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ABSTRACT: The optimal maintenance planning for railway systems forms a complex sequential
decision-making problem. Optimal maintenance actions ought to be configured on the basis of updated
rail condition estimates. To this end, structural health monitoring solutions can be used for reliably
tracking the condition of railway infrastructure. However, the measurements gathered from continuous
monitoring can only offer incomplete, often noise-corrupted, information of the real condition states,
which implies the need for decision–making under uncertainty. For tackling the inherent uncertainty, the
problem can be formalized as a Partially Observable Markov Decision Process (POMDP). Two families
of methods are generally used to solve such formulations, namely Dynamic Programming (DP) and
Reinforcement Learning (RL). In this work, we apply deep RL to solve a real-world railway
maintenance planning problem modeled as a POMDP without assuming any knowledge of the problem
parameters, in order to derive a full model-free solution. In particular, we employ the Soft Actor-Critic
method, extended to partial observability, and compare the quality of the solution against classical DP
methods analyzed in previous works.

1. INTRODUCTION

Infrastructure, such as roads and bridges, can de-
teriorate over time, causing safety issues and need-
ing costs for repairs. In particular, railway assets
are subjected to loads and environmental factors
that produce degradation and fine material infiltra-
tion in the track (Hoelzl et al., 2021). As a conse-
quence, the railway network can incur deterioration

of service, delays, environmental costs, working ac-
cidents or derailing risks (Lidén, 2015). Mainte-
nance policies aim to prevent or control such dete-
rioration processes and extend the lifespan of these
structures by balancing the cost of mitigation ac-
tions with the risk associated to adverse conditions
of the infrastructure.

Optimal maintenance planning refers to the prob-
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lem of defining the maintenance policy, i.e., the se-
quence of maintenance actions, that minimize ex-
pected costs and risks over the operating life-cycle
(Duffuaa et al., 1999). At every decision step, the
executed maintenance action will bear an immedi-
ate effect on the infrastructure condition and poten-
tially change the optimal sequence of actions dur-
ing the remaining life of the system. As such, the
optimal maintenance planning forms a complex se-
quential decision-making problem. In addition, it is
usually not feasible to precisely observe the railway
condition state, given the scale of the problem and
the resulting economic costs. To remedy this issue,
Structural Health Monitoring (SHM) (Straub et al.,
2017; Andriotis et al., 2021) tools can be exploited
to provide observations, which attempt to offer es-
timates of the structural state, through the use of
sensors and associated condition indicators. How-
ever, the observations gathered from these tools can
only offer incomplete, often noise-corrupted, infor-
mation of the actual condition (state) of the system.
This implies that decisions must be made under
presence of uncertainties. One approach is to for-
mally cast the decision problem under uncertainty
as a Partially Observable Markov Decision Process
(POMDP).

In a POMDP setting, the decision maker (or
agent) receives an observation, possibly through
use of an SHM system, and forms a belief over the
system’s (in this case the railway) state based on
this observation. Consequently, the agent takes an
action based on the current belief, which will bear
an impact on the subsequent (updated) condition.
The POMDP objective is to find the optimal se-
quence of maintenance actions that minimizes the
total costs over the prescribed horizon. Relevant
examples of POMDP modeling for optimal mainte-
nance planning can be found in Madanat and Ben-
Akiva (1994); Ellis et al. (1995); Papakonstantinou
and Shinozuka (2014b); Memarzadeh et al. (2015);
Papakonstantinou et al. (2018).

In order to solve a POMDP problem, two main
families of methods are available. These are meth-
ods based on Dynamic Programming (DP) and
methods belonging to the class of Reinforcement
Learning (RL). Algorithms based on DP (Bert-

sekas, 2012), often also referred to as “planning”,
bring a solid mathematical foundation with opti-
mality convergence properties. However, planning
algorithms can usually only be applied to small and
medium complexity problems. In addition, they
assume full knowledge of the POMDP problem,
namely access to (a model of) the transitions dy-
namics and observation generating process of the
POMDP and their underlying parameters, in order
to compute the solution. This solution is hence opti-
mal (or near-optimal) for the assumed POMDP pa-
rameters. However, the inference of the transition
dynamics and observation generating process of the
problem is notoriously difficult in real-world appli-
cations (Papakonstantinou and Shinozuka, 2014b).

In previous work of the authoring team (Arcieri
et al., 2022), we introduced a framework to fully
recover the transition and the observation mod-
els from available real-world observation data,
such that distributions of plausible values over
the POMDP parameters are inferred. Although
the methods presented are generally applicable, a
POMDP solution deriving from DP algorithms re-
mains conditioned on the inferred model parame-
ters. The latter may naturally deviate from the ac-
tual underlying parameters, which leads to a viola-
tion of any guarantees for optimality of the com-
puted policy. To tackle this, we merge DP with
Bayesian decision making in order to incorporate
information on the probabilistic distributions of the
parameters into the solution. While this framework
clearly improves the robustness of the POMDP so-
lution over model uncertainty, the solution can still
be subject to model errors and the real-world pa-
rameters can still differ from the inferred distribu-
tions.

Another approach is to solve the underlying
POMDP problem without assuming any prior
knowledge over the transition dynamics and the ob-
servation generating process; in this case, the pol-
icy is fully learned through interactions via trial
and error learning. This family of methods is com-
monly called RL (Sutton and Barto, 2018), or deep
RL when combined with deep learning schemes.
While RL overcomes the problem of availability
of a POMDP model (which, however, would still
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be needed for testing the learned policy before the
actual real-world deployment), these methods re-
quire a massive number of samples. In addition,
deep RL, albeit permitting solution of high dimen-
sional problems (Arulkumaran et al., 2017), lacks
optimality guarantees for the solution (Sutton and
Barto, 2018).

The two aforementioned families of methods
therefore both have their pros and cons. When the
complexity of the problem is not prohibitive for DP
applications and thus allows for use of both options,
one has to decide whether it is preferred to com-
pute a solution with some optimality guarantees, at
the cost of placing strong assumptions, or to relax
those assumptions at the cost of losing optimality
guarantees. In this work, we thus compare a DP
solution against a deep RL solution, on the case
study of a real-world problem for optimal mainte-
nance planning of railway assets, which is modelled
as a POMDP. The inference of the entire POMDP
model has been showcased in Arcieri et al. (2022),
where we here adopt the mean values of the in-
ferred distributions as the POMDP problem param-
eters. The interested reader is referred to Arcieri
et al. (2022) for a complete description of the un-
derlying problem, its POMDP modeling, and the
inferred parameters.

An alternative solution approach, which likely
constitutes a hybrid between the two aforemen-
tioned options (Morato et al., 2023), would assume
access to the POMDP parameters to compute be-
liefs via Bayes theorem, which would be then fed
to the deep RL algorithm as inputs. Namely, the
POMDP problem is converted into the belief-MDP
(Papakonstantinou and Shinozuka, 2014a) and then
solved with deep RL techniques. The premise
is that in engineering problems we usually have
and/or need an underlying simulation environment
that can be exploited. While this can be informa-
tive and generally leads to improved RL solutions,
it still suffers from the model assumptions bias that
characterize DP solutions. As such, this hybrid ap-
proach is better suited to very complex problems
(e.g., multi-component systems (Andriotis and Pa-
pakonstantinou, 2019)) where “pure” DP or model-
free RL approaches would not likely work.

In this work, we rely on a pure model-free deep
RL approach, namely the Soft Actor-Critic (SAC)
method (Haarnoja et al., 2018) for discrete action
settings (Christodoulou, 2019). The method is here
extended by the use of Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
to handle the partial observability. Although SAC
is considered a state-of-the-art approach for model-
free RL and the use of LSTMs has become the stan-
dard to solve POMDPs (Schmidhuber, 1990; Dung
et al., 2008; Zhu et al., 2017), to the best of our
knowledge, no other work has presented this ex-
tension in a full model-free RL context to solve
POMDP problems. We compare this approach
in this work against the planning algorithm QMDP
method (Cassandra et al., 1996), whose solution to
the problem is shown in Arcieri et al. (2022).

The remainder of this paper is organized as fol-
lows. Section 2 provides the theoretical background
on the POMDP problem setting, the RL framework,
and the QMDP and the SAC methods. Section 3 pro-
vides details of the evaluation of the experiment and
reports the results. Finally, Section 4 discusses the
contributions, the results, and possible limitations
of the work, and outlines possible future work.

2. PRELIMINARIES

2.1. The POMDP framework
A POMDP can be considered as a generaliza-

tion of a Markov Decision Process (MDP) for mod-
elling a sequential decision making problem within
a stochastic control setting, with uncertainty incor-
porated into the observations. A POMDP is defined
by the tuple ⟨S,A,Z,R,T,O,b0,H,γ⟩, where:

• S is the finite set of hidden states that the envi-
ronment can assume. Here, we assume 4 pos-
sible discrete states (condition levels) of the
railway track, which are not directly observed
by the agent.

• A is the finite set of available actions. We con-
sider 3 possible real-world actions, which we
refer to as a0 do-nothing, a1 minor repair, and
a2 major repair, for which we had access to
logged data over the Swiss railway network.

• Z is the set of possible observations, gener-
ated by the hidden states and executed ac-
tions, which provide partial and noisy infor-
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mation about the actual state of the system. In
this work, the “fractal value” indicator (Hoelzl
et al., 2021) forms the set of continuous obser-
vations of the railway tracks, for which we had
access to a database of 10 years of recordings.

• R : S×A→ R is the reward function that as-
signs the reward rt = R(st ,at) for assuming
an action at at state st . In an optimal mainte-
nance problem, rewards typically assume neg-
ative values that represent costs; see Arcieri
et al. (2022) for a table of the costs assumed.

• T : S × S × A → [0,1] is the transition dy-
namics model that describes the probability
p(st+1|st ,at) to transition to state st+1 if action
at is taken at state st .

• O : S×A×Z→ R is the observation generat-
ing process that defines the emission probabil-
ity p(zt |st ,at−1,zt−1), namely the likelihood to
observe zt if the system is at state st and action
at−1 was taken.

• b0 is the initial belief on the system’s state s0.
• H is the considered horizon of the problem,

which can be finite or infinite. In this work, we
consider H = 50 time-steps, where every time-
step equals 6 months of the real-world prob-
lem. The problem is hence episodic and reset
after the horizon is reached (called episode).

• γ is the discount factor that discounts future
rewards to obtain the present value.

In the POMDP setting, the agent takes a deci-
sion based on the belief over the system’s state.
The belief is hence defined as a probability distri-
bution over S, which maps the discrete finite set
of states into a continuous |S|−1 dimensional sim-
plex (Papakonstantinou and Shinozuka, 2014a). It,
therefore, offers sufficient statistics over the com-
plete history of actions and observations. The be-
lief over the system’s state is updated every time
the agent receives a new observation according to
Bayes’ rule:

b(st+1)=
p(zt+1|st+1,at)

p(zt+1|b,at)
∑

st∈S
p(st+1|st ,at)b(st) (1)

where the denominator is the usual normalizing fac-
tor.

The objective of the POMDP is to determine the
optimal policy π∗, which maps beliefs to actions

such that the expected sum of rewards is maxi-
mized:

π
∗ = argmax

π

E

[
H

∑
t=0

γ
trt

]
(2)

where rt = R(st ,π(bt)). The optimal policy can be
computed via algorithms based on DP (Bertsekas,
2012), which introduce the concepts of the value
function V π , namely the expected sum of rewards
of policy π from a certain state, and the Q-value
function Qπ (Sutton and Barto, 2018), which out-
puts the state-value for taking action at at state st
and then following the policy π .

2.1.1. The QMDP method
The exact solution of a POMDP is generally in-

tractable and approximations have been proposed
in the literature (Parr and Russell, 1995). The ad-
vent of point-based value iteration algorithms al-
lowed to efficiently solve large scale POMDP prob-
lems with good approximation (Spaan and Vlas-
sis, 2005; Papakonstantinou et al., 2018). However,
solving POMDP problems with continuous obser-
vations remains a challenging task, even for these
methods, which rely on discretization of the obser-
vation space. As such, in this work we rely on the
simpler QMDP (Cassandra et al., 1996) approach,
which is not negatively affected by a continuous set
of observations.

The QMDP method initially ignores the observa-
tion model and computes the Q-values Q∗ of the
underlying MDP given the transition model. It then
determines the optimal action at each step by only
updating the belief b(s) via Equation 1. The opti-
mal action is then selected according to:

πQMDP = argmax
a∈A

∑
s∈S

b(s)Q∗(s,a) (3)

This results in extremely low computational load
when compared to point-based methods, at the ex-
pense of reduced accuracy, in general problems.

2.2. Reinforcement Learning
RL methods can solve sequential decision-

making problems, and in particular POMDPs, by
maximizing the objective function in Equation 2
without assuming knowledge of the POMDP pa-
rameters. Rather, RL learns optimal policies
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through interactions between the agent and the en-
vironment and via trial end error learning, using
samples of the environment. In the RL context, the
term environment is associated with the POMDP
problem where the agent acts, which outputs ob-
servations and rewards resulting from the assumed
actions. Transition, observation, and reward mod-
els are usually hidden from the RL agent.

Deep RL methods can be categorized in differ-
ent ways. A common approach to such a catego-
rization is dependent on what the Neural Networks
(NNs) parameterize and learn through samples. For
instance, in value-based methods, NNs are used to
approximate Q-values (Mnih et al., 2015). The op-
timal policy is then computed by picking the ac-
tion associated with the maximum Q-value, which
works efficiently in discrete control settings. In
policy-based methods (Sutton et al., 1999), NNs
directly parameterize the policy, which is then im-
proved via application of a stochastic gradient de-
scent/ascent scheme through samples. While these
methods enabled the solution of complex problems,
including continuous control problems and stochas-
tic policy learning, they suffer from high variance
and very low sample-efficiency. Actor-critic meth-
ods (Mnih et al., 2016) combine the two previous
approaches, with one or more NNs that evaluate the
current policy (critic) by learning Q-values and a
policy network that learns how to act (actor). All
methods that do not have direct access to a model
belong also to the family of the so-called model-
free RL. In model-based RL, NNs are also exploited
to learn a model of the environment, which is also
used for planning and solving the underlying task
(Arcieri et al., 2021).

In the POMDP setting, the belief may not be di-
rectly inferred, although a few works point to such
a direction, e.g., (Igl et al., 2018). In such cases,
decisions are based on some form of history, which
is needed to learn hidden states, such as the current
observation and a memory of past observations. In
practice, a window W of the last k observations is
passed to the agent at each time-step and the clas-
sical feed-forward NNs are generally replaced by
LSTMs (Zhu et al., 2017).

2.2.1. SAC-Discrete for POMDPs
SAC is an off-policy actor-critic algorithm that

optimizes a stochastic policy by changing the ob-
jective in Equation 2 to the following entropy-
regularized RL objective (Haarnoja et al., 2018):

π
∗ = argmax

π

E

[
H

∑
t=0

γ
t (rt−αH (π))

]
(4)

Namely, the SAC agent maximizes the trade-off be-
tween the classical RL objective and the entropy
H of the policy, while α is a temperature hyper-
parameter to be optimized.

In the SAC method, 5 NNs are employed, whose
parameters are here labelled as φ to parameterize
the policy πφ , θ1 and θ2 for the Q-values Qθ j , and
θtarg,1 and θtarg,2 for the target Q-values Qθtarg, j .
Given a collected replay buffer D , the network pa-
rameters are optimized according to the objectives
JQ(θ j) and Jπ(φ); see Christodoulou (2019) for a
detailed discussion of the computation steps, which
this work accurately implemented.

In order to handle the partial observability, in this
work all 5 NNs in SAC are replaced by LSTMs,
which are fed with a window W of the last 5 obser-
vations as inputs.

3. EVALUATION METHODOLOGY AND RESULTS

The full evaluation methodology1 of SAC is re-
ported in detail in Algorithm 1. The NNs, com-
posed by 3× 100 LSTM layers and ReLu activa-
tion functions, are trained with a stochastic policy,
which is then tested over 500 episodes to average
the results over the stochasticity of the environ-
ment. All hyper-parameters have been optimized
with a thorough grid-search (other relevant ones are
reported in Algorithm 1).

The full methodology is repeated over 4 random
seeds and the results are reported in Table 1 in terms
of average performance and Standard Error (SE). In
the first row, the optimal solution of the fully ob-
served problem is reported as a benchmark, which
can be computed via DP by considering the full ob-
servability of the hidden states. It hence represents
an upper bound that cannot be achieved by POMDP

1Code available on GitHub.
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Algorithm 1 SAC evaluation algorithm
Initialize Qθ1,Qθ2,πφ ,Qθtarg,1,Qθtarg,2 ▷ Initialize local and target networks
θtarg,1← θ1,θtarg,2← θ2 ▷ Equalize target and local network weights
D ← /0 ▷ Initialize an empty replay buffer that collects entire trajectories for training
for TrainingEpisode = 0 to N do ▷ N = 60,000

s0 ∼ T0, z0 ∼ O0 and W ← /0 ▷ Initialize environment and window buffer of capacity 5
for timestep t = 0 to H do

W ←W ∪{(zt)} ▷ Store the observation in the window buffer
at ∼ πφ (W ) ▷ Sample action from policy network given history of obs
st+1 ∼ T (st ,at),zt+1 ∼ O(st+1,at ,zt) ▷ Execute action and sample next state and obs
D ←D ∪{(zt ,at ,R(st ,at))} ▷ Store tuple in the replay buffer and current trajectory place

end for
for update step do ▷ 10 update iterations, sampled two full trajectories each, α = 0.1

θ j← θ j−λQ∇̂θ jJ
(
θ j
)

for j ∈ {1,2} ▷ Update Q-network parameters
φ ← φ −λπ∇̂φ Jπ(φ) ▷ Update policy network parameters
θtarg, j← τθtarg, j +(1− τ)θ j for j ∈ {1,2} ▷ Update targets with Polyak average, τ = 0.995

end for
end for
Initialize ListEpisodeRewards← /0 ▷ Initialize list of costs
for TestingEpisode = 0 to K do ▷ K = 500

Set EpisodeRewards← 0 ▷ Initialize episode costs
s0 ∼ T0, z0 ∼ O0 and W ← /0 ▷ Initialize environment and window buffer of capacity 5
for timestep t = 0 to H do

W ←W ∪{(zt)} ▷ Store the observation in the window buffer
at = πφ (W ) ▷ Compute deterministic action from policy network given history of obs
st+1 ∼ T (st ,at),zt+1 ∼ O(st+1,at ,zt) ▷ Execute action and sample next state and obs
EpisodeRewards += R(st ,at) ▷ Collect reward

end for
ListEpisodeRewards← ListEpisodeRewards∪{(EpisodeRewards)} ▷ Collect episode costs

end for

solutions, which also deal with uncertain observa-
tions.

The planning algorithm QMDP significantly out-
performs the deep RL solution SAC for this prob-
lem, taking advantage of the enhanced informa-
tion that its belief inputs provide. The SAC policy
clearly improves during training, as the initial pol-

Table 1: Evaluation results.

Method Average costs SE
Optimal solution (MDP) -13,405 -
QMDP method (POMDP) -14,374 35
SAC method (POMDP) -16,918 528

icy with random initialization would result in av-
erage costs that are at least an order of magnitude
higher. However, it failed to attain a more sophisti-
cated policy than QMDP is able to deliver. The SE
shows that a large number of evaluations would not
alter this conclusion. Note that the smaller SE of
QMDP is mainly due to the larger number of sam-
ples used for evaluating the mean (10,000 for QMDP
vs 2,000 for SAC).

4. DISCUSSION AND CONCLUSIONS

In this work, a deep RL algorithm, namely the
SAC method, is employed to solve a real-world op-
timal maintenance planning problem modelled as
a POMDP. The performance is compared against
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a planning algorithm called QMDP method. The
main contribution is thus formed by the comparison
and introductory analysis of the trade-off between a
DP solution, which has general optimality conver-
gence guarantees but assumes complete knowledge
of the problem, and a RL solution, which does not
assume any prior model knowledge, at the cost of
optimality convergence guarantees, for a real-world
POMDP problem. In addition, this work also repre-
sents the first extension of the SAC method to par-
tial observability in a full model-free RL context.

Although the DP planning method achieved su-
perior results and outperformed the RL method for
the problem considered here, it should still be re-
minded that the former assumed complete knowl-
edge of the POMDP parameters and the solution
found is thus optimal for these parameters. How-
ever, no assurance can be offered on the behaviour
of the computed planning optimal policy in the real-
world, whose dynamics may potentially differ from
those tested here. The RL solution may still be
meaningful for this problem if model assumptions
on the problem setting are not deemed reliable. In
addition, it should also be noted that we fed the
RL algorithm with a history of actual observations,
instead of computing the beliefs via Equation 1
and using them as inputs, e.g., as in Morato et al.
(2023). While this latter technique would certainly
lead to increased performance, it relies on the un-
derlying POMDP model, something we wanted to
avoid in this work. As a result, the considered prob-
lem here is far more complex to be tackled with RL
techniques than the belief-MDP case.

A possible limitation of this work is that the past
history of actions was not passed to the RL agent as
input for subsequent decisions, while this extension
has been proven to sometimes increase the perfor-
mance in the POMDP context (Zhu et al., 2017).
In addition, only one RL method is here evaluated.
Future work will extend this investigation to further
RL methods and various past history of information
sequences and types.
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