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ABSTRACT: Importance Sampling (IS) is a popular simulation method for the reliability analysis of 
general engineering systems. Its core idea is to build a biased density that can sample from the failure 
domain more frequently than in the Monte Carlo simulation. The optimal IS density, derived from the 
Euler-Lagrange equation, is inversely proportional to the unknown failure probability to be estimated; 
thus, directly sampling from it is impossible. However, samples can indirectly be drawn from the optimal 
IS density by simulating a Markov chain. In particular, the Hamiltonian Monte Carlo (HMC) sampling 
algorithm and its variants design a dynamical system that can explore the failure domain better than, for 
example, the Metropolis-Hastings algorithm. However, such sampling algorithms can be prohibitively 
slow if the problem is high-dimensional or involves expensive model evaluations. This paper presents a 
method to convert the inference problem in HMC into an optimization problem and discusses its 
connection with existing optimization-based algorithms for IS. The starting point is the Langevin 
equation, which offers a unified formulation for several variants of HMC. The optimal IS density is the 
steady-state solution of the Fokker-Planck equation associated with the Langevin equation. The proposed 
method approximates the steady-state solution of the Fokker-Planck equation via optimization. The 
process is illustrated through a benchmark reliability problem. 

Monte Carlo simulation (MCS) is among the most 
versatile solution methods for reliability analysis. 
However, its slow convergence is a primary 
concern in evaluating small failure probabilities. 
Variance-reduction methods are popular 
strategies to improve the convergence rate of 
MCS while retaining its versatility. Importance 
Sampling (IS) is perhaps the most researched 
variance-reduction method in reliability analysis 
(Engelund and Rackwitz 1993, Tabandeh et al. 
2022). Its core idea is to define a biased density 
(i.e., the IS density) that can sample from the 
failure domain more frequently than in MCS 
(Robert and Casella 2004). The optimal choice for 
the biased density is the one that minimizes the 
variance of the estimator for failure probability 
(hence, the name variance-reduction.) The closed-
form solution to the optimization problem 
depends on the sought failure probability. 

However, we may devise simulation methods to 
sample from the optimal biased density or 
approximate it in some statistical sense. 

Simulation methods that sample from the 
optimal biased density generate a Markov chain 
or process that must converge to the target density 
and explore its support (i.e., failure domain). The 
performance of simulation methods depends on 
their ability to rapidly reach and explore the 
failure domain. A typical class of such simulation 
methods is based on the Metropolis-Hastings 
algorithm (Metropolis et al. 1953, Hastings 1970). 
The random walk behavior of the Markov chain 
in this algorithm has been criticized for its slow 
convergence (Neal 1993, Roberts et al. 1997). The 
Hybrid or Hamiltonian Monte Carlo algorithm 
(Duane et al., 1987) and its several variants avoid 
the random walk behavior by designing artificial 
dynamics for the problem. Parameters for the 
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artificial dynamics are tuned to control the 
algorithm’s performance. Besides simulation 
algorithms, the literature includes reliability 
methods that estimate the biased density by 
minimizing a measure of discrepancy between the 
optimal solution and a family of approximating 
densities. We distinguish different variants by 
their choice of discrepancy measure and 
approximating density (see Tabandeh et al. 2022 
for a recent review.) 

This paper develops a hybrid solution for IS 
by leveraging artificial dynamics for simulations 
and the parametric approximation of the biased 
density. The core idea is to create a parametric 
density that approximately satisfies the governing 
equation of the designed dynamics for simulation. 
The probability density of the Markov process in 
simulation algorithms satisfies the Fokker-Planck 
equation (Risken 1996). We present conditions 
for the equation parameters that ensure its steady-
state solution matches the optimal biased density. 
Thus, densities that approximately satisfy the 
Fokker-Planck equation also approximate the 
optimal biased density. We show the 
mathematical connection between the residual of 
the Fokker-Planck equation and discrepancy 
measures to approximate a density. The tuning 
parameters of the designed dynamics (i.e., those 
that also appear in the Fokker-Planck equation) 
that result in improved simulation performance 
can also help the specification of the discrepancy 
measure for density approximation methods and 
vice versa. We briefly discuss the geometric 
interpretation of such tuning parameters in the 
formulated problem to estimate the parametric 
biased density. 

The rest of the paper consists of five sections. 
Section 1 reviews the general formulation of 
sampling methods for reliability analysis, 
including Monte Carlo and Importance Sampling. 
Section 2 presents the equations for the artificial 
dynamics in Hamiltonian Monte Carlo and its 
stochastic extension. Section 3 discusses the 
proposed approach, including its formulation and 
solution algorithm. Section 5 illustrates some of 
the concepts for a benchmark reliability problem. 

Finally, the last section summarizes the paper and 
draws some conclusions. 

1. SAMPLING FOR RELIABILITY 
ANALYSIS 

Consider a system described by the vector of state 
variables 𝐱𝐱 ⊆ ℝ𝑑𝑑  with probability density 𝑝𝑝(𝐱𝐱). 
The limit-state function 𝑔𝑔:ℝ𝑑𝑑 → ℝ  defines its 
failure domain as Ω𝐹𝐹 = {𝐱𝐱 ∈ ℝ𝑑𝑑:𝑔𝑔(𝐱𝐱) ≤ 0}. The 
system’s failure probability 𝑃𝑃𝐹𝐹 is then written as 
(Ditlevsen and Madsen 1996, Gardoni 2017) 

𝑃𝑃𝐹𝐹 = � 𝑝𝑝(𝐱𝐱)d𝐱𝐱
Ω𝐹𝐹

 

= � 𝐼𝐼Ω𝐹𝐹(𝐱𝐱)𝑝𝑝(𝐱𝐱)d𝐱𝐱
ℝ𝑑𝑑

= 𝔼𝔼𝑝𝑝�𝐼𝐼Ω𝐹𝐹(𝐱𝐱)�, 
(1) 

where 𝐼𝐼Ω𝐹𝐹(𝐱𝐱) is the indicator function, and 𝔼𝔼𝑝𝑝(∙) 
is the expected value with respect to 𝑝𝑝(𝐱𝐱). 

Computing 𝑃𝑃𝐹𝐹  usually involves a high-
dimensional integral, not analytically tractable. 
Simulation methods are the general approach to 
evaluating high-dimensional integrals based on an 
unbiased and consistent estimator. For example, 
the Monte Carlo estimator of 𝑃𝑃𝐹𝐹 is 

𝑃𝑃�𝐹𝐹,𝑝𝑝(𝒟𝒟𝑁𝑁) =
1
𝑁𝑁
� 𝐼𝐼Ω𝐹𝐹�𝐱𝐱

(𝑛𝑛)�
𝑁𝑁

𝑛𝑛=1
, (2) 

where 𝒟𝒟𝑁𝑁 = �𝐱𝐱(1), … , 𝐱𝐱(𝑁𝑁)� is a set of statistically 
independent samples from 𝑝𝑝(𝐱𝐱). 

The mean and variance of 𝑃𝑃�𝐹𝐹,𝑝𝑝 are 
𝔼𝔼𝑝𝑝�𝑃𝑃�𝐹𝐹,𝑝𝑝(𝒟𝒟𝑁𝑁)� = 𝑃𝑃𝐹𝐹 , 

Var𝑝𝑝�𝑃𝑃�𝐹𝐹,𝑝𝑝(𝒟𝒟𝑁𝑁)� =
𝑃𝑃𝐹𝐹(1 − 𝑃𝑃𝐹𝐹)

𝑁𝑁
, 

(3) 

which indicate that 𝑃𝑃�𝐹𝐹,𝑝𝑝  is an unbiased and 
consistent estimator. From its Coefficient of 
Variation (CoV) 

𝛿𝛿𝑀𝑀𝑀𝑀 =
�Var𝑝𝑝�𝑃𝑃�𝐹𝐹,𝑝𝑝(𝒟𝒟𝑁𝑁)�

𝔼𝔼𝑝𝑝�𝑃𝑃�𝐹𝐹,𝑝𝑝(𝒟𝒟𝑁𝑁)�
= �

1 − 𝑃𝑃𝐹𝐹
𝑁𝑁𝑃𝑃𝐹𝐹

, (4) 

we find that almost ⌈1 (𝛿𝛿𝑀𝑀𝑀𝑀2 𝑃𝑃𝐹𝐹)⁄ ⌉  samples are 
required to estimate 𝑃𝑃𝐹𝐹 with the confidence level 
of (1 − 𝛿𝛿𝑀𝑀𝑀𝑀).  

Importance sampling aims to reduce the 
estimator’s variance by introducing an alternative 
sampling density 𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) to estimate 𝑃𝑃𝐹𝐹 as  
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𝑃𝑃𝐹𝐹 = � 𝐼𝐼Ω𝐹𝐹(𝐱𝐱)
𝑝𝑝(𝐱𝐱)
𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱)𝑞𝑞𝐼𝐼𝐼𝐼

(𝐱𝐱)d𝐱𝐱
ℝ𝑑𝑑

 

= 𝔼𝔼𝑞𝑞 �𝐼𝐼Ω𝐹𝐹(𝐱𝐱)
𝑝𝑝(𝐱𝐱)
𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱)�, 

(5) 

where 𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) > 0  for all 𝐱𝐱 ∈ Ω𝐹𝐹 . As for the 
Monte Carlo simulation, we estimate 𝑃𝑃𝐹𝐹 as 

𝑃𝑃�𝐹𝐹,𝑞𝑞(𝒟𝒟𝑁𝑁) =
1
𝑁𝑁
� 𝐼𝐼Ω𝐹𝐹�𝐱𝐱

(𝑛𝑛)�
𝑝𝑝�𝐱𝐱(𝑛𝑛)�
𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱(𝑛𝑛))

𝑁𝑁

𝑛𝑛=1
, (6) 

where 𝒟𝒟𝑁𝑁 is now a set of 𝑁𝑁 independent samples 
from 𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) . It is straightforward to show that 
𝔼𝔼𝑞𝑞�𝑃𝑃�𝐹𝐹,𝑞𝑞� = 𝑃𝑃𝐹𝐹 , implying an unbiased estimator. 
We can also write the estimator’s variance as 

Var𝑞𝑞�𝑃𝑃�𝐹𝐹,𝑞𝑞� =
1
𝑁𝑁
�𝔼𝔼𝑞𝑞 �𝐼𝐼Ω𝐹𝐹(𝐱𝐱)

𝑝𝑝(𝐱𝐱)2

𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱)2� − 𝑃𝑃𝐹𝐹2�, (7) 

which is minimized by 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) = 𝐼𝐼Ω𝐹𝐹(𝐱𝐱)𝑝𝑝(𝐱𝐱) 𝑃𝑃𝐹𝐹⁄ , 
with Var𝑞𝑞∗�𝑃𝑃�𝐹𝐹,𝑞𝑞∗� = 0 for all 𝑁𝑁 ∈ ℕ (Srinivasan 
2013, Tabandeh et al. 2022). 

2. LANGEVIN DYNAMICS FOR 
IMPORTANCE SAMPLING 

Direct sampling from 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) is not possible since 
it depends on 𝑃𝑃𝐹𝐹. However, we can sample from 
it indirectly by simulating a Markov Chain with 
stationary density 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) . Specifically, we may 
design a dynamical system whose response is a 
Markov process with stationary density 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱). 
Let 𝐲𝐲𝑡𝑡⊺ = (𝐱𝐱𝑡𝑡⊺ , 𝐯𝐯𝑡𝑡⊺)  be the state variables of the 
dynamical system, consisting of displacement 
𝐱𝐱𝑡𝑡 ∈ ℝ𝑑𝑑  and velocity 𝐯𝐯𝑡𝑡 ∈ ℝ𝑑𝑑  vectors. The 
vector 𝐲𝐲𝑡𝑡 satisfies the Langevin equation 

d𝐲𝐲𝑡𝑡 = 𝐚𝐚(𝐲𝐲𝑡𝑡)d𝑡𝑡 + �2𝐃𝐃(𝐲𝐲𝑡𝑡)d𝐰𝐰𝑡𝑡, (8) 

with initial condition 𝐲𝐲0, where 𝐚𝐚:ℝ2𝑑𝑑 → ℝ2𝑑𝑑  is 
the drift vector, 𝐃𝐃  is a (2𝑑𝑑 × 2𝑑𝑑)  symmetric 
positive-semidefinite diffusion matrix, and 𝐰𝐰𝑡𝑡 ∈
ℝ2𝑑𝑑 is the Wiener process. 

The transition probability density 𝑓𝑓(𝐲𝐲, 𝑡𝑡) of 
the Markov process 𝐲𝐲𝑡𝑡  satisfies the Fokker-
Planck equation 

𝜕𝜕𝑓𝑓(𝐲𝐲, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= ∇⊺ ∙ {−𝐚𝐚(𝐲𝐲)𝑓𝑓(𝐲𝐲, 𝑡𝑡) + ∇
∙ [𝐃𝐃(𝐲𝐲)𝑓𝑓(𝐲𝐲, 𝑡𝑡)]}, 

(9) 

with initial condition 𝑓𝑓(𝐲𝐲, 𝑡𝑡 = 0) = 𝛿𝛿(𝐲𝐲 − 𝐲𝐲0) , 
where 𝛿𝛿(∙) is the Dirac delta function, and ∇ ∙ is 
the divergence operator with respect to 𝐲𝐲. 

The design of 𝐚𝐚(𝐲𝐲) and 𝐃𝐃(𝐲𝐲) should ensure 
that 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) = 𝑓𝑓𝑠𝑠∗(𝐱𝐱) = ∫ 𝑓𝑓𝑠𝑠∗(𝐱𝐱,𝐯𝐯)d𝐯𝐯 , where 
𝑓𝑓𝑠𝑠∗(𝐱𝐱, 𝐯𝐯) = lim𝑡𝑡→∞ 𝑓𝑓(𝐱𝐱,𝐯𝐯, 𝑡𝑡)  is the stationary 
density of 𝐲𝐲𝑡𝑡 (i.e., the steady-state solution of the 
Fokker-Planck equation.) Following Ma et al. 
(2015), we define 𝐚𝐚(𝐲𝐲) as  

𝐚𝐚(𝐲𝐲) = −[𝐃𝐃(𝐲𝐲) + 𝐐𝐐(𝐲𝐲)]∇𝐻𝐻(𝐲𝐲) + ∇
∙ [𝐃𝐃(𝐲𝐲) + 𝐐𝐐(𝐲𝐲)], (10) 

where 𝐐𝐐(𝐲𝐲)  is a (2𝑑𝑑 × 2𝑑𝑑)  skew-symmetric 
matrix (i.e., 𝐐𝐐 = −𝐐𝐐⊺ ), and 𝐻𝐻:ℝ2𝑑𝑑 → ℝ  is the 
Hamiltonian of the system, representing its total 
energy. i.e., 

𝐻𝐻(𝐲𝐲) = 𝑈𝑈(𝐱𝐱) + 𝐾𝐾(𝐯𝐯), (11) 

in which 𝑈𝑈(𝐱𝐱) = − ln[𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱)]  is the potential 
energy, 𝐾𝐾(𝐯𝐯) = 1 2⁄ 𝐯𝐯⊺𝚺𝚺𝐯𝐯  is the kinetic energy, 
and 𝚺𝚺  is a (constant) symmetric, positive 
semidefinite matrix. The steady-state solution of 
the Fokker-Planck equation is 𝑓𝑓𝑠𝑠∗(𝐲𝐲) ∝
exp[−𝐻𝐻(𝐲𝐲)] = 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) exp(−1 2⁄ 𝐯𝐯⊺𝚺𝚺𝐯𝐯) (Ma et al. 
2015). Thus, the necessary condition 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) =
∫𝑓𝑓𝑠𝑠∗(𝐱𝐱,𝐯𝐯)d𝐯𝐯 is satisfied. 

The dynamical system can better explore the 
target probability distribution than the 
Metropolis-Hastings algorithm (Neal 2011). 
Depending on the choice of 𝐃𝐃  and 𝐐𝐐 , we can 
retrieve some variants of the Langevin and 
Hamiltonian Monte Carlo algorithms (Ma et al. 
2015). For example, the Hamiltonian Monte Carlo 
(HMC) (Neal 2011) is a special case with 𝐃𝐃 = 𝟎𝟎 
and 

𝐐𝐐 = �𝟎𝟎𝑑𝑑×𝑑𝑑 −𝐈𝐈𝑑𝑑×𝑑𝑑
𝐈𝐈𝑑𝑑×𝑑𝑑 𝟎𝟎𝑑𝑑×𝑑𝑑

�, (12) 

where 𝟎𝟎𝑑𝑑×𝑑𝑑  is the (𝑑𝑑 × 𝑑𝑑)-matrix of zeros, and 
𝐈𝐈𝑑𝑑×𝑑𝑑  is the (𝑑𝑑 × 𝑑𝑑)  identity matrix. The 
Riemannian Manifold Langevin Monte Carlo 
(Xifara 2014) is another special case with 𝚺𝚺 = 𝟎𝟎, 
𝐐𝐐 = 𝟎𝟎, and 

𝐃𝐃 = �𝚪𝚪(𝐱𝐱)−1 𝟎𝟎𝑑𝑑×𝑑𝑑
𝟎𝟎𝑑𝑑×𝑑𝑑 𝟎𝟎𝑑𝑑×𝑑𝑑

�, (13) 

where 𝚪𝚪(𝐱𝐱)  is a metric tensor (e.g., the Fisher 
information metric.) Such algorithms rely on the 
designed continuous dynamics to accelerate 
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convergence. However, discretizing continuous 
dynamics for numerical implementations may not 
preserve the target convergence rate and 
stationary distribution (Mou et al. 2021, Barp et 
al. 2022). The literature includes physical and 
geometrical solutions to ensure that time-
integration schemes leave the stationary 
distribution invariant (Barp et al. 2022). However, 
preserving the convergence rate remains an open 
challenge. 

Instead of directly using dynamical systems 
to sample from 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) , we use the associated 
Fokker-Planck equation to approximate 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) 
via optimization. In particular, using 𝑓𝑓𝑠𝑠(𝐲𝐲)  in 
writing 𝐻𝐻(𝐲𝐲) and, hence, in the drift vector, we 
can express the residual of the steady-state 
Fokker-Planck equation as 

𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� = ∇⊺ ∙ �−𝐚𝐚�𝐲𝐲; 𝑓𝑓𝑠𝑠�𝑓𝑓𝑠𝑠∗(𝐲𝐲) + ∇
∙ [𝐃𝐃(𝐲𝐲)𝑓𝑓𝑠𝑠∗(𝐲𝐲)]�, 

(14) 

which is uniformly zero at all 𝐲𝐲 values for 𝑓𝑓𝑠𝑠 =
𝑓𝑓𝑠𝑠∗ . In the next section, we discuss a learning 
algorithm to estimate a specific 𝑓𝑓𝑠𝑠(𝐲𝐲)  with 
𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� ≈ 0. 

3. LEARNING ALGORITHM TO ESTIMATE 
THE IMPORTANCE SAMPLING 
DENSITY 

Let ℱ = {𝑓𝑓𝑠𝑠(𝐲𝐲) ∝ 𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) exp(−1 2⁄ 𝐯𝐯⊺𝚺𝚺𝐯𝐯) ∶
𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) > 0 for all 𝐱𝐱 ∈ Ω𝐹𝐹}  be the space of 
admissible densities to approximate 𝑓𝑓𝑠𝑠∗(𝐲𝐲). The 
learning algorithm involves two main tasks, 
defining the subspace of candidate densities ℱ� ⊆
ℱ  to solve the steady-state Fokker-Planck 
equation, and finding the density 𝑓𝑓𝑠𝑠∗ ∈ ℱ�  that 
closely approximates 𝑓𝑓𝑠𝑠∗(𝐲𝐲)  in the sense that 
𝑟𝑟(𝐲𝐲;𝑓𝑓𝑠𝑠∗) ≈ 0 at selected 𝐲𝐲 values. Finding 𝑓𝑓𝑠𝑠∗(𝐲𝐲) 
amounts to solving the optimization problem 
𝑓𝑓𝑠𝑠∗ = arg min�̂�𝑓𝑠𝑠∈ℱ��𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠��, where ‖∙‖ is a norm.  

3.1. Formulation of the optimization problem 
To define the optimization problem, we take a 
closer look at 𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠�. Substituting 𝐚𝐚�𝐲𝐲; 𝑓𝑓𝑠𝑠� into 
Eq. (14) yields 𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠�, in indicial notation, as 

𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� =
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

��𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖�
𝜕𝜕𝐻𝐻�
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗

−
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗ + 𝐷𝐷𝑖𝑖𝑖𝑖
𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
�, 

(15) 

where 𝑖𝑖, 𝑗𝑗 = 1, … ,2𝑑𝑑, and a summation runs over 
repeated indices in each term. Also, 𝐻𝐻� indicates 
an approximation to the Hamiltonian, in which 
𝑞𝑞𝐼𝐼𝐼𝐼∗  is replaced by 𝑞𝑞�𝐼𝐼𝐼𝐼.  

We rewrite 𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖 𝜕𝜕𝑦𝑦𝑖𝑖⁄ 𝑓𝑓𝑠𝑠∗  in Eq. (15), using 
the identity 
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

�
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗� =
𝜕𝜕2𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗ +
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
, (16) 

in which the first term is zero since 𝑄𝑄𝑖𝑖𝑖𝑖 is skew-
symmetric. We then rewrite Eq. (16) as 
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

�
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗� =
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
− 𝑄𝑄𝑖𝑖𝑖𝑖

𝜕𝜕2𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖
 

= −
𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
− 𝑄𝑄𝑖𝑖𝑖𝑖

𝜕𝜕2𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖
 

= −
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

�𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
�, 

(17) 

where 𝑄𝑄𝑖𝑖𝑖𝑖 𝜕𝜕2𝑓𝑓𝑠𝑠∗ 𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖� , added in the first line, is 
zero due to the skew symmetry of 𝑄𝑄𝑖𝑖𝑖𝑖  and the 
symmetry of 𝜕𝜕2𝑓𝑓𝑠𝑠∗ 𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖� ; and the second line 
follows by switching the indices 𝑖𝑖  and 𝑗𝑗  in the 
first term and using 𝑄𝑄𝑖𝑖𝑖𝑖 = −𝑄𝑄𝑖𝑖𝑖𝑖 . Substituting 
back Eq. (17) into Eq. (15) results in 

𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� =
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

��𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖� �
𝜕𝜕𝐻𝐻�
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓𝑠𝑠∗ +
𝜕𝜕𝑓𝑓𝑠𝑠∗

𝜕𝜕𝑦𝑦𝑖𝑖
�� 

=
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

��𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖�𝑒𝑒−𝐻𝐻
� 𝜕𝜕�𝑓𝑓𝑠𝑠∗𝑒𝑒𝐻𝐻

��
𝜕𝜕𝑦𝑦𝑖𝑖

�. 
(18) 

Using 𝑓𝑓𝑠𝑠∗(𝐲𝐲) ∝ 𝑞𝑞𝐼𝐼𝐼𝐼∗ (𝐱𝐱) exp(−1 2⁄ 𝐯𝐯⊺𝚺𝚺𝐯𝐯) and 
𝐻𝐻� = − ln[𝑞𝑞�𝐼𝐼𝐼𝐼(𝐱𝐱)] + 1 2⁄ 𝐯𝐯⊺𝚺𝚺𝐯𝐯 in Eq. (18) yields 

𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� =
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

��𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖�𝑒𝑒−𝐻𝐻
� 𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

𝑞𝑞𝐼𝐼𝐼𝐼∗

𝑞𝑞�𝐼𝐼𝐼𝐼
�, (19) 

where 𝐃𝐃  and 𝐐𝐐  in sampling algorithms are 
usually block matrices written as  

𝐃𝐃 = �𝐃𝐃11
(𝐱𝐱) 𝟎𝟎𝑑𝑑×𝑑𝑑

𝟎𝟎𝑑𝑑×𝑑𝑑 𝐃𝐃22(𝐱𝐱)� , 

𝐐𝐐 = � 𝟎𝟎𝑑𝑑×𝑑𝑑 𝐐𝐐12(𝐱𝐱)
−𝐐𝐐12(𝐱𝐱) 𝟎𝟎𝑑𝑑×𝑑𝑑

�. 
(20) 

Substituting the above 𝐃𝐃 and 𝐐𝐐 into Eq. (19) 
and assuming a constant mass matrix 𝚺𝚺 results in 
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𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠�

= 𝑒𝑒−1 2⁄ 𝑣𝑣𝑘𝑘Σ𝑘𝑘𝑘𝑘𝑣𝑣𝑘𝑘 �
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

ln
𝑞𝑞𝐼𝐼𝐼𝐼∗

𝑞𝑞�𝐼𝐼𝐼𝐼
�

+ (Σ𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖 + Σ𝑘𝑘𝑖𝑖𝑣𝑣𝑘𝑘) �𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝐶𝐶𝑖𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

ln
𝑞𝑞𝐼𝐼𝐼𝐼∗

𝑞𝑞�𝐼𝐼𝐼𝐼
��, 

(21) 

where 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 = 1, … ,𝑑𝑑 , and 𝐒𝐒 = �𝑆𝑆𝑖𝑖𝑖𝑖�  and 𝐂𝐂 =
�𝐶𝐶𝑖𝑖𝑖𝑖� are new notations for 𝐃𝐃11 and 𝐐𝐐12. 

The first term inside the curly bracket in Eq. 
(21) only depends on 𝐱𝐱, whereas the second term 
depends on both 𝐱𝐱 and 𝐯𝐯. A sufficient condition to 
approximately satisfy 𝑟𝑟�𝐲𝐲; 𝑓𝑓𝑠𝑠� = 0 is then 

�𝑞𝑞𝐼𝐼𝐼𝐼∗ Γ𝑖𝑖𝑖𝑖
−1 2⁄ 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
ln
𝑞𝑞𝐼𝐼𝐼𝐼∗

𝑞𝑞�𝐼𝐼𝐼𝐼
� ≤ 𝜀𝜀, (22) 

for every 𝑖𝑖 = 1, … ,𝑑𝑑, and 𝐂𝐂 = 𝐒𝐒 = 𝚪𝚪−1 2⁄ , where 
𝜀𝜀 > 0 is a small constant. Accordingly, we write 
the following optimization problem to find 𝑞𝑞�𝐼𝐼𝐼𝐼∗ : 
𝑞𝑞�𝐼𝐼𝐼𝐼∗ = arg min

𝑞𝑞�𝐼𝐼𝐼𝐼
𝔼𝔼𝑞𝑞∗‖∇ ln 𝑞𝑞𝐼𝐼𝐼𝐼∗ − ∇ ln 𝑞𝑞�𝐼𝐼𝐼𝐼‖𝚪𝚪−1

2 . (23) 

where ‖𝐱𝐱‖𝚪𝚪−1
2 = 𝐱𝐱⊺𝚪𝚪−1𝐱𝐱 for all 𝐱𝐱 ∈ ℝ𝑑𝑑 . 

The above optimization problem is related to 
minimizing the Kullback-Leibler (KL) distance 
between 𝑞𝑞𝐼𝐼𝐼𝐼∗  and 𝑞𝑞�𝐼𝐼𝐼𝐼 in the following way. Using 
the logarithmic Sobolev inequality, we show that 
𝒟𝒟(𝑞𝑞𝐼𝐼𝐼𝐼∗ ∥ 𝑞𝑞�𝐼𝐼𝐼𝐼) ≤ 𝜅𝜅𝔼𝔼𝑞𝑞∗‖∇ ln 𝑞𝑞𝐼𝐼𝐼𝐼∗ − ∇ ln 𝑞𝑞�𝐼𝐼𝐼𝐼‖𝚪𝚪−1

2 , (24) 

where 𝒟𝒟(∙∥∙) is the KL distance, and 𝜅𝜅 > 0 is a 
constant. Past studies have used the KL distance 
to find 𝑞𝑞𝐼𝐼𝐼𝐼∗  (Cappé 2008, Tabandeh et al. 2022). 

A probability measure 𝜇𝜇 on ℝ𝑑𝑑  satisfies the 
logarithmic Sobolev inequality with constant 
𝜅𝜅′ > 0  if for any smooth function ℎ , we have 
(Gross 1975, Zahm et al. 2022) 

�ℎ2 ln
ℎ2

∫ ℎ2d𝜇𝜇
d𝜇𝜇 ≤ 𝜅𝜅′ �‖∇ℎ‖𝚪𝚪−1

2 d𝜇𝜇. (25) 

Setting ℎ2 = 𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑞𝑞�𝐼𝐼𝐼𝐼⁄ , we can find that ∇ℎ =
1 2⁄ �𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑞𝑞�𝐼𝐼𝐼𝐼⁄ ∇ ln(𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑞𝑞�𝐼𝐼𝐼𝐼⁄ ). Using this definition 
and the Radon-Nikodym derivative d𝜇𝜇 d𝐱𝐱⁄ = 𝑞𝑞�𝐼𝐼𝐼𝐼 
in Eq. (25) results in 

𝒟𝒟(𝑞𝑞𝐼𝐼𝐼𝐼∗ ∥ 𝑞𝑞�𝐼𝐼𝐼𝐼) = �𝑞𝑞𝐼𝐼𝐼𝐼∗ ln(𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑞𝑞�𝐼𝐼𝐼𝐼⁄ ) d𝐱𝐱 

≤
𝜅𝜅′

4
�𝑞𝑞𝐼𝐼𝐼𝐼∗ ‖∇ ln(𝑞𝑞𝐼𝐼𝐼𝐼∗ 𝑞𝑞�𝐼𝐼𝐼𝐼⁄ )‖𝚪𝚪−1

2 d𝐱𝐱 

= 𝜅𝜅𝔼𝔼𝑞𝑞∗‖∇ ln 𝑞𝑞𝐼𝐼𝐼𝐼∗ − ∇ ln 𝑞𝑞�𝐼𝐼𝐼𝐼‖𝚪𝚪−1
2 . 

(26) 

The field 𝚪𝚪−1  in the optimization acts as a 
filter that amplifies errors in specific directions. 
The metric tensor 𝚪𝚪  identifies the principal 
curvatures of 𝑞𝑞𝐼𝐼𝐼𝐼∗  at every 𝐱𝐱 ∈ ℝ𝑑𝑑 and projects the 
error ∇ ln 𝑞𝑞𝐼𝐼𝐼𝐼∗ − ∇ ln 𝑞𝑞�𝐼𝐼𝐼𝐼 onto principal directions. 
For smooth 𝑞𝑞𝐼𝐼𝐼𝐼∗  and comparable principal 
curvatures, we may use 𝚪𝚪 = 𝐈𝐈  as in the HMC 
algorithm.  

3.2. Solution algorithm 
Using a simulation method to evaluate 𝔼𝔼𝑞𝑞∗‖∙‖𝚪𝚪−1

2  
results in the following optimization problem: 
𝑞𝑞�𝐼𝐼𝐼𝐼∗

= arg min
𝑞𝑞�𝐼𝐼𝐼𝐼

1
𝑀𝑀
�𝐼𝐼Ω𝐹𝐹 �Γ𝑖𝑖𝑖𝑖

−1 2⁄ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

ln
𝑞𝑞𝐼𝐼𝐼𝐼∗

𝑞𝑞�𝐼𝐼𝐼𝐼
�
𝐱𝐱=𝐱𝐱(𝑚𝑚)

2

𝑚𝑚,𝑖𝑖

, (27) 

where 𝐱𝐱(1), … , 𝐱𝐱(𝑀𝑀)  are independent samples 
from 𝑝𝑝(𝐱𝐱) . The solution we seek is based on 
approximating 𝑔𝑔(𝐱𝐱)  in the definition of 𝑞𝑞𝐼𝐼𝐼𝐼∗ . 
Specifically, we write 𝑞𝑞�𝐼𝐼𝐼𝐼(𝐱𝐱,𝛉𝛉) ∝ 𝐼𝐼Ω�𝐹𝐹(𝛉𝛉)(𝐱𝐱)𝑝𝑝(𝐱𝐱), 
where Ω�𝐹𝐹(𝛉𝛉) = {𝐱𝐱 ∈ ℝ𝑑𝑑:𝑔𝑔�(𝐱𝐱,𝛉𝛉) ≤ 0}  is the 
failure domain based on a computationally 
efficient surrogate 𝑔𝑔�(𝐱𝐱,𝛉𝛉)  for 𝑔𝑔(𝐱𝐱)  with the 
vector of unknown parameters 𝛉𝛉 . Thus, the 
optimization problem amounts to estimating the 
vector 𝛉𝛉∗  of 𝑞𝑞�𝐼𝐼𝐼𝐼∗ . Also, capturing the mismatch 
between 𝑔𝑔�(𝐱𝐱,𝛉𝛉)  and 𝑔𝑔(𝐱𝐱) , we rewrite the 
optimization problem as 

𝛉𝛉∗ = arg min
𝛉𝛉

1
𝑀𝑀
�𝐼𝐼Ω𝐹𝐹 �Γ𝑖𝑖𝑖𝑖

−1 2⁄ 𝜕𝜕 ln 𝐼𝐼Ω�𝐹𝐹
𝜕𝜕𝑥𝑥𝑖𝑖

�
𝐱𝐱=𝐱𝐱(𝑚𝑚)

2

𝑚𝑚,𝑖𝑖
+ 𝜆𝜆|𝑔𝑔 − 𝑔𝑔�|𝐱𝐱=𝐱𝐱(𝑚𝑚)

2 , 
(28) 

where 𝜆𝜆 ≥ 0  is a prescribed regularization 
parameter controlling the contribution of |𝑔𝑔 −
𝑔𝑔�|2  in estimating 𝛉𝛉∗ . Since 𝐼𝐼Ω�𝐹𝐹  in the above 
equation is not differentiable, we use 𝐼𝐼Ω�𝐹𝐹 ≅
1 �1 + 𝑒𝑒𝑔𝑔� 𝜂𝜂⁄ �⁄  as a smooth approximation, where 
𝜂𝜂 > 0 is a small constant. Hence, we arrive at 

𝛉𝛉∗ = arg min
𝛉𝛉

1
𝑀𝑀
�𝐼𝐼Ω𝐹𝐹 �

Γ𝑖𝑖𝑖𝑖
−1 2⁄ 𝜕𝜕𝑔𝑔� 𝜕𝜕𝑥𝑥𝑖𝑖⁄
1 + 𝑒𝑒−𝑔𝑔� 𝜂𝜂⁄ �

𝐱𝐱=𝐱𝐱(𝑚𝑚)

2

𝑚𝑚,𝑖𝑖
+ 𝜆𝜆|𝑔𝑔 − 𝑔𝑔�|𝐱𝐱=𝐱𝐱(𝑚𝑚)

2 . 

(29) 

The first term in the above equation is non-
zero only for 𝐱𝐱(𝑚𝑚) ∈ Ω𝐹𝐹 . However, the majority 
of samples from 𝑝𝑝(𝐱𝐱) results in 𝐼𝐼Ω𝐹𝐹 = 0 for rare 
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events. We use an adaptive approach to reduce the 
computational cost of generating samples in Ω𝐹𝐹. 
The approach involves an iterative process to 
generate more samples in Ω𝐹𝐹  and improve the 
estimate of 𝛉𝛉∗ . Let 𝛉𝛉𝜏𝜏  denote the most recent 
estimate of θ∗. The next iteration involves solving 
𝛉𝛉𝜏𝜏+1

= arg min
𝛉𝛉

1
𝜏𝜏𝑀𝑀

�𝐼𝐼Ω𝐹𝐹
𝑝𝑝
𝑞𝑞�𝐼𝐼𝐼𝐼𝜏𝜏

�
Γ𝑖𝑖𝑖𝑖
−1 2⁄ 𝜕𝜕𝑔𝑔� 𝜕𝜕𝑥𝑥𝑖𝑖⁄
1 + 𝑒𝑒−𝑔𝑔� 𝜂𝜂⁄ �

𝐱𝐱=𝐱𝐱(𝑚𝑚

2

𝑚𝑚,𝑖𝑖
+ 𝜆𝜆|𝑔𝑔 − 𝑔𝑔�|𝐱𝐱=𝐱𝐱(𝑚𝑚)

2 , 

(30) 

where 𝐱𝐱(𝜏𝜏𝑀𝑀+1), … , 𝐱𝐱(𝜏𝜏𝑀𝑀+𝑀𝑀)  are independent 
samples from 𝑞𝑞�𝐼𝐼𝐼𝐼𝜏𝜏 (𝐱𝐱) ∝ 𝐼𝐼Ω�𝐹𝐹(𝛉𝛉𝜏𝜏)(𝐱𝐱)𝑝𝑝(𝐱𝐱), in which 
Ω�𝐹𝐹(𝛉𝛉𝜏𝜏) is the failure domain defined based on the 
most recent estimate of the surrogate 𝑔𝑔�(𝐱𝐱,𝛉𝛉𝜏𝜏). 

We initiate the adaptive process with the 
sampling density 𝑞𝑞�𝐼𝐼𝐼𝐼0 (𝐱𝐱) = 𝑝𝑝(𝐱𝐱); hence, the first 
few rounds of estimating 𝛉𝛉∗ is mainly controlled 
by |𝑔𝑔 − 𝑔𝑔�|2. However, after several iterations, we 
gradually generate more samples in Ω𝐹𝐹  at a 
reduced cost and increase the contribution of the 
first term in Eq. (30)(28) to estimate 𝛉𝛉∗.  

Substituting the inferred surrogate 𝑞𝑞�𝐼𝐼𝐼𝐼∗ (𝐱𝐱) =
𝐼𝐼Ω�𝐹𝐹(𝛉𝛉∗)(𝐱𝐱)𝑝𝑝(𝐱𝐱) 𝑃𝑃𝐹𝐹∗⁄  into Eq. (5) results in 

𝑃𝑃𝐹𝐹 = 𝑃𝑃𝐹𝐹∗ �
𝐼𝐼Ω𝐹𝐹(𝐱𝐱)

𝐼𝐼Ω�𝐹𝐹(𝛉𝛉∗)(𝐱𝐱)𝑞𝑞�𝐼𝐼𝐼𝐼
∗ (𝐱𝐱)d𝐱𝐱

ℝ𝑑𝑑
 

= 𝑃𝑃𝐹𝐹∗𝒟𝒟𝐼𝐼𝐼𝐼(𝑔𝑔,𝑔𝑔�), 
(31) 

where 𝑃𝑃𝐹𝐹∗  is the Monte Carlo estimate of 𝑃𝑃𝐹𝐹  by 
replacing 𝐼𝐼Ω𝐹𝐹  with 𝐼𝐼Ω�𝐹𝐹(𝛉𝛉∗)  in Eq. (2), and 
𝒟𝒟𝐼𝐼𝐼𝐼(𝑔𝑔,𝑔𝑔�)  is the correction factor capturing the 
error in approximating 𝑔𝑔  by 𝑔𝑔� , also evaluated 
using the Monte Carlo estimator with samples 
from 𝑞𝑞�𝐼𝐼𝐼𝐼∗ (𝐱𝐱).  

4. NUMERICAL EXAMPLE 
The example is a component reliability problem 
with the following metaball limit-state function 
(Breitung 2019): 

𝑔𝑔(𝐱𝐱) =
30

�49(𝑥𝑥1 + 2)2 + 1
25𝑥𝑥2

2�
2

+ 1

+
20

�14(𝑥𝑥1 − 2.5)2 + 1
25(𝑥𝑥2 − 0.5)2� + 1

− 5, 
(32) 

where 𝑥𝑥1  and 𝑥𝑥2  are independent random 
variables with a standard Gaussian distribution. 

Figure 1 shows 𝑔𝑔(𝐱𝐱)  and the points (blue 
asterisks) on the level-sets {𝐱𝐱 ∈ ℝ2:𝑔𝑔(𝐱𝐱) = 𝑐𝑐} 
with the shortest distance to the origin as 𝑐𝑐 varies 
from 20 to 0. The figure also shows the contour 
plot of 𝑔𝑔(𝐱𝐱)  with failure boundary in bold red 
(i.e., the level-set with 𝑐𝑐 = 0.) 

 

 
Figure 1: The limit-state function 𝑔𝑔(𝒙𝒙) and design 
points (blue asterisks) on its level-sets (red curves).  

 
We evaluate the performance of the proposed 

method in terms of its computational cost and 
estimation accuracy, where the number of 𝑔𝑔(𝐱𝐱) 
calls is a proxy for computational cost. The 
convergence criterion is based on the CoV of the 
estimator, set to 0.05. Figure 2 shows the optimal 
IS density and the estimated ones based on two 
approximation methods, a Gaussian mixture with 
KL divergence (Geyer et al. 2019) and the 
proposed approach. Each subplot shows the 
contour of 𝑞𝑞𝐼𝐼𝐼𝐼(𝐱𝐱) , superimposed on 𝑔𝑔(𝐱𝐱) = 0 
and 𝑝𝑝(𝐱𝐱). The first subplot also shows the vector 
field −∇𝑔𝑔 ‖∇𝑔𝑔‖⁄  to help us explain the results. 
The Monte Carlo estimate of 𝑃𝑃𝐹𝐹 with 𝛿𝛿𝑀𝑀𝑀𝑀 = 0.05 
is 1.02 × 10−5 . The estimate based on the 
Gaussian mixture model is 1.6 × 10−8  with a 
total of 7,359  calls to 𝑔𝑔(𝐱𝐱) , and the proposed 
method yields 8.67 × 10−6  with a total of 221 
calls to 𝑔𝑔(𝐱𝐱). The specific setting of the proposed 
method is as follows: we used a 2nd-order 
polynomial for 𝑔𝑔�(𝐱𝐱,𝛉𝛉) with 𝚪𝚪 = 𝐈𝐈  and 𝑀𝑀 = 25 , 
and the adaptive algorithm converged after 8 
iterations. We also had 21 (i.e., 𝑁𝑁 = 21 in Eq. (6)) 
more calls to 𝑔𝑔(𝐱𝐱) to estimate 𝒟𝒟𝐼𝐼𝐼𝐼(𝑔𝑔,𝑔𝑔�) in Eq. 
(31). 

We can observe that because of the changing 
topological structure of 𝑔𝑔(𝐱𝐱)  (see Fig. 1), 
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adaptive methods may get trapped within the band 
𝑥𝑥1 ∈ [−0.5,1] (see the vector field in Fig. 2a) and 
converge to a locally optimal point, as in Fig. 2(b). 
However, random perturbations and information 
on ∇𝑔𝑔  can help escape the band 𝑥𝑥1 ∈ [−0.5,1] 
and find the design point, resulting in an improved 
𝑞𝑞�𝐼𝐼𝐼𝐼∗ .  

 

 
(a) Optimal density 

 
(b) Gaussian mixture with KL divergence 

 
(c) Proposed method 

 
Figure 2: The contour plot of the importance 
sampling density for a metaball limit-state function. 

5. CONCLUSIONS 
The paper discussed state-of-the-art simulation 
methods for reliability analysis. These methods 
are based on artificial dynamics to improve the 
convergence rate of simulations. The (stochastic) 
Langevin equation governs the artificial 
dynamics. The solution of the Langevin equation 
is a Markov process that converges to the target 
density (e.g., the optimal importance sampling 
density in reliability analysis.) The probability 
density of the Markov process satisfies the 
Fokker-Planck equation. The current use of this 
equation is instrumental in the following way: any 
artificial dynamics is valid as long as its stationary 
density satisfies the Fokker-Planck equation. 
Instead, this paper presented a novel approach that 
uses the equation to estimate an importance 
sampling density via optimization. The paper also 
discussed the connection with existing 
Importance Sampling methods for reliability 
analysis. The insights from a benchmark example 
suggest that the designed artificial dynamics for 
reliability problems in the context of stochastic 
simulations or optimization is essentially a global 
search for design point(s). Thus, future works 
must investigate specific conditions (i.e., problem 
formulation and solution algorithms) that can help 
us solve such global optimization problems. 
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