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ABSTRACT: Utility companies are often prepared for small-scale blackouts under normal operating
conditions. However, they face crucial challenges with extreme weather events, such as hurricanes.
Utilities must make risk-informed decisions to prioritize their limited resources (e.g., for grid hardening)
in cities expected to experience larger and longer hurricane-induced outages. Probabilistic outage
models can capture the uncertainty in power outages and characterize the grid’s vulnerabilities to local
environmental conditions, such as winds responsible for falling trees and poles that can affect the
outages. We employ a probabilistic outage model developed for the 3.6 million historical outages
caused by Hurricane Harvey (2017), Hurricane Michael (2018), and Hurricane Isaias (2020) in the
United States states to investigate the expected performance of power systems to future hurricanes. This
paper presents a generalized probabilistic framework coupling the expected frequency of future
hurricane hazard levels and probabilistic outage predictions to understand the frequency of power
system performance indices, namely the System Average Interruption Frequency Index and System
Average Interruption Duration Index, from hurricanes. Results show that factors other winds, such as
land use patterns, influence the risk of power outages across cities in New Jersey from future hurricanes.

1. INTRODUCTION
Hurricanes cause cascading power failures, and

utilities often struggle to respond to these out-
ages, leaving millions of consumers without power
for days. In recent years, Hurricanes have been
the cause of many prolonged power outages in
the United States (US), e.g., Hurricane Michael
(2018) was responsible for outages to 1.7 million
consumers (EIA.GOV, 2018). Power outages can
have critical consequences for critical infrastruc-
tures, e.g., in hospitals, power must be restored
within a few hours after an impact from a disas-
ter for their normal operations for a post-disaster
emergency response to avoid distress in communi-
ties.(National Academies of Sciences, Engineering,
and Medicine, 2017; Ceferino et al., 2020).

Many researchers (Liu et al., 2005, 2007; Han
et al., 2009b; Guikema et al., 2010, 2014; Shashaani
et al., 2018) have developed hurricane power out-
age prediction models to help utilities plan ahead
of a storm for rapid deployments of resources and
crews to expedite recovery from a storm. These
models use input parameters, including hurricane
winds, environmental parameters, power system in-
formation, and demographics to predict hurricane-
induced outages (Arora and Ceferino, 2022). To
benefit utilities in pre-storm planning, we present
a probabilistic performance-based engineering ap-
proach to couple these methods with hurricane haz-
ard models to inform planners on risk hotspots, i.e.,
where communities can face the largest and longest
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power outages from hurricanes.

Krawinkler (1995) first introduced the
performance-based engineering approach to char-
acterize earthquake risks and assess if buildings
would achieve a satisfactory level of performance
in future earthquakes. The existing probabilistic
approaches for the reliability of power systems
against hurricanes have focused mostly on winds
as the reliability-reducing factor.(Brown, 2002).
Zhang et al. (2022) presented a fragility-weighted
methodology to assess the vulnerability of over-
head power distribution systems to hurricanes.
Lu and Zhang (2022) used a surrogate Machine
Learning (ML) based approach to predict hurricane
intensities that are used to assess the vulnerability
of pole wire systems to high winds. However, these
methods (Zhang et al., 2022; Lu and Zhang, 2022)
require extensive data on power systems that are
not easily accessible, and factors other than winds,
such as grid topology, can affect the reliability of
power systems (Petersen, 1982). Hence, we need
a standard measure to compare the risk profile of
power systems from hurricanes at a large scale.
The performance of power systems is generally
measured based on the Institute of Electrical and
Electronics Engineers (IEEE) defined performance
indices, namely System Average Interruption
Frequency Index (SAIFI) and System Average
Interruption Duration Index (SAIDI) (IEEE 1366,
2022). The US electric grid system constitutes
about 700,000 miles of transmission lines, 7
million miles-long distribution lines, and more than
20,000 substations. These components of the US
power grid are vulnerable and exposed to extreme
weather events (National Academies of Sciences,
Engineering, and Medicine, 2017). Utilities need
informed decision-making to protect and prioritize
the areas more vulnerable to extreme weather
events.

To the best of the author’s knowledge, this is the
first attempt to probabilistically quantify power sys-
tem performance indices, SAIFI and SAIDI, across
multiple cities in the US to Hurricanes using power
outage models to assess the risk of outages to fu-
ture hurricanes. We used a power outage prediction
model developed based on historical power outage

data for multiple hurricanes in the US, which in-
cludes Hurricane Harvey (2017) in Texas, Hurri-
cane Michael (2018) in Florida, and Hurricane Isa-
ias (2020) in New Jersey and New York. Arora and
Ceferino (2022) discussed the probabilistic distri-
bution of outages for a given wind speed. We com-
bined distribution on outages with the return period
of future hurricanes to estimate the return period
of different levels of performance determined by
SAIFI and SAIDI. These indices can be determined
for all types of system-wide power interruptions
around the year. However, this study considers only
hurricane-caused power interruption to determine
SAIFI and SAIDI as extreme weather events have
been the major causes of large-scale sustained out-
ages (Ankit et al., 2021; Brown, 2002).

2. POWER SYSTEM PERFORMANCE INDEX
Utilities are assigned performance ratings based

on reliability indices defined by IEEE. Although
utilities often exclude storm events while determin-
ing reliability indices (Brown, 2002) as old power
systems are not designed to withstand shocks from
extreme weather events, consumers are disturbed
whether the reason for an outage is a storm or a non-
storm event. Thus, we developed the probabilistic
framework to measure these performance indices
and comper the performance of power systems of
different cities.

2.1. System Average Interruption Frequency In-
dex (SAIFI)

SAIFI measures the number of sustained outages
(outages more than a minute) a consumer will ex-
perience during a year given as:

SAIFI =
Total Customer Interruptions

Total Customers Served
/yr (1)

For outages caused by one storm during a year,
SAIFI will represent a fraction of customers with-
out power during the storm. Cities with higher
SAIFI are at more risk for power interruptions from
storms.

2.2. System Average Interruption Duration Index
(SAIDI)

SAIDI measures the number of sustained outages
hours (outages more than a minute) a consumer will
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experience during a year given as:

SAIDI =
∑Customer Interruptions duration

Total Customers Served
hr/yr

(2)

To determine the total unserved power system
supply (Brown, 2002), information on both the du-
ration and the number of outages is required. A
high SAIDI value for a city is indicative of longer
sustained power outages.

3. POWER OUTAGE MODEL

Liu et al. (2005) used Negative Binomial Gener-
alized Linear Model (GLM) to model power out-
ages at the zip code level as a function of wind
gusts, number of transformers, hurricane indicator,
and company indicator. Han et al. (2009b) general-
ized the previous model using a Negative Binomial
GLM that could evaluate outages for any hurricane
and utility company using data from Gulf Coast’s
cities. Han et al. (2009a) developed a Negative Bi-
nomial Generalized Additive Model (GAM), which
showed superior performance to the GLM model as
GAM can handle high non-linearity in the relation-
ship between input parameters and log of the mean
of outages. Next, Nateghi et al. (2014); Guikema
et al. (2014); Shashaani et al. (2018); McRoberts
et al. (2018) used Random Forest for outage mod-
eling, a tree-based method that grows parallel de-
cision trees that improves outage predictions by re-
ducing variance and capturing non-linearity of in-
put parameters.

Arora and Ceferino (2022) studied the perfor-
mance of Poisson GLM and GAM, Negative Bino-
mial GLM, and GAM, and Random Forest-based
power outage models. The study showed that Ran-
dom Forest-based outage models lack the extrapo-
lability to model outages for high winds. The study
also highlighted that Poisson GLM and GAM could
not account for overdispersion in the outage counts,
i.e., variance in outage counts is greater than the
mean, as also mentioned in the previous studies
(Liu et al., 2005; Han et al., 2009b). Negative
Binomial GAM can overpredict outages and lack

physics-based variance shapes for outages. How-
ever, it can account for larger dispersions and cap-
ture outages at all wind levels (Arora and Ceferino,
2022). Hence, this paper uses the Negative Bino-
mial GAM-based power outage model to demon-
strate how outage models can be used to quan-
tify power system performance indices (SAIFI and
SAIDI) probabilistically.

3.1. Negative Binomial GAM
GLM and GAM models are extensions of linear

regression models. However, GLMs and GAMs,
unlike linear regression models, do not assume ho-
moescadicity, i.e., constant variance on output vari-
ables (Dunn and Smyth, 2018). Also, outage counts
are always positive and cannot be modeled using
linear regression. GLMs connect the input parame-
ter via the log link with input parameters.

ln(µ) = βX (3)

where µ is the mean number of outages in a city,
X are input parameters parameters, β are the co-
efficients determined using Maximum Likelihood
Estimates (MLE) (Dunn and Smyth, 2018). From
Eq. 3, GLM assumes a linear relationship between
the log of the mean of outages and input parame-
ters. Han et al. (2009a) showed that the log of the
mean of outages and input parameters have a non-
linear relationship, which could be better modeled
with GAMs through smoothing functions:

ln(µ) = β0 +∑β j f j(x j) (4)

where f j(x j) are the smoothing splines to fit non-
linear input parameters (Yee, 2012). Negative Bi-
nomial regression holds for variables with positive
counts and overdispersion, such as outage counts,
resulting in a Negative Binomial distribution on the
number of outages.

P(y; µ,k) =
Γ(y+1/k)

Γ(y+1)Γ(1/k)

(
µ

µ +1/k

)y

(
1− µ

µ +1/k

)1/k (5)

where y is the number of outages, µ is the mean
number of outages connected to input parameters as
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in Eq. 4, k is the overdispersion parameter that links
the variance on y (var(y) = µ + kµ2) as a function
of the square of the mean to handle the overdisper-
sion in outage counts.

3.2. Modeling Historical Outages
We used historical data of 3.6 million power out-

ages for Hurricane Harvey (2017), Hurricane Mic-
ahel (2018), and Hurricane Isaias (2020) obtained
from (poweroutage.us) aggregated at the city level
for 1910 cities. This study is aimed at quantifying
uncertainty in outages as a function of wind speeds.
Hence, we only use three input parameters, includ-
ing 3-s wind gust, population density as an indica-
tor of the number of transformers (Liu et al., 2008),
and percentage of the developed area as an indi-
cator of the difference in the topological structure
of the power grid in urban versus rural area (Pe-
tersen, 1982). A detailed explanation of the datasets
is available in Arora and Ceferino (2022)

We used MCGV library in R program to fit Neg-
ative Binomial regression from Eq. 4 and 5 (Wood,
2017). We fitted quartic polynomials to the pop-
ulation density and developed land cover. For the
3-s wind gust, we fitted a polynomial of degree 1
to obtain a monotonically increasing behavior for
outages with the 3-s wind gust.

R2 is generally used to measure the goodness-
of-fit for the linear regression model. Similarly, a
pseudo - R2 (also, R2

DEV ) is used to measure the
goodness-of-fit for non-linear GAM models.

R2
DEV = 1− D(y, ŷ)

D(y, ȳ)
(6)

where D(y, ŷ) is the deviance for the fitted model,
and D(y, ȳ) is the deviance for the null model. The
output for the null model is the average of observed
historical outages. Deviance measures the amount
of variance explained by the fitted model, as ex-
plained in Dunn and Smyth (2018). For our fitted
model, we observed a R2

DEV of 0.50, which is less
than the reported value of 0.81 for Negative Bino-
mial Regression in Arora and Ceferino (2022) since
the model in this paper only uses three input param-
eters instead of the 7 in Arora and Ceferino (2022).
Note that R2

DEV always increases with more input

parameters. We used a fitted outage model to com-
pute SAIFI (Eq. 1).

3.3. Modeling Total Customer Interruption Dura-
tion

According to the definition of SAIDI (Eq. 2),
we need the total customer power interruption du-
ration. Liu et al. (2007) modeled the time to re-
cover the storm-induced power outages as a func-
tion of outage size since cities with more outages
recover more slowly. Similarly, we model total cus-
tomer power interruption duration as a function of
outages.

ln(CD) = a∗ ln(O)+b (7)

where CD is the total customer power interruption
duration and O is the number of outages. We use
scikit library in python (Pedregosa et al., 2011) to
obtain coefficients a and b in Eq. 7. We used the
log link in Eq. 7 as total interruptions will always
be greater than zero for an outage event. We used
historical data for Hurricane Isaias (2020), obtained
from (poweroutage.us), for outages and total cus-
tomer interruption duration to perform regression in
Eq. 7. We show the regression line for total inter-
ruption duration and number of outages in Figure
1.

Figure 1: Regression between total customers interrup-
tion hours and total outages.

R2 of 0.86 in Figure 1 represents a good fit be-
tween total interruption duration and outages, as
more outages would require more time to recover,
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resulting in more total hours of customer interrup-
tions. From Eq. 7, ln(CD) is normally distributed
as

ln(CD)∼ N(a∗ log(O)+b,σ2) (8)

where σ2 is the standard deviation for the best-
fit line in Figure 1. We used a fitted total customer
interruption duration to compute SAIDI (Eq. 2).

4. PROBABILISTIC FRAMEWORK
Utilities mostly design their power systems to re-

duce the number of power interruptions under nor-
mal operating conditions. Utilities are rated based
on their performance to reduce SAIFI, and SAIDI
IEEE 1366 (2022); Brown (2002). Performance-
based engineering can give the rate of observing
performance indices for extreme events (Krawin-
kler, 1995).

λ (DV > x) =
∫
(P(DV > x|H)dλH (9)

where DV in performance engineering is the de-
cision variable (DV ) (i.e., performance indices in
this study), λ (DV > x) is the rate of DV exceeding
a value of x, λH is the hazard rate whose intensity
H affects the decision variable, and P(DV > x|H)
is the probability of exceeding the decision variable
given hazard. We adopted this methodology to as-
sess the performance of power systems of cities in
New Jersey, US. prone to hurricane hazards. For
this study, we assume a city will observe only one
in a year. However, a city might observe more than
one hurricane in a year.

4.1. Wind Hazard
Strong hurricane winds devastate power systems,

so the hazard for this study is wind speeds. We
obtained 3-s wind speeds for return periods for 10,
25, 50, 100, 300, 700, 1700, and 3000 years from
ASCE 7-16 wind maps (ASCE 7, 2016). Figure 2
presents the 3-s gust wind speeds for 10 year return
period for cities in New Jersey.

4.2. SAIFI for 10-year return period
Using the probabilistic framework in Eq. 9, we

can obtain the rate of outages.

λ (O > x) =
∫
(P(O > x|w)dλw (10)

Figure 2: 3-s wind gust for 10-year return period in
New Jersey

where λ (O > x) is the rate of exceeding x out-
ages, P(O > x|w) is the proabability of exceeding
x outages given a wind speed of w obtained from
Eqs. 4 and 5, and λw is the rate of exceeding a par-
ticular wind speed which is the inverse of the return
period obtained from ASCE 7-16 wind maps. Eq.
4 gives the link between mean outages and winds,
and Eq. 5 gives the probability distribution of out-
ages. However, ASCE 7-16 wind maps provide
wind speeds at discrete return period intervals, so
we perform a linear regression between the log of
λw and w to obtain λw at all winds. A closed form
is not available for integral Eq. 10, but a discretized
sum can be performed to obtain λ (O > x).

λ (O > x) = ΣP(O > x|w)|dλw

dw
|dw (11)

where dλw
dw is the slope of best fit line between
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Figure 3: SAIFI for 10-year return period in New Jer-
sey, US

ln(λw) and w multiplied with λw. In equation 10,
we can obtain outages x for a particular λ (O > x).
From Eq. 1, SAIFI is the fraction of total outages,
and total customers served. Since the number of
customers served is constant, we can find the rate
of SAIFI as

λ (SAIFI) =
λ (O > x)

Total Customers Served
(12)

For decision-making and prioritizing the upgrade of
the power grid, utilities can compare the SAIFI of
different cities for a fixed λ (SAIFI). We present in
Figure 3 SAIFI for cities in New Jersey for a 10-
year return period (or λ (SAIFI) = 0.1). Thus, in
10 years, cities will exceed the SAIFI presented in
Figure 3.

SAIFI distribution in Figure 3 does not follow a
pattern as such for winds in Figure 2. This is coun-
terintuitive as high-value SAIFI is expected for high
winds. The power outage model developed for this

paper is also a function of the percent area covered
by the developed area and population. The winds
for the same return period have a low variation of
only from 33m/s to 34.5 m/s within New Jersey, so
other input features have more impact on the spatial
variations of SAIFI. Therefore, we investigated the
correlation between SAIFI and other input parame-
ters. We found a small negative correlation (Pear-
son coefficient = −0.1) between SAIFI and the per-
cent developed area in a city. The negative corre-
lation can be attributed to varying grid patterns be-
tween rural and urban areas, as rural areas gener-
ally have radial grids which can have more power
outages compared to gridded patterns in urban ar-
eas (Petersen, 1982; Brown, 2002). Also, we found
a negative correlation (Pearson coefficient = −0.3)
between SAIFI and population density, as low pop-
ulation density can indicate the low density of trans-
formers in a city (Liu et al., 2008). The sparsity
of components in power grids can reduce the re-
silience and lead to more outages (Brown, 2002).

4.3. SAIDI for 10-year return period
Similar to the rate for total outages, we can

get the rate of total customer interruption duration.
From Eq. 10, we can get λ (O) (also, λ (O > x)).
Further, Eq. 8 represents the distribution of total
customer interruptions duration as a function of O.
Hence, we can obtain the rate of total customer in-
terruptions duration.

λ (CD > x) =
∫
(P(CD > x|O)dλO (13)

where is P(CD > x|O) is the probability of exceed-
ing x total customer interruption hours given out-
ages (O) obtained from Eq. 8. Similar to Eq. 11,
we can discretize Eq. 13.

λ (CD > x) = ΣP(CD > x|O)|dλO

dO
|dO (14)

we perform a linear regression between ln(λO) and
O to obtain |dλO

dO | for different outage counts. Eq.
2 gives the relationship between total customer in-
terruption hours and SAIDI. Thus, we can find the
rate of SAIDI as

λ (SAIDI) =
λ (CD > x)

Total Customers Served
(15)
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We present in Figure 4 SAIFI for cities in New Jer-
sey for a 10-year return period (or λ (SAIDI) = 0.1).
We found a negative correlation (Pearson coeffi-
cient = −0.22) between SAIDI and percent devel-
oped area, and also a negative correlation (Pearson
coefficient = −0.20) between SAIDI and popula-
tion. The results for SAIFI and SAIDI show that
the presented framework can capture the behavior
of power systems in large regions without using ex-
tensive information on power system components.

Figure 4: SAIDI for 10-year return period in New Jer-
sey, US

5. CONCLUSIONS
We presented a probabilistic framework that cou-

ples a probabilistic outage model and wind hazard
to estimate the rate of observing power system per-
formance indices, SAIFI and SAIDI. We presented
the results for SAIFI and SAIDI in New Jersey, US,
for a return period of 10 years. We observed that
including parameters such as land cover and popu-
lation density could capture the behavior of power

systems to hurricanes. For future work, a compre-
hensive power outage model could be adopted to
consider the uncertainty not only in winds but also
in other environmental parameters such as precip-
itation and soil moisture. Also, the possibility of
multiple hurricanes in a year could be considered
in future studies. The presented performance-based
probabilistic study can inform stakeholders, such
as utilities and regulatory bodies, like the Board of
Public Utilities in New Jersey, about the expected
performance of a system for different hazard levels.
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