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ABSTRACT: Reliability updating (RU) is often used to re-evaluate the failure probability of structural 
system when new observations are obtained. However, in engineering practice, the specific distribution 
parameters of input variables are generally unavailable due to the lack of the data. To this end, two 
reliability updating models with distribution parameter uncertainty (DPU) are firstly constructed in this 
paper based on the theory of nested reliability approach (NRA) and augmented reliability approach 
(ARA). The constructed reliability updating models can accurately measure the effect of the DPU on the 
posterior failure probability. Then, two reliability updating algorithms based on subset simulation (SS), 
named as SS-NRA-RU and SS-ARA-RU, are developed to solve the corresponding RU model, which 
can significantly improve the computational efficiency of RU of rare event. Finally, three examples prove 
the efficiency and accuracy of the proposed reliability updating algorithms. 

In engineering practice, physical systems can be 
replaced by the mathematical models for 
uncertainty analysis, where the established 
mathematical model requires a proper description 
of the underlying system inputs and parameters[1]. 
However, there are always inevitable deviations 
between the physical system and its mathematical 
model [2].To calibrate the mathematical model, 
observation information can be properly 
incorporated into the process of modeling and 
simulation [3]. In probabilistic theory, Bayesian 
model updating can provide a unified 
computational framework for this purpose [4], 
and this theory is also extended to update the 
failure probability of the structural system, which 
is termed as reliability updating.  

Up to now, a lot of reliability updating 
methods have been developed, wherein a quite 
straightforward approach is to obtain the posterior 
samples by Markov Chain Monte Carlo (MCMC), 

and then estimate the posterior failure probability 
based on these posterior samples [2]. To avoid the 
time-consuming problem of numerical simulation 
methods, Ref. [5] developed an analytical method 
for estimating the posterior distribution based on 
Laplace method. However, this approach cannot 
guarantee the computational accuracy when the 
input variables are non-Gaussian form. In recent 
years, Bayesian network has been widely used in 
engineering practice [6][7]. Nevertheless, it still 
has many limitations, for example, the conditional 
probability table is difficult to calculate, and its 
operation is hard to non-experts [8].  

Currently, one of the most efficient methods is 
to perform reliability updating with structural 
reliability methods. However, this method is 
effective only when all observation information is 
of inequality type. To solve this problem, Straub 
[9] redefines the likelihood function by 
introducing an auxiliary variable P, based on 
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which the equality information expressed by a 
likelihood function can be described as inequality 
information, and an inequality limit state function 
can be constructed. Since this approach is 
applicable for most cases, some reliability 
methods are then combined with it to deal with the 
rare events. For example, Ref. [10] explored the 
combination of this approach with FORM, line 
sampling (LS) and subset simulation (SS).  

The above methods are carried out under the 
condition that the prior distribution types and 
parameters are deterministic. However, in 
engineering practice, both aleatory and epistemic 
uncertainties are existing for the input variables 
due to the data scarcity [11]. For this case, the 
imprecise probabilistic models [12] are often used 
to characterize the aleatory and epistemic 
uncertainties, which includes evidence theory 
[13], probability-box (p-box) [14], fuzzy 
probability [15] and so on. Currently, the hybrid 
uncertainties in the input variables have been also 
considered in Bayesian analysis. However, in the 
community of reliability updating, hybrid 
uncertainties are rarely considered. 

This paper develops a reliability updating 
method in the presence of hybrid uncertainties, 
where the epistemic uncertainty is considered as 
distribution parameter uncertainty (DPU). To 
estimate the posterior failure probability in the 
presence of DPU, two reliability updating models 
are firstly constructed based on the theory of 
nested reliability approach (NRA) and augmented 
reliability approach (ARA) [16][17]. For the 
updating model based on NRA, it is relatively 
stable due to the double-layer framework. But 
repeat reliability analysis in the inner layer will 
lead to low computational efficiency. Therefore, 
ARA is used to develop the alternative updating 
model, where the double-layer framework is 
transformed into the single-layer one by 
incorporating the distribution parameters into the 
input variable space, thereby avoiding the 
repeated reliability analysis. Considering the 
computational efficiency, SS method is embedded 
into the NRA and ARA, and two efficient 
algorithms, namely SS-NRA-RU and SS-ARA-

RU, are proposed for solving the established 
reliability updating models in this paper. 

1. RELIABILITY UPDATING MODELS IN 
THE PRESENCE OF DPU 

1.1. Reliability updating without DPU 
In reliability updating, based on the observation 
information Z, the likelihood function ( )L Zx can 
be defined by: 
 ( ) ( )PrL Z Z∝ =x X x   (1) 

If Z contains m independent observations 
{ }1 2, , , ms s s= s , and the observation error is 

additive, the likelihood function constructed 
based on the i-th observation is  is expressed by: 
 ( ) ( )( )

ii i i iL s f s gε= −x x   (2) 
where ( )ig x  is the model output corresponding to 

is , ( )i i is gε = − x  and 
i

fε  is the PDF of iε . Thus, 
the likelihood function constructed based on the 
observation information Z is as follows: 
 ( ) ( )

1

m

i i
i

L Z L s
=

=∏x x   (3) 

To transform the equality information into the 
inequality type, the likelihood function ( )L Zx  
can be equivalently expressed as [9]: 
 ( ) ( ){ }1 Pr 0L Z P cL Z

c
= − ≤x x   (4) 

where P is the introduced standard uniform 
variable, c is a constant that ensures ( ) 1cL Z ≤x , 
and c is generally taken as ( )( )=1 maxc L Zx . 
Based on Eq. (4), the following inequality limit 
state function can be constructed: 
 ( ) ( ),h p p c L Z= − ⋅x x   (5) 

The acceptable domain ZΩ  is then defined by 
the inequality limit state function as follows: 
 ( ){ }Z p c L ZΩ = ≤ ⋅ x   (6) 

For the likelihood function defined in Eq. (4), 
it can be re-expressed based on ZΩ  as: 

 ( ) ( )
,

1 d
Z

Pp
L Z f p p

c ∈Ω
= ∫x

x   (7) 

where ( )Pf p  is the PDF of variable P. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 3 

Since ( ) ( )PrL Z Z∝ =x X x , ( )Pr Z =X x  can 
be expressed as follows based on Eq. (7): 
 ( ) ( )

,
Pr d

Z
Pp

Z f p p
c
α

∈Ω
= ∫x

X = x   (8) 

where α  is a proportional constant. Then, the 
expression of ( )Pr Z  can be obtained by: 

 
( ) ( ) ( )

( ) ( )
,

Pr Pr d

d d
Z

Pp

Z Z f

f p f p
c
α

∈Ω

=

=

∫

∫

XX

Xx

X = x x x

x x
  (9) 

Similarly, let event F represent system failure, 
and the expression of ( )Pr F Z  is: 

( ) ( ) ( ) ( )

( ) ( )
, [ ]

Pr Pr Pr d

d d
F Z

Pp

F Z F Z f

f p f p
c
α

∈ Ω Ω

=

=

∫

∫


 XX

Xx

X = x X = x x x

x x
 (10) 

Thus, ( )Pr F Z  can be expressed by: 

( ) ( )
( )

( ) ( )

( ) ( )
, [ ]

,

d dPr
Pr

Pr d d
q F Z

q Z

Pp

Pp

f p f pF Z
F Z

Z f p f p
∈ Ω Ω

∈Ω

= =
∫
∫





Xx

Xx

x x

x x
 

 (11) 
If t observation events are considered, namely 
{ }1 tZ Z Z=  , t auxiliary variables and t 

inequality limit state functions are obtained 
finally. Denote the introduced t auxiliary variables 
as [ ]1 2, , tP P P= P , then the posterior failure 
probability is expressed by: 

 

( ) ( )
( )

( ) ( )

( ) ( )
1

1

1
1

1

, [ ]

, [ ]

Pr
Pr

Pr

d d

d d
F Z Zt

Z Zt

t
t

t

F Z Z
F Z Z

Z Z

f f

f f
∈ Ω Ω Ω

∈ Ω Ω

=

=
∫
∫

 



 





P Xx p

P Xx p

p x p x

p x p x

  (12) 

where ( )fP p  is the joint PDF of variables P, and 
( ) ( )1 q

t
P qq

f f p
=

=∏P p . 

1.2. Reliability updating with DPU 

1.2.1. The principles of NRA and ARA 
In this section, the basic principles of NRA and 
ARA are firstly introduced. Denote n-dimensional 
input variables as ( )1, , nX X= X , and their 
distribution parameters with uncertainty as 

( )1, , nΘ
Θ ΘΘ = , where the PDF of variables Θ  is 

( ) ( )1 j

n
jj

f f θΘ

Θ=
=∏θΘ . Thus, the failure probability 

conditional on the realization θ  of variables Θ  
can be expressed by: 

 
( ) ( ) ( )

( )
( ) 0

d ( ) d

( )

f Fg

F

P f I f

I
≤ =

= =

=

∫ ∫X XX X

X

x x x x x

X
θ

θ θ θ

θ

Θ ΘΘ


   

(13) 
where ( )g X  is the performance function, 

( )fX x θΘ  is the conditional PDF of X, ( )FI ⋅  is the 
failure indicator function which is defined as 

1 ( ) 0
( )

0 ( ) 0F

g
I

g
≤

=  >

x
x

x
, and ( )⋅X is the expectation 

operator of variables X.  
By integrating ( )fP θ  in the space of Θ , the 

failure probability can be obtained as follows: 
 ( ) ( )( ) d ( )f f fP P f P= =∫ θ θ θΘ ΘΘ

Θ   (14) 
where ( )⋅Θ  is the expectation operator of Θ . 

According to Eq. (14), the computational 
expression of ARA can be defined as follows: 

 

( )( ) ( )

( )
( )

,,

,

( ) d d

( ) , d d

( )

f F

F

F

P I f f

I f

I

=

=

=

∫ ∫
∫



XX

XX

X

x x x

x x x

X

θ θ θ

θ θ

ΘΘΘ

ΘΘ

Θ

  (15) 

where ( ), ,fX x θΘ  is the joint PDF of variables 
( ),X Θ , and ( ), ⋅X Θ  is the expectation operator of 
variables ( ),X Θ . 

1.2.2. Reliability updating models in the 
presence of DPU 

According to NRA, given a realization θ  of the 
distribution parameters, ( )Pr F Z θ  and ( )Pr Z θ  
can be calculated by the following equations: 

( ) ( ) ( )

( ) ( )

( )

, [ ]

1,

, 1

Pr d d

( , ) d d

( , )

F Z
Pp

PP

P

F Z f p f p
c

I p f p f p
c

I P
c

α

α

α

∈ Ω Ω
=

=

=

∫

∫



 Xx

XX

X

x x

x x x

X

θ θ

θ

θ

Θ

Θ



  (16) 

( ) ( ) ( )

( ) ( )

( )

,

2,

, 2

Pr d d

( , ) d d

( , )

Z
Pp

PP

P

Z f p f p
c

I p f p f p
c

I P
c

α

α

α

∈Ω
=

=

=

∫

∫

Xx

XX

X

x x

x x x

X

θ θ

θ

θ

Θ

Θ



  (17) 
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where 1

1 , [ ]
( , )

0 , [ ]
F Z

F Z

p
I p

p
∈ Ω Ω

=  ∉ Ω Ω





x
x

x
 and 

2

1 ,
( , )

0 ,
Z

Z

p
I p

p
∈Ω

=  ∉Ω

x
x

x
. 

By integrating ( )Pr F Z Θ  and ( )Pr Z Θ  in the 
space of variables Θ , and NRA-based reliability 
updating model can be obtained by: 

( )
( ) ( )
( ) ( )

( )( )
( )( )

Pr d Pr
Pr

Pr d Pr

F Z f F Z
F Z

Z f Z
= =∫

∫



θ θ θ

θ θ θ
Θ ΘΘ

Θ ΘΘ

Θ

Θ




 

 (18) 
According to Eq. (15), ARA-based reliability 

updating model can be defined by: 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

1 ,, ,

2 ,, ,

, , 1

, , 2

Pr
Pr

Pr

( , ) d d d

( , ) d d d

( , )
( , )

PP

PP

P

P

F Z
F Z

Z

I p f p f , p

I p f p f , p

I P
I P

=

=

=

∫
∫



XX

XX

X

X

x x x

x x x

X
X

θ θ

θ θ

ΘΘ

ΘΘ

Θ

Θ




  (19) 

where ( ), ,P ⋅X Θ  is the expectation operator of joint 
variables X, P and Θ . 

2. ALGORITHMS FOR RELIABILITY 
UPDATING IN THE PRESENCE OF DPU 

SS [18] is very popular to reliability updating. 
Generally, the inequality limit state function in 
logarithmic form is adopted [18]: 

 
( ) ( ) ( ) ( )( )

( ) ( )( )
, ln ln ln

ln ln

h p p c L Z

p l L Z

′ = − −

= + −

x x

x
  (20) 

For SS-NRA-RU algorithm, Θ  takes different 
realizations ( ) ( 1, , )k k NΘ= θ  in the outer layer, 
and variables X, P are transformed into standard 
normal variables , pU′  =  U U  with 1n +  
dimensionality, where U can be converted into n-
dimensional input variables X, and Up can be 
converted into variable P by ( )PP U= Φ . Based on 
this transformation, Eq. (20) can be expressed by: 

 
( ) ( ) ( )( )

( )( ) ( )( )
( )

1

1

, ln ln

ln ln T ( )P

h p p l L Z

u l L Z

h

′ = + −

= Φ + −

′ ′=

x x

u

u

  (21) 

where 1T ( )⋅  represents the transformation which 
transforms samples u into x based on the given 
parameter realization ( ) ( 1, , )k k NΘ= θ . The 
computational steps of SS-NRA-RU algorithm 
are shown in Algorithm 1: 
Algorithm 1：The computational steps of SS-
NRA-RU algorithm. 
1. Set the value of tp , where tp  is often taken as 

0.1, and determine the sample size KN  of each 
subset in SS. 

2. Generate NΘ  samples ( ) ( 1, , )k k NΘ= θ  of 
variables Θ  according to ( )f θΘ . 

3. For k = 1: NΘ  
4. Determine the transformation 1T ( )⋅  based on 

( )kθ . Generate KN  independent standard 
normal samples (0, ) (0, ) (0, ),j j j

pu′  =  u u  
( )1, , Kj N=   with 1n +  dimensionality. 

5. Let 0i =  and h
ib = ∞ , and calculate 

( )( )( )(0, )
1max ln T ( )jl L Z= u

. 
6. While ( )0h

ib >  do: 
7. Let 1i i= + . 
8. Calculate the values of ( )( )( 1, )

1 1, ,i j
Kh j N−′ ′ = u  

based on the samples ( 1, )i j−′u , and sort 
( )( 1, )

1
i jh −′ ′u  in ascending order. 

9. Determine the value of h
ib  according to the tp

-percentile of the ordered values of  
( )( )( 1, )

1 1, ,i j
Kh j N−′ ′ = u . 

10. Select hN  samples ( 1, ) ( 1, , )i j
hj N−′ = u  

satisfying ( ) ( )( 1, )
1 max ,0i j h

ih b−′ ′ ≤u  as the seeds 
of MCMC, and generate K hN N−  samples, so 
as to obtain the new samples 

( )( , ) 1, ,i j
Kj N′ = u . 

11. If 0h
ib < , let 0h

ib =  and h
i h Kp N N= . 

12. Else, let h
i tp p= . 

13. End 
14. Let ( )( ){ }( )( , )

1max , ln T ( ) 1, ,i j
new Kl l L Z j N= = u , 

and update h
ib  into h h

i i newb b l l= − + . Let newl l= . 
15. End 
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16. Collect the samples generated in the last 
subset as the posterior samples 

( )(0, ) 1, ,j
post Kj N′ = u , and determine the final 

inequality limit state function ( )1h′ ′u  
according to the final l. Let ( )( )Pr k h

ii
Z p=∏θ . 

17. For max0 :i N= ( maxN  is the maximum of 
iterations) 

18. Let 1i i= + . 
19. Calculate the values of performance function 

( )( )( 1, )
1T ( ) 1, ,i j

post Kg j N− = u , and sort them in 
ascending order. 

20. Determine the value of g
ib  according to the tp

-percentile of the ordered values of 
( )( )( 1, )

1T ( ) 1, ,i j
post Kg j N− = u . 

21. If 0g
ib > , select gN  samples satisfying 

( )( 1, )
1T ( )i j g

post ig b− ≤u  and ( )( 1, )
1 0i j

posth −′ ′ ≤u  as the 
seeds of MCMC, and generate K gN N−  
samples, so as to obtain the new samples 

( )( , ) 1, ,i j
post Kj N′ = u . Let g

i tp p= . 
22. Else, let 0g

ib = , and determine fN  failure 
samples that satisfy ( )( 1, )

1T ( ) 0i j
postg − ≤u  and 

( )( 1, )
1 0i j

posth −′ ′ ≤u . Then g
i f Kp N N= . Break. 

23. End 
24. End 
25. ( ) ( ) ( )( ) ( ) ( )Pr Pr , Prk k kF Z F Z Z= θ θ θ , and 

( )( )Pr , k g
ii

F Z p=∏θ . 
26. End  
27. Calculate the posterior failure probability 

based on ( )( )Pr kF Z θ  and ( )( )Pr kZ θ , 
1, ,k NΘ=  . 

In SS-ARA-RU algorithm, Θ  is also 
considered as random variables. Denote input 
variables in the standard normal space as 

, ,pU Θ′′  =  U U U , and Eq. (20) can be expressed by: 

 
( ) ( ) ( )( )

( )( ) ( )( )
( )

2

2

, ln ln

ln ln T ( , )P

h p p l L Z

u l L Z

h
Θ

′ = + −

= Φ + −

′ ′′=

x x

u u

u

  (22) 

where 2T ( )⋅  represents the transformation which 
transforms samples u into x based on the 

corresponding parameter samples Θu . The 
computational steps of SS-ARA-RU algorithm 
are shown in Algorithm 2: 
Algorithm 2：The computational steps of SS-
ARA-RU algorithm. 
1. Set the value of tp , where tp  is often taken as 

0.1, and determine the sample size KN  of each 
subset in SS. 

2. Generate KN  independent standard normal 
samples ( )(0, ) 1, ,k

Kk N′′ = u  with 1n nΘ+ +  
dimensionality. 

3. Let 0i =  and h
ib = ∞ , and calculate

( )( )( )( )(0, ) (0, )
2max ln T ( , ) 1, ,k k

Kl L Z k NΘ= = u u
 

4. While ( )0h
ib >  do: 

5. Let 1i i= + . 
6. Calculate the values of ( )( )( 1, )

2 1, ,i k
Kh k N−′ ′′ = u  

based on the samples ( 1, )i k−′′u ( )1, , Kk N=  , and 
sort them in ascending order. 

7. Determine the value of h
ib  according to the tp

-percentile of the ordered values of  
( )( )( 1, )

2 1, ,i k
Kh k N−′ ′′ = u . 

8. Select the hN  samples ( 1, ) ( 1, , )i k
hk N−′′ = u  

satisfying ( ) ( )( 1, )
2 max ,0i k h

ih b−′ ′′ ≤u  as the seeds 
of MCMC, and generate K hN N−  samples, so 
as to obtain the new samples 

( )( , ) 1, ,i k
Kk N′′ = u . 

9. If 0h
ib < , let 0h

ib =  and h
i h Kp N N= . 

10. Else, h
i tp p= . 

11. End 
12. Let 

( )( ){ }( )( , ) ( , )
2max , ln T ( , ) 1, ,i k i k

new Kl l L Z k NΘ′′ ′′= = u u

, and update h
ib  into h h

i i newb b l l= − + . Let newl l= . 
13. End 
14. Denote the samples generated in the last 

subset as the posterior samples 
( )(0, ) 1, ,k

post Kk N′′ = u , and determine the final 
inequality limit state function ( )2h′ ′′u  
according to the final l. 

15. For max0 :i N= ( maxN  is the maximum of 
iterations) 
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16. Let 1i i= + . 
17. Calculate the values of performance function 

( )( )( 1, ) ( 1, )
2T ( , ) 1, ,i k i k

post post Kg k N− −
Θ = u u , and sort them 

in ascending order. 
18. Determine the value of g

ib  according to the tp
-percentile of the ordered values of 
( )( )( 1, ) ( 1, )

2T ( , ) 1, ,i k i k
post post Kg k N− −

Θ = u u . 
19. If 0g

ib > , select gN  samples satisfying 
( )( 1, ) ( 1, )

2T ( , )i k i k g
post post ig b− −

Θ ≤u u  and ( )( 1, )
2 0i k

posth −′ ′′ ≤u  as 
the seeds of MCMC, and generate K gN N−  
samples based on these seeds, to obtain the 
new samples ( )( , ) 1, ,i k

post Kk N′′ = u . Let g
i tp p= . 

20. Else, let 0g
ib = , and determine fN  failure 

samples satisfying ( )( 1, ) ( 1, )
2T ( , ) 0i k i k

post postg − −
Θ ≤u u  and 

( )( 1, )
2 0i k

posth −′ ′′ ≤u . Then g
i f Kp N N= . Break. 

21. End 
22. End 
23. The posterior failure probability can be 

obtained by ( )Pr g
ii

F Z p=∏ . 

3. EXAMPLES 
In this section, two examples are investigated to 
test the effectiveness of developed algorithms. For 
MC-NRA-RU, MC-ARA-RU and SS-ARA-RU 
algorithms, reliability updating processes are 
repeated 30 times, and the mean values of the 
results are provided in tables. Since repeated SS is 
too time-consuming, SS-NRA-RU and SS-NRA-
RU are performed for one time in each example. 

3.1. Cantilever beam model 
This example studies a cantilever beam model 
[19]. As shown in Fig. 1, when the cantilever 
beam bears two independent loads X and Y, the 
displacement of the end of the cantilever beam can 
be expressed by the following equation: 

0 ( , , , ) g D D X Y w t= −  

where 
2 23

2 2

4( , , , ) = L X YD X Y w t
Ewt w t

   +   
   

, 0 2.18D = , 
72.9 10E = ×  is the elastic modulus, L, w and t are 

the length, width and thickness of the cantilever 
beam, respectively. The random variables in this 
structure are X, Y, w and t. The obtained output 

observations of the cantilever beam are 0.11 and 
0.15, respectively, and the likelihood function 
constructed based on the observations is 
expressed as follows:  

( )
2 2

2

( 0.11) ( 0.13)exp
2

g gL Z
εσ

 − + −
= − 

 
x  

where 0.05εσ = . 

100in
L=

ω
t X

Y

 
Fig. 1 Diagram of the cantilever beam structure. 

Table 1. Prior distribution of the input variables. 
Variables Distribution Mean Standard 

 / NX  Lognormal 1µ  100 
/ NY  Lognormal 2µ  100 
/ PaE  Lognormal 3µ  2.5×106 

Table 2. Distribution of the prior distribution 
parameters. 
Variables Distribution Mean Standard 

 1µ  Normal 500 50 
2µ  Normal 1200 120 
3µ  Normal 2.5×107 2.5×106 

Table 3. The results of reliability updating. 

 
MC-
NRA-
RU 

MC-
ARA-
RU 

SS-
NRA-
RU 

SS-
ARA-
RU 

Pr( )Z  0.0974 0.0974 0.0968 0.0970 
Pr(F Z  2.935×

10-5 
2.972×

10-5 
2.904×

10-5 
3.113×

10-5 
Pr( )F Z  3.015×

10-4 
3.050×

10-4 
2.999×

10-4 
3.210×

10-4 
N  5×108 1×107 7×107 7×104 

In this example, the reliability updating 
problem of a cantilever beam model is studied. 
Table 3 shows that four methods have quite close 
solutions, although SS-ARA-RU method has the 
largest error. In terms of the computational cost, it 
is obvious that ARA-based methods require less 
computational cost than NRA-based methods. In 
this example, SS takes 1×104 samples per subset, 
and aBUS requires three subsets to obtain the 
posterior samples while another four subsets are 
required to calculate the posterior failure 
probability. Therefore, it indicates that SS-ARA-



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 7 

RU method requires the least cost, which proves 
that under the approximate calculation accuracy, 
SS-ARA-RU has the highest efficiency.  

3.2. A roof truss model 
A roof truss model is studied in this example [20]. 
As shown in Fig.2, the top chords and 
compression bars of the roof truss are made of 
steel reinforced concrete, while the bottom chords 
and tension bars are made of steel. Assume the 
uniformly distributed load q that can be 
transformed into the nodal load / 4P ql=  is 
applied on the roof truss structure, where l is the 
length of the truss. The perpendicular deflection 
of the truss peak node C is derived as: 

2 3.81 1.13
2C

C C S S

ql
A E A E

 
∆ = + 

 
 

where CA  and SA  are the cross sectional areas of 
the steel reinforced concrete and the steel bars 
respectively, and CE , SE  are the corresponding 
elastic modulus. The performance functions of 
three failure modes are given by: 

2

1

2

3

3.81 1.130.03
2

1.185

0.75

C C S S

C C

S S

qlg
A E A E

g f A ql

g f A ql

 
= − + 

 

= −

= −

 

Likelihood functions are expressed as follows: 

( )
( ) ( )( )

1

2 2
1 1

1 2

0.0168 0.017
, , , exp

2S C

g g
L q l A A

εσ

 − + −
 = −  
 

y  

( )
( ) ( )( )

2

2

2 25 4
2 3

2

, , ,

3.1 10 2.1 10
exp

2

S CL q l A A

g g

εσ

 − × + − × 
= − 

 
 

y

 

where 
1

46 10εσ
−= ×  and 

2

41 10εσ = × .  
Table 4. Prior distribution of the input variables. 
Variables Distribution Mean Standard 

 (N m )q  Normal 1µ  1400 
(m)l  Normal 2µ  0.12 

2(m )SA  Normal 49.82 10−×  55.82 10−×  
2(m )CA  Normal 0.04 0.0048 

Table 5. Distribution of the prior distribution 
parameters. 

Variables Distribution Lower 
 

Upper 
 1µ  Uniform 1.8×104 2.2×104 

2µ  Uniform 11 13 

 
Fig. 2 Schematic diagram of roof truss model. 

Table 6. The results of reliability updating of the roof 
truss model 

 
MC-
NRA-
RU 

MC-
ARA-
RU 

SS-
NRA-
RU 

SS-
ARA-
RU 

Pr( )Z  0.0212 0.0212 0.0212 0.0209 
Pr(F Z  6.974×

10-5 
6.760×

10-5 
6.360×

10-5 
7.194×

10-5 
Pr( )F Z  3.270×

10-3 
3.254×

10-3 
3.005×

10-3 
3.423×

10-3 
N  1×108 5×106 6×107 6×104 

This example studies the reliability updating 
problem of a roof truss model. Since there are two 
likelihood functions in total, by introducing two 
auxiliary variables, two inequality limit state 
functions can be obtained in total. It can be seen 
from Table 6 that the results of these methods are 
still consistent. Among these methods, SS-ARA-
RU still requires the least performance function 
calls, where 1×104 samples per subset are set in 
SS and a total of six subsets are used. This 
example verifies again that the proposed two 
kinds of reliability updating methods in the 
presence of DPU are correct, and SS-ARA-RU is 
more recommended employed in engineering 
practice to save the computational cost. 

4. CONCLUSIONS 
Considering the data scarcity in engineering 
problems, this paper studies the reliability 
updating problem in the presence of DPU. Two 
reliability updating models in the presence of 
DPU are firstly constructed. Then, based on the 
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constructed models, two SS-based reliability 
updating algorithms are the proposed, namely, 
SS-NRA-RU and SS-ARA-RU. It is proved that 
NRA-based methods have nearly the same 
solutions with ARA-based methods, while ARA-
based methods have higher efficiency, especially 
for SS-ARA-RU method. Therefore, this paper 
can provide an efficient solution to reliability 
updating problems in the presence of DPU. 
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