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ABSTRACT: We use a decision sensitivity measure to evaluate the influence of model parameter
uncertainty on the result of a cost-benefit analysis for a flood risk mitigation measure. The sensitivity
measure is the expected value of partial perfect information (EVPPI), which quantifies the monetary
value of eliminating the uncertainty of an input parameter considering the expected improvement in the
final decision to be taken. We present a flood risk model assessing the benefit of the flood protection
measure and quantify selected input parameter uncertainties. On this basis, we evaluate the EVPPI
through a mere post-processing of the Monte Carlo samples generated in the uncertainty analysis. The
application demonstrates the advantages of the EVPPI compared to the more commonly used
variance-based sensitivity measures.

1. INTRODUCTION

Taking or supporting a decision is typically the
main motivation for a risk analysis. While sensi-
tivity analyses traditionally serve to make a state-
ment about the relative influence of uncertain input
parameters on the uncertainty of the model output
(Saltelli et al., 2008), in the face of a decision it
seems rather natural to assess the absolute influence
of the uncertainty of input factors on the actual de-
cision to be made, i.e., by means of a decision sensi-
tivity measure (Felli and Hazen, 1998; Straub et al.,
2022).

Felli and Hazen (1998) first proposed using
the expected value of partial perfect information
(EV PPI) as a decision sensitivity measure in the
field of medical decision making, and ? proposed
its use for sensitivity analysis in the context of prob-
abilistic safety assessment. The EVPPI quantifies

the value of reducing uncertainty in model inputs
considering the improved decision making. It is
thus a natural sensitivity measure for factor prior-
itization, i.e., for determining which input uncer-
tainties should be reduced first to improve decision
making. However, the EVPPI has rarely been used
in environmental engineering applications and not
– to our knowledge – for flood risk assessment.

Flood risk management has changed signifi-
cantly over the last decades towards more inte-
grated risk-based approaches that explicitly account
for uncertainties of both aleatory as well as epis-
temic nature (Hall and Solomatine, 2008). Mak-
ing decisions in the field of flood risk management
should be supported by a proper uncertainty and
sensitivity analysis, utilizing an informative sensi-
tivity measure that is related to the respective deci-
sion.
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A series of flood detention basins (so called flood
polders) are planned along the Bavarian Danube.
Their aim is to reduce the risk of downstream flood-
ing in case of extreme flood events by reducing the
peak discharge. To assess the economic efficiency
of these measures and support decision making, a
flood risk model is set up and incorporated into a
cost-benefit analysis. The flood risk model is in-
evitably subject to epistemic uncertainty, whose ef-
fect is quantified in an uncertainty analysis. As part
of this analysis, we employ a decision sensitivity
measure to evaluate the influence of model uncer-
tainties on the net benefit of the flood polder. In
this paper, we showcase this analysis for the case of
a single flood polder location. We present a simple
algorithm that evaluates the EVPPI decision sensi-
tivity measure as a by-product of the Monte-Carlo
based uncertainty analysis without significant com-
putational efforts. Exemplary results are presented
to illustrate the approach and to demonstrate the ad-
vantages of this measure compared to the first-order
variance-based (Sobol’) sensitivity measure.

2. DECISION-ORIENTED SENSITIVITY
ANALYSIS

Global sensitivity analyses often serve to iden-
tify those input factors on which more information
should be collected to reduce the uncertainty of the
model output. This task is known as Factor Prior-
itization (Saltelli et al., 2008; Pianosi et al., 2016).
Probably the most well known sensitivity measure
for this task is the first-order Sobol’ index. An alter-
native to this relative measure is the EVPPI, which
quantifies the value of information that knowing a
parameter has for improved decision making. The
advantage of this decision sensitivity measure is
that, in the context of a specific decision, it pro-
vides not only a relative ranking of the different
uncertain input parameters, but also information on
the absolute importance of a specific uncertainty in
the decision making process. The following sec-
tion briefly summarizes the EVPPI in the context
of a cost-benefit analysis and presents a simple but
effective algorithm for its calculation.

2.1. Expected value of partial perfect information

Here we consider the use of the EVPPI for a cost-
benefit analysis, in which a decision is taken to im-
plement a measure M if its benefit exceeds its cost.
Hence, the cost-benefit analysis of the measure M
requires the estimation of the expected monetarized
risk reduction rM − r0, i.e., the benefit of the mea-
sure, where rM is the risk when the measure is im-
plemented and r0 is the risk without M, as well as
the quantification of the costs cM for implementing
the measure. All quantities are discounted to their
present value by means of an annually compounded
discount rate d. The net benefit of the flood polder
is r0 − rM − cM.

Risks and costs are a function of uncertain input
parameters X = [X1,X2, . . . ,Xn]. Ultimately, the de-
cision is taken based on the expected values of risks
and costs with respect to the probability distribu-
tions of X. The conditional value of partial perfect
information (CV PPI) of a single uncertain input
parameter Xi quantifies the potential gains due to
changing the optimal decision after learning that a
specific random input variable takes a value Xi = xi.
The optimal a-priori decision without knowledge of
Xi is aopt and the optimal posterior decision condi-
tional on Xi = xi is aopt|xi . In this binary decision
context, the CVPPI is then evaluated as:

CV PPIXi(xi)

=

{
|r0(xi)− rM(xi)− cM(xi)| aopt|xi ̸= aopt

0 else
(1)

Computing the expected value of the
CV PPIXi(xi) with respect to the prior distribu-
tion of Xi yields the expected value of partial
perfect information on Xi:

EV PPIi =
∫

xi

CV PPI(xi) · fXi(xi)dxi (2)

This EV PPIi is the expected gain in the difference
of risk reduction and cost when eliminating the un-
certainty on Xi. The higher the EVPPI, the more
beneficial a reduction of the uncertainty in Xi. The
EVPPI also provides an upper bound on how much
one should spend to reduce uncertainty in Xi.
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Figure 1: Overview of the project area.

2.2. Evaluation of the EVPPI via Monte Carlo
analysis

The flood risk with and without M is evaluated
by means of a Monte Carlo based uncertainty anal-
ysis with nMCS = 95′000 samples. On this basis,
the expected net benefit of the flood polder is es-
timated. The same samples can be utilized to ap-
proximate the CVPPI of Eq. (1). To this end, the
nMCS model evaluation pairs (Xi,Y ), where Y de-
notes the net benefit, are ordered according to their
value of xi. EXi[Y (X)|xi] is then approximated by
a running mean smoothing approach (Storlie and
Helton, 2006), adapted using a constant block sam-
ple size nb = 2 · 104. For all values of Xi that lead
to a value of EXi[Y (X)|xi] whose sign differs from
the a-priori net benefit have a positive CVPPI ac-
cording to Eq. (1). The EVPPI is then obtained by
solving the integral of Eq. (2) numerically.

3. APPLICATION TO THE COST-BENEFIT
ANALYSIS OF A FLOOD POLDER

The specific decision under consideration is the
one of implementing a flood polder at the Danube
close to the city of Riedensheim, Germany. The
polder provides a retention volume of 8 million m3

with an expected life-time of 100 years. Since a
flood polder activation takes effect downstream of
the polder location, the study area comprises the
river stretch between Riedensheim and Engelhart-
szell, where the Danube crosses the border to Aus-
tria. An overview of the study area is shown in Fig-
ure 1. The activation of the flood polder is planned

for flood events exceeding a 100-year flood in the
Danube close to Riedensheim, which corresponds
to a discharge of 2200 m3/s at the location of the
polder.

3.1. Overview of the flood risk model
To estimate the expected benefit of the flood

polder, a probabilistic flood risk model is devel-
oped, whereof an intermediate model version is
presented in the following. To this end, the Bavar-
ian Danube is discretized on both river sides into
segments of varying length, roughly between 300
and 600 meters, based on their embankment struc-
ture. Every segment side is characterized as being
either natural embankment, dike, detention basin
or impoundment dike. All dike segments are con-
sidered as potential locations for overtopping and
breaching.

The probabilistic flood risk model includes the
following modules, which are embedded in a
Monte Carlo framework with a temporal resolution
of one hour and shown in blue in Figure 2.

1. Hydrological load module. The input of the
flood risk model are deterministic flood sce-
narios originating from the project ClimEx
(Ludwig et al., 2019), from which 3500
model years are utilized. They result from
50 transient climate simulations, each mod-
eling extreme events between 1980 and 2050
in Bavaria based on meteorological and hy-
drological simulations under RCP8.5 (IPCC,
2013). 38 events exceed the 100-year
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Figure 2: Modules of benefit-cost-analysis.

flood close to Riedensheim and were im-
plemented in the one-dimensional hydraulic
model SOBEK to derive hydrological load
scenarios described by discretized hydro-
graphs at every segment of the river. To each
load scenario we assign an occurrence proba-
bility po =

1
50·70 years .

2. Dike failure module. For each hydrological
load scenario, the response of the river sys-
tem is simulated 2500 times with and with-
out the flood polder (resulting in a total of
38 · 2500 = 95′000 Monte Carlo samples). In
each model evaluation, all dike segments are
quasi-randomly tested against breaching us-
ing a generic fragility function shown in blue
in Figure 3. This fragility function F(w) de-
scribes the probability of breaching in function
of the water level w relative to the crest level.
It was derived by applying a set of limit state
functions for different sub-breaching mecha-
nisms (Vorogushyn, 2008) on the river dikes
at the Danube. Additionally, a breach width is
quasi-randomly sampled from the distribution
proposed by Vorogushyn (2008) for every dike
segment.

3. Hydrodynamic module. In case of dike fail-
ure or overtopping, the discharge through the
breach or over the dike is calculated using the
formula of Poleni, modified by a dike breakage
parameter µ∗ (Kamrath et al., 2006), which
was set to the constant value µ∗ = 0.7. By
multiplying the discretized discharge values

with the temporal resolution of ∆t = 3600 s,
the corresponding inundation volumes are ob-
tained. The inundation volume is limited
through a coupling with the inundation module
to ensure that the water level in the inundation
area neither exceeds the water level in the river
at the breach location, nor the height of adja-
cent downstream located dike segments. The
reduction of the discharge in the river is prop-
agated downstream using a simple routing ap-
proach derived specifically for this flood risk
model.

4. Inundation module. The relationship between
inundation volume and inundation height was
derived for every dike segment using a static
geographic information system (GIS) analysis.

5. Damage module. In a second GIS-analysis,
the relationship between inundation height and
direct tangible damage was derived for every
dike segment by intersecting the inundation ar-
eas generated in Module 4, a digital elevation
model and the Basic European Assets Map
(Assmann et al., 2018), and multiplying the
resulting damage potential with land-use spe-
cific damage functions. Indirect and intangi-
ble damages are not incorporated in the current
model version.

3.2. Quantified uncertainties
In the scope of this work, the uncertainty of five

selected input parameters is quantified using de-
rived probability distributions, which are listed in
Table 1.

• Fragility function F(w): An upper and a lower
bounding fragility function FU(w) and FL(w),
shown in Figure 3, are derived based on a
combination of the reviewed literature (Voro-
gushyn, 2008; Apel et al., 2014), expert judg-
ment and the awareness of the uncertainties
accompanied by the underlying pre-processing
method. Therewith, random fragility functions
FR(w) are obtained through Eq. (3), where XF
is a model uncertainty factor.

FR(w) = XF ·FU(w)+(1−XF) ·FL(w) (3)

• Dike breakage parameter µ∗: To account for
the uncertainty accompanied by fixing µ∗, an
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Figure 3: Fragility function and uncertainty bounds.

additive constant Xµ∗ is introduced based on
the results of Kamrath et al. (2006), extended
for non-straight river sections.

• Limit volume V : A maximal flood volume V
is attributed to each dike segment, which takes
backflow processes over downstream located
adjacent dike segments into account. The un-
certainty of this parameter is quantified by a
single multiplicative factor XV on the limit vol-
ume V to represent the limitations of the un-
derlying static GIS-approach.

• Damage D: Both the input data as well as the
implementation of the different steps of the
damage module are subject to various uncer-
tainties. These uncertainties are modeled by
a single multiplicative factor XD on the dam-
ages.

• Costs C: Only the costs for reinvestment, op-
erating costs and some additional minor ex-
penses are subject to uncertainty, which is
modeled by a single multiplicative factor XC
on these costs.

The quasi-randomly sampled realizations of each
considered uncertain input parameter are propa-
gated through the model in the scope of a con-
ducted uncertainty analysis based on the Monte
Carlo framework; thus, both the aleatory uncertain-
ties inherent in the probabilistic flood risk model as
well as the five considered epistemic uncertainties
are sampled all-at-a-time.

Table 1: Parametrization of uncertain inputs.

Parameter Parametrization of uncertainty
(U:Uniform pdf, T:Triangular pdf)

XF U(0,1)
Xµ∗ U(-0.3,0.3)
XV T(0.9,1,1.5)
XD T(0.5,1,1.5)
XC U(0.9,1.1)

4. RESULTS
Note: The following results were manipulated by

adding fixed arbitrary values to the resulting risks
and costs, since the study is still ongoing and the
model is not yet in its final version.

Table 2 shows the expected net benefit of the
flood polder in function of the discount rate d. Be-
cause of the long life-time of the system, the choice
of the discount rate has a significant influence on
the resulting net benefit. For discount rates d =
1.5% and d = 2%, the optimal prior decision with
respect to the net benefit using the current model
version and manipulated results is to build the flood
polder. By contrast, for a discount rate d = 2.5%,
the net benefit is negative and thus the manipulated
current model results suggest not to build it.

Table 2: Expected net benefit (NB) [C] for different
discount rates d.

d = 0.015 d = 0.02 d = 0.025
NB 10.2 ·106 2.2 ·106 -3.9 ·106

Table 3 summarizes the results of the decision-
oriented sensitivity analysis. The effect of a varying
discount rate demonstrates the direct connection of
the EVPPI to the decision under study: The further
away the expected net benefit is from zero, the less
likely it is that knowing the parameters will lead to a
change of the decision, hence the lower the absolute
influence of the uncertainties and the EVPPI.

Table 4 shows for comparison purposes the com-
puted first-order Sobol’ sensitivity indices. Over-
all, all investigated input parameters have low first-
order Sobol’ indices, which is due to dominating
aleatory uncertainties.

While factor prioritization can be observed to
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Table 3: Resulting decision-sensitivity measure on the
net benefit [C] for different discount rates d.

Xi
EV PPI(xi)

d = 0.015 d = 0.02 d = 0.025
XF 0 6.0 ·105 2.5 ·105

Xµ∗ 0 1.0 ·105 0
XV 0 0 0.3·105

XD 0 7.9 ·105 1.4 ·105

XC 0 0 0

Table 4: Resulting first-order Sobol’ sensitivity indices.

Xi Si
XF 0.9 ·10−3

Xµ∗ 0.5 ·10−3

XV 0.3 ·10−3

XD 1.5 ·10−3

XC 0.4 ·10−3

change for different discount rates using the EVPPI,
the relative Sobol’ indices remain quasi-constant
for all discount rates d.

5. DISCUSSION
Uncertainty and sensitivity analysis has received

increasing attention in the field of flood risk man-
agement over the last two decades and a variety of
sensitivity measures are employed (Pianosi et al.,
2016). However, interpreting these measures and
their implication on the decision under study is
not always straightforward. By contrast, decision-
oriented sensitivity measures are easier to interpret,
because they directly relate the input parameter un-
certainty to the optimality of the risk management
decision under consideration.

In this work, we estimate the expected value of
partial perfect information of five input parame-
ters of a flood model that supports the decision
of whether or not to implement a flood polder in
Riedensheim at the Bavarian Danube. We evaluate
the EVPPI as a side-product of a conducted uncer-
tainty analysis, without requiring additional model
evaluations. The estimated EVPPI values indicate
that gathering more information on the input pa-
rameters, especially on the fragility function F and
on the depth-damage relationship D, can potentially

improve decision making.
As intuitively expected, an increasing discount

rate decreases the expected net benefit of the flood
polder. Given the current model version and ma-
nipulated results, for a discount rate of d = 2%, the
expected net benefit is closest to zero. For this case,
the EVPPI values are highest, since learning more
about the input parameters is more likely to change
the decision. By contrast, for a lower discount rate
of d = 1.5% it is unlikely that the decision changes
and the EVPPI’s of all input uncertainties are esti-
mated as zero.

The corresponding first-order Sobol’ sensitivity
indices show the same ordering of the input uncer-
tainties as the EVPPI for the case d = 2%, but dif-
ferent for the other values of the discount rate. The
Sobol’ indices do not consider the decision but just
provide a relative measure of the effect of the in-
put uncertainties on the variance of the model out-
put. Hence they do not account for the importance
of the uncertainties on the optimality of the deci-
sion. They can also not be interpreted in an ab-
solute sense like the EVPPI, which corresponds to
the amount of money that should maximally be in-
vested to reduce the uncertainty in a specific in-
put. Therefore, in this specific decision context, the
decision-related sensitivity measure provides ben-
eficial information about the absolute influence of
the uncertainty of model inputs and thus on which
model input more data should be collected to re-
duce the uncertainty involved in decision-making.

6. CONCLUSIONS

We show that the expected value of partial per-
fect information is an informative and intuitively
interpretable sensitivity measure directly related to
the decision that is to be supported by the model.
The application to a flood risk mitigation decision
demonstrates the advantages of the measure while
being computationally equally expensive as com-
parable variance-based first-order sensitivity mea-
sures. By varying the discount rate, we highlight
how the decision-related sensitivity measure is af-
fected by the specific decision context and the prob-
ability with which an uncertainty can affect the op-
timality of the decision to be made.
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