as 

income, which can help to prioritize the needs of 

lower-income populations and support a pro-poor 

approach (e.g., Galasso et al. 2021).  

5. ILLUSTRATIVE EXAMPLE: 

TRANSPORTATION INFRASTRUCTURE 

DEVELOPMENT  

This section demonstrates the proposed 

framework for designing an expansion of the 

transportation infrastructure in the 500-ha virtual 

urban testbed of Tomorrowville (TV). TV is 

expected to experience rapid future urbanization 

and accommodate over 10,000 more households 

in the next 50 years. It was developed by 

combining synthetic and empirical physical and 

socioeconomic data from Kathmandu, Nepal, and 

Nairobi, Kenya, to broadly represent a typical 

urban context in the Global South (Menteşe et al. 

2023). The testbed is a geospatial database of 

urban features that includes information on land 

use, building and infrastructure (physical) 

characteristics, household (social) characteristics 

(such as income levels), and individual (social) 

characteristics, as well as detailed data on each 

person’s daily infrastructure needs. The hazard 

event considered is the 100-year return period 

fluvial flooding event presented in Jenkins et al. 

(2023). We focus on the performance of the 

transportation infrastructure during business-as-

usual operations 𝑡0−  and the response phase 𝑡0+ 

(i.e., 𝛾3 = 0), assuming that the infrastructure 

needs include access to hospitals (ℎ), schools (𝑒), 

and workplaces (𝑙) in both temporal phases, i.e., 

𝑎 = 𝑎′ = {ℎ, 𝑒, 𝑙}. We then estimate 

𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] and 𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)], using a 

topology-based approach and assuming that a 

road segment is inaccessible if the water height of 

the flood is greater than 0.3 m (Pregnolato et al. 

2017). 

We make the following additional 

assumptions: (i) 𝛾1 = 𝛾2 = 0.5, and 𝛚𝑎 = 𝛚𝑎′ =
[1 3⁄ , 1 3⁄ , 1 3⁄ ], reflecting an objective 

stakeholder who places equal importance on each 

temporal phase and infrastructure need when 

making decisions; (ii)  𝐰𝑖 = [0.7, 0.2, 0.1], where 
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the entries of the vector respectively refer to low-

income, middle-income, and high-income 

households, reflecting stakeholders that adopt a 

pro-poor approach; (iii) the cost of building a new 

road is equal to 5,000 £/m, 𝑀𝑝 is 20M £, and 

𝜀𝑇 = 920; (iv) 𝐻𝑠 ∼ Uniform(𝑎𝑠, 𝑏𝑠), where 
{𝑎𝑠, 𝑏𝑠} = {0, 1} for low-income households, 
{𝑎𝑠, 𝑏𝑠} = {1,2} for middle-income households, 

and {𝑎𝑠, 𝑏𝑠} = {2,3} for high-income households; 

(v) 𝐻𝑏 ∼ Uniform(𝑎𝑏 , 𝑏𝑏), where {𝑎𝑏 , 𝑏𝑏} =
{0, 1.2} for low-income households, {𝑎𝑏 , 𝑏𝑏} =
{1.2,2.4} for middle-income households, and 
{𝑎𝑏 , 𝑏𝑏} = {2.4,3.6} for high-income households; 

(vi) 𝛽𝑏 = β𝑠 =  1 for all agents, reflecting a risk-

neutral outlook; (vii) 𝛼𝑖,ℎ~Uniform(0,1), 
𝛼𝑖,𝑒~Uniform(0,1), and 𝛼𝑖,𝑙~Uniform(0,1); 
(viii) The set of 𝜆𝑗 considered are all desirable; Λ 

comprises transport distance from residence to 

hospital 𝜆1, school 𝜆2, and work 𝜆3; (ix) 𝛂𝑏 =
[1,1,1] and 𝛂𝑠 = [1,1,0].  

Figure 2 displays the augmented 

transportation infrastructure layout of 

Tomorrowville (on the left) and the results of the 

people-centered, risk-informed infrastructure 

development (on the right), as well as the extent 

of the considered flood. The existing 

transportation infrastructure is indicated in black. 

The full set of candidates is shown in green, which 

we obtain by manually digitizing the candidate 

edges, hypothetically reflecting the outcome of a 

conversation with potential stakeholders. The 

right panel provides the top-ranked optimized 

infrastructure layout, and the one finally selected 

that produces tolerable unintended consequences. 

The results show that the top-ranked optimized 

infrastructure layout would lead to 𝜀 =1,080 

evicted households. Instead, the final selected 

layout reduces 𝜀 by 15%, with a 𝑍 value less than 

1% smaller than the top-ranked one. 

6. CONCLUSIONS 

This paper proposed a novel people-centered, 

risk-informed decision-making framework for 

future infrastructure development in growing 

cities. The framework extends beyond 

conventional natural hazard infrastructure impact 

 
Figure 2: Case study application 

 

assessments by (i) focusing on future 

infrastructure design; (ii) adopting a holistic lens, 

explicitly accounting for unintended 

consequences of risk-informed infrastructure 

development (e.g., gentrification); and also (iii) 

facilitating external participation in the design 

process.  

We formulated the risk-informed 

infrastructure development process as a 

combinatorial optimization problem, in which the 

objective is to maximize the performance of the 

infrastructure in three distinct temporal phases, 

i.e., business-as-usual conditions, in the 

immediate aftermath of a (future) hazard, and 

during the long-term recovery process, according 

to stakeholder/end-user priorities and needs. The 

final infrastructure layout selected is one that also 

leads to an acceptable level of unintended 

consequences, which are quantified using a 

bespoke agent-based model that captures the 

implications of variations in infrastructure 

development on land values and resulting 

dynamic residential location choices. The 

example application demonstrated that the 

framework can produce an infrastructure design 
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with tolerable unintended consequences at the 

expense of only a slight decrease in risk-informed 

performance. While the example focused on the 

transportation infrastructure of a virtual testbed in 

the Global South, the proposed formulation is 

general enough for application to any critical 

infrastructure and hazardscapes of interest. 
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