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ABSTRACT: The prediction of extreme traffic loading is a crucial part of bridge design and assessment. 
It provides a basis of how much action, and conversely the strength required for a bridge in its lifetime. 
However, there remain large uncertainties in the predictions of extreme loading due to the complex nature 
of the underlying traffic and its load effects. So far, efforts to model extreme load effects have been done 
primarily using standard extreme value methods, such as the generalized extreme value distribution and 
generalized Pareto distribution. However, these efforts provide techniques for fitting data from a single 
bridge only, requiring extrapolations for predictions to other bridge spans, which carries large 
uncertainties. Single fit methods also fail to take advantage of information contained in other spans that 
could be used to reduce estimation uncertainties – the ‘shrinkage’ effect. In this paper, a modern Bayesian 
hierarchical model is developed using the generalized extreme value distribution, covering intermediate 
spans where data is not available at the time of fitting. First, simple Bayesian model was explained and 
used with a simple and considered realistic traffic model. The simple model is then expanded to a 
Bayesian hierarchical model to simultaneously fit a range of spans. The final model shows accurate 
predictions for intermediate spans not used for the fitting process and provides reduced uncertainties 
compared to the single-span fits. This work provides a basis for estimating load effects across an entire 
road network at once; something not previously feasible.

1. INTRODUCTION 
Bridges form an integral part of the road network. 
They are relied on daily to carry trucks ferrying 
heavy goods all over the world. Failure of bridges 
means disconnection of communities, loss of 
assets, and worst, loss of life. Hence, it is crucial 
for bridges to be designed and assessed so it could 
withstand loads it will be subjected to throughout 
its lifetime. However, the task of predicting these 
maximum loads is often difficult due to the 
uncertain and complex nature of the factors 
creating the loads. Although most states and 
countries impose legal limits on the 
characteristics of their trucks, e.g., number of 
axles, weights, and weight distribution, 
theoretically creating an upper bound on the 
maximum traffic load a bridge will be subjected 

to, in reality, these limits can be exceeded by 
heavier than legal trucks. Of interest is the 
extreme bridge traffic loading, i.e., loadings 
caused by extremely heavy trucks causing 
extreme loading values that occurs infrequently.  

The problem of predicting extreme bridge 
traffic loading have been explored by numerous 
authors using various techniques. Most authors 
rely on statistical methods to predict values 
beyond the available data to cover bridges’ 
lifespan.  One of the most popular distributions 
used is the Generalized Extreme Value (GEV) 
distribution based on block maxima (Coles 2001), 
and has since been applied in traffic loading 
problem and expanded upon into the Cumulative 
Distribution Statistics (Caprani 2005), the GEV 
mixture model (Dai et al. 2022), applied in 
Bayesian method to predict account for growth in 
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traffic (Yu et al. 2019), among others. Another 
popular method uses the Generalized Pareto 
Distribution (Crespo-Minguillón and Casas 1997; 
Nesterova et al. 2019) based on peak-over-
threshold method. However, past studies only fit 
their model using data available for a handful of 
bridge spans, resulting in prediction only for a 
handful of bridge spans. No studies so far have 
been conducted on the prediction of bridge spans 
where data were not available during the model 
fitting. In contrast, the road network consists of 
bridges of varying spans, where data are 
unavailable for fitting and predictions were never 
made. Hence, a model that could infer extreme 
bridge traffic loading for any arbitrary bridge span 
is needed. 

In this paper, a Hierarchical Bayesian (HB) 
model for bridge traffic loading is introduced. 
First, a simple Single-Span Bayesian (SSB) model 
is developed where parameters of different bridge 
spans are independent of one another. The SSB 
model is then expanded into the Hierarchical 
Bayesian model where functional relationships 
between parameters of different spans are 
proposed, allowing simultaneous fitting and 
predictions to be made for intermediate spans. 
The accuracy of both models is then compared 
against conventional Maximum Likelihood 
Estimator (MLE), and the accuracy of prediction 
made by the HB model tested. 

2. BAYESIAN BRIDGE TRAFFIC LOADING 
MODEL 

Bayesian statistics is underpinned by the use of 
Bayes rule: 

 𝑃𝑃(𝜃𝜃|𝑥𝑥) = 𝐿𝐿(𝑥𝑥|𝜃𝜃) 𝑃𝑃(𝜃𝜃)
∫ 𝐿𝐿(𝑥𝑥|𝜃𝜃) 𝑃𝑃(𝜃𝜃)𝑑𝑑𝜃𝜃

 (1) 

where 𝑃𝑃(𝜃𝜃|𝑥𝑥) is the posterior distribution of the 
parameter θ given the observed data 𝑥𝑥  (i.e., the 
estimate of θ), ∫ 𝐿𝐿(𝜃𝜃|𝑥𝑥)𝑃𝑃(𝜃𝜃)𝑑𝑑𝜃𝜃  is the 
normalization constant such that the posterior 
distribution sums up to 1, 𝐿𝐿(𝑥𝑥|𝜃𝜃) is the likelihood 
function of the data given the parameter, and 𝑃𝑃(𝜃𝜃) 
is the prior distribution of the parameter. 

The calculation of the posterior distribution 
𝑃𝑃(𝜃𝜃|𝑥𝑥)  is difficult as the normalizing constant 

∫ 𝐿𝐿(𝑥𝑥|𝜃𝜃)𝑃𝑃(𝜃𝜃)𝑑𝑑𝜃𝜃  is often mathematically 
intractable. In this paper, the No-U-Turn Sampler 
(NUTS) algorithm was used to compute the 
posterior distribution (Hoffman and Gelman 
2014) as implemented in the python PyMC 
package (Salvatier et al. 2016).  

This paper proposes a Bayesian bridge traffic 
loading model based on the Generalized Extreme 
Value (GEV) distribution that have been used by 
authors in the past (Caprani 2005; O’Brien et al. 
2015) with the likelihood function: 

  𝐿𝐿(𝑥𝑥|𝜇𝜇,𝜎𝜎, 𝜉𝜉) = ∏ 1
𝜎𝜎

𝑁𝑁
𝑖𝑖=1 𝑡𝑡(𝑥𝑥𝑖𝑖|𝜇𝜇,𝜎𝜎, 𝜉𝜉)𝑒𝑒𝑡𝑡(𝑥𝑥𝑖𝑖|𝜇𝜇,𝜎𝜎,𝜉𝜉)  (2) 

𝑡𝑡(𝑥𝑥𝑖𝑖|𝜇𝜇,𝜎𝜎, 𝜉𝜉) = (1 + 𝜉𝜉(𝑥𝑥𝑖𝑖 − 𝜇𝜇)/𝜎𝜎)−1/𝜉𝜉   (3) 

The distribution is upper bounded when 𝜉𝜉 <
0, lower bounded when 𝜉𝜉 > 0, and support all real 
numbers from −∞ to ∞ when 𝜉𝜉 = 0. It has been 
recognized by multiple authors that bridge traffic 
loading is an upper bounded problem  (O’Brien et 
al. 2015; O’Connor et al. 2002; van der Spuy and 
Francois 2020). As such, the proposed 
Hierarchical Bayesian model’s prior distribution 
was selected such that 𝜉𝜉  is strictly negative to 
ensure the existence of the upper bound. Further, 
a reparameterization of the GEV distribution with 
𝜉𝜉 < 0  was proposed to aid in assigning 
informative priors. The mean (𝐸𝐸 ) and standard 
deviation (𝑆𝑆) of GEV are: 

 𝐸𝐸 = 𝜇𝜇 + 𝜎𝜎(Γ(1 − 𝜉𝜉) − 1)/𝜉𝜉 (4) 

 𝑆𝑆 = �𝜎𝜎2(Γ(1 − 2𝜉𝜉) − Γ(1 − 𝜉𝜉)2)/𝜉𝜉2  (5) 

where Γ(⋅)  is the Gamma Function. The upper 
bound 𝑧𝑧𝑏𝑏 of the distribution is: 

 𝑧𝑧𝑏𝑏 = 𝜇𝜇 − 𝜎𝜎/𝜉𝜉 (6) 

and the centered upper bound, 𝑧𝑧𝑏𝑏𝑏𝑏 defined as the 
upper bound of the GEV distribution that is scaled 
and translated such that the mean and standard 
deviation are zero and one respectively: 

     𝑧𝑧𝑏𝑏𝑏𝑏 = (𝑧𝑧𝑏𝑏 − 𝐸𝐸)/𝑆𝑆 = [(𝜇𝜇 − 𝜎𝜎/𝜉𝜉 ) − 𝐸𝐸]/𝑆𝑆 (7) 

The original location ( 𝜇𝜇 ) and scale ( 𝜎𝜎 ) 
parameters in terms of 𝐸𝐸  and 𝑆𝑆 (Equation 9-10) 
can then be obtained: 
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 𝑧𝑧𝑏𝑏𝑏𝑏 = Γ(1 − 𝜉𝜉)/�Γ(1 − 2𝜉𝜉) − Γ(1 − 𝜉𝜉)2 (8) 

𝜇𝜇 = 𝐸𝐸 + 𝑆𝑆 𝑧𝑧𝑏𝑏𝑏𝑏(Γ(1 − 𝜉𝜉) − 1)/Γ(1 − 𝜉𝜉)  (9) 

 𝜎𝜎 = −𝜉𝜉 𝑆𝑆 𝑧𝑧𝑏𝑏𝑏𝑏/Γ(1 − 𝜉𝜉)  (10) 

The new reparameterization allows prior 
predictive checks (Gabry et al. 2019) against the 
sample mean and standard deviation, which 
would aid in assigning prior distributions. 

Thus, the Bayesian bridge traffic loading 
model can be characterized as: 

 𝑋𝑋 ∼ 𝐺𝐺𝐸𝐸𝐺𝐺(𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿 , 𝜉𝜉𝐿𝐿)  (11) 

  𝜇𝜇𝐿𝐿 = 𝐸𝐸𝐿𝐿 + 𝑆𝑆𝐿𝐿  𝑧𝑧𝑏𝑏𝑏𝑏,𝐿𝐿 (Γ(1 − 𝜉𝜉𝐿𝐿) − 1)/Γ(1 − 𝜉𝜉𝐿𝐿) (12) 

 𝜎𝜎𝐿𝐿 = −𝜉𝜉𝐿𝐿 𝑆𝑆𝐿𝐿 𝑧𝑧𝑏𝑏𝑏𝑏,𝐿𝐿/Γ(1 − 𝜉𝜉𝐿𝐿)  (13) 

   𝑧𝑧𝑏𝑏𝑏𝑏,𝐿𝐿 = Γ(1 − 𝜉𝜉𝐿𝐿)/�Γ(1 − 2𝜉𝜉𝐿𝐿) − Γ(1 − 𝜉𝜉𝐿𝐿)2  (14) 

where 𝜇𝜇𝐿𝐿,𝜎𝜎𝐿𝐿,𝜉𝜉𝐿𝐿 are the GEV parameter for bridge 
of span 𝐿𝐿. Note that the standard deviation  𝑆𝑆𝐿𝐿 are 
lower bounded to 0.001 to ensure positive value.  

First, a basic Bayesian model, the Single-
Span Bayesian (SSB) model is developed. In the 
SSB model, the parameter 𝜇𝜇𝐿𝐿,𝜎𝜎𝐿𝐿 , 𝜉𝜉𝐿𝐿  are 
independent for each bridge span 𝐿𝐿 . The prior 
distributions for the SSB model are: 

 𝐸𝐸𝐿𝐿 ∼ Normal�𝜇𝜇𝐸𝐸𝐿𝐿 ,𝜎𝜎𝐸𝐸𝐿𝐿
2 �  (15) 

 𝑆𝑆𝐿𝐿 ∼ Normal�𝜇𝜇𝑆𝑆𝐿𝐿 ,𝜎𝜎𝑆𝑆𝐿𝐿
2 �  (16) 

 𝜉𝜉𝐿𝐿 ∼ Negative Lognormal�𝜇𝜇𝜉𝜉𝐿𝐿 ,𝜎𝜎𝜉𝜉𝐿𝐿
2 �  (17) 

where the Negative Lognormal (NLN) 
distribution is simply the Lognormal distribution 
multiplied by negative one. The use of NLN prior 
restricts the 𝜉𝜉𝐿𝐿  parameter to negative values, 
inline with the upper boundedness of real traffic. 

 The SSB model is expanded into the 
Hierarchical Bayesian (HB) model by introducing 
a hierarchical structural in the mean and standard 
deviation. Instead of separate 𝐸𝐸𝐿𝐿 and 𝑆𝑆𝐿𝐿 for each 
span, in the HB model the mean and standard 
deviation are a function of 𝐿𝐿 . The following 
functions are proposed: 

 𝐸𝐸𝐿𝐿 = 𝐸𝐸(𝐿𝐿) = 𝛽𝛽−1𝐿𝐿−1 + 𝛽𝛽0 + 𝛽𝛽1𝐿𝐿  (18) 
 𝑆𝑆𝐿𝐿 = 𝑆𝑆(𝐿𝐿) = 𝛼𝛼−1𝐿𝐿−1 + 𝛼𝛼0 + 𝛼𝛼1𝐿𝐿  (19) 
 𝜉𝜉𝐿𝐿 = 𝜉𝜉 = − exp(𝛾𝛾0)  (20) 

with the prior distributions: 

 𝛽𝛽𝑖𝑖 ∼ Normal�𝜇𝜇𝛽𝛽𝑖𝑖 ,𝜎𝜎𝛽𝛽𝑖𝑖
2 �  (21) 

 𝛼𝛼𝑖𝑖 ∼ Normal�𝜇𝜇𝛼𝛼𝑖𝑖 ,𝜎𝜎𝛼𝛼𝑖𝑖
2 �  (22) 

 𝛾𝛾0 ∼ Normal�𝜇𝜇𝛾𝛾0 ,𝜎𝜎𝛾𝛾0
2 �  (23) 

Note the 𝜉𝜉  parameter in the HB model is 
constant across all spans and is strictly negative in 
line with the upper bounded property of traffic 
loading. The use of functions in terms of 𝐿𝐿 for 𝐸𝐸 
and 𝑆𝑆 introduces a hierarchy in the model which 
allows interpolation for any 𝐿𝐿  outside of those 
used for fitting, and allows fitting of multiple 
bridge spans simultaneously. Thus, the proposed 
HB model can be used across a road network to 
simultaneously fit bridges with available traffic 
loading data, and infer traffic loading for the 
remainder of bridges of arbitrary spans without 
needing to collect data from those bridges. 

3. APPLICATION TO SIMULATED 
TRAFFIC DATA  

3.1. Traffic simulation description 
A traffic simulation was performed with the aim 
of assessing the accuracy of the proposed model 
and the conventional MLE method against known 
true parameter values. The simulation generates 5 
axle trucks (Table 2), with its axle weight and 
spacing distributed as a multi-modal beta 
distribution, with parameters in Table 1 and 
probability density function: 

 𝑓𝑓(𝑥𝑥) = ∑ 𝑝𝑝𝑖𝑖
𝑥𝑥𝛼𝛼𝑖𝑖−1(1−𝑥𝑥)𝛽𝛽𝑖𝑖−1

B(αi,βi)
 4

𝑖𝑖=1   (24) 
where 𝑝𝑝𝑖𝑖  is the weight of mode 𝑖𝑖 , 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑖𝑖  are 
the shape parameters of mode 𝑖𝑖 , and B(⋅) is the 
Beta Function. The distribution was then scaled 
such that the minimum and maximum is as in 
Table 2. Note that axle weight and spacings were 
generated independently.  The multi-modality of 
the distribution mimics real trucks characteristics 
(Grave 2002), and the use of beta distribution 
ensures an upper and lower bound. The true upper 
Table 1: Parameters of Multimodal Beta distribution. 

Mode (𝑖𝑖) 𝑝𝑝𝑖𝑖 𝛼𝛼𝑖𝑖 𝛽𝛽𝑖𝑖 
1 0.65 5 15 
2 0.25 20 15 
3 0.06 5 5 
4 0.04 10 3 
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bound of the load effect is then simply the truck 
with the heaviest axle weights and shortest axle 
spacings. Each truck was then individually run 
over a single lane simply supported bridge. The 
maximum bending moment at midspan (𝐿𝐿𝐸𝐸𝑀𝑀) and 
shear at both supports (𝐿𝐿𝐸𝐸𝑉𝑉) were calculated, and 
the monthly maximum for the bridge recorded. 
Ten simply supported bridges of span 10, 15, 20, 
25, 27, 30, 35, 40, 45, and 50 m were simulated 
for a period of 3 years, consisting of 10 economic 
months each with 25 economic days (O’Brien et 
al. 2021). A random number of trucks were 
generated daily, with an average daily traffic of 
10 000 trucks and a standard deviation of 50 
trucks.  

3.2. Prior selection 
 A prior predictive check (Gabry et al. 2019) 
(Figure 1) was performed to check the suitability 
of the proposed 𝐸𝐸(𝐿𝐿) and 𝑆𝑆(𝐿𝐿) functions for the 
HB model (Equation 18-19). The red lines were 
generated according to the priors in Table 3 and 
the 𝐸𝐸(𝐿𝐿)  and 𝑆𝑆(𝐿𝐿)  functions. Note that the 
observed data were not used directly to obtain the 
parameters in Table 3, rather trial and error was 
performed until the observed mean and standard 
deviation are covered by the prior predictive (red 
line). For both 𝐿𝐿𝐸𝐸𝑀𝑀 and 𝐿𝐿𝐸𝐸𝑉𝑉, the proposed priors 
and functions adequately covered the sample 
mean and standard deviation of the sampled 
monthly maxima.  

3.3. Results 
The proposed models were fitted to both 𝐿𝐿𝐸𝐸𝑉𝑉 and 
𝐿𝐿𝐸𝐸𝑀𝑀  data. However, for conciseness, only 
parameter estimates from 𝐿𝐿𝐸𝐸𝑉𝑉  and parameter 
predictions from 𝐿𝐿𝐸𝐸𝑀𝑀 will be discussed. 
 

Table 2: 5 axle trucks used in simulation. 
 

Axle Weight (kN) Axle Spacing (m) 
Axle Min Max Axle Min Max 
1 68.4 102.6 1-2 0.77 1.43 
2 108.0 162.0 2-3 3.50 6.50 
3, 4, 5 46.8 70.2 3-4-5 2.10 3.90 

 

 
Figure 1:Prior predictive checks of HB model. 

 
Table 3: Prior of HB model. 

Maximum Shear at Supports 
 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃  𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 
𝛽𝛽−1 -1600 160 𝛼𝛼−1 0.38 7.5 
𝛽𝛽0 510 5.1 𝛼𝛼0 1.90 0.75 
𝛽𝛽1 0.15 0.025 𝛼𝛼1 0.007 0.014 
𝛾𝛾0 -3.0 0.45  

Maximum Moment at Midspan 
 𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃  𝜇𝜇𝜃𝜃 𝜎𝜎𝜃𝜃 
𝛽𝛽−1 1300 150 𝛼𝛼−1 13.1 65.0 
𝛽𝛽0 -725 72.5 𝛼𝛼0 -2.25 6.5 
𝛽𝛽1 130 13.0 𝛼𝛼1 0.60 0.15 
𝛾𝛾0 -3.0 0.45  
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3.3.1. Estimated parameters of maximum shear 
at supports 

Figure 2 shows the estimated GEV parameter 
posterior distribution of 𝐿𝐿𝐸𝐸𝑉𝑉 for a 35 m bridge by 
the HB and SSB model, with the MLE estimate in 
red vertical line. Both Bayesian models provided 
the full parameter distribution, an advantage over 
the conventional MLE method. Moreover, it can 
be seen that the use of data from multiple bridge 
spans simultaneously in the HB model creates 
lower uncertainties around the parameter 
estimates compared to the SSB model. This 
reduced uncertainty – or shrinkage, is the result of 
pooling of data into groups (i.e., bridge spans) in 
the Hierarchical model (McElreath 2020). 

Figure 3 illustrates the posterior distributions 
and point estimates across 3 other spans. For 
brevity, the marginal distribution in Figure 2 is 
represented by the forest plot in Figure 3. The dot 
represents the mean of the estimate, the thick line 
is the interquartile range, and the thin line is the 
95% highest density interval (HDI). Across all 
spans, estimates provided by HB, SSB and MLE 
are close to each other, often with overlapping 
HDI and point estimate, suggesting good 
agreement across all models. The true upper 
bounds were captured by both HB and SSB 
models, indicating good accuracy of the proposed 
Bayesian model. Further, the shrinkage effect 
provides lower estimate uncertainties for the HB 
model compared to the SSB model across all 

spans and parameters, illustrating the ability of the 
HB model to use more information across 
multiple spans to reduce uncertainty compared to 
the SSB model. 

Additionally, note from Figure 3 the 𝜉𝜉 
parameter estimated by MLE is above zero for 
span 27 and 45 m, suggesting an infinite upper 
bound despite the deliberate upper boundedness 
set in the traffic simulation. In contrast, the 
proposed Bayesian models do not suffer from this 
problem as the prior was set to cover strictly 
negative values. As real traffic has been shown to 
be an upper bounded problem (O’Brien et al. 
2015; O’Connor et al. 2002; van der Spuy and 
Francois 2020), the use of MLE could provide a 
misleading inference as it could imply an 
unbounded maximum load effect despite the 

  

  

 
 

Figure 3:Estimated GEV parameters and upper 
bound. The dot is the mean of estimate, the thick line 
is the interquartile range (Q1 – Q3), and the thin line 
is the 95% highest density interval. The upper bound 
estimate is infinity for MLE when 𝜉𝜉 ≥ 0. 

 

Figure 2: Marginal posterior density of GEV 
parameters of maximum shear at supports for 35 m 
simply supported bridge. 
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upper bound that must exist in the physical 
process that is real traffic. 

 Furthermore, as the maximum load effect 
between different spans were produced by similar 
traffic, a degree of correlation in the maximum 
load effect (Bocchini and Frangopol 2011), and 
hence the GEV parameters should exist between 
different bridge spans. Table 4 shows the 
correlation coefficient of the 𝜇𝜇  and 𝜎𝜎parameter 

posterior densities as estimated by HB model 
(lower triangular) and SSB model (upper 
triangular) across different spans. Correlations 
between different spans are correctly picked up by 
the HB model as multiple bridge spans were fitted 
simultaneously. Of note is the decreasing 
correlation as the difference in span increases. For 
example, a bridge of span 45 m has a strong 
correlation of 0.737 and 0.892 in the 𝜇𝜇  and 𝜎𝜎 
parameter with another bridge of span 35 m but 
shows almost zero correlation with a bridge of 
span 15 m. In contrast, as the SSB model 
estimated each bridge in isolation, it is unable to 
detect this relationship between bridges, and 
estimated close to zero correlation across all 
parameters of all spans. 

3.3.2. Prediction of intermediate spans  
To examine the predictive capability of the HB 
model, the bridge spans were grouped into two: a 
fitting group and an intermediate spans group 
(Table 5). The HB model was fitted on the fitting 
group, and predictions made on the intermediate 

Table 4:  Correlation coefficient in estimated 𝜇𝜇 and 𝜎𝜎 
parameters between different bridge spans. The lower 
triangular is correlation from HB model, and the 
upper triangular is correlation from SSB model. 

 

Correlation coeff. of 𝝁𝝁 posterior distribution 
Span (m) 15.0 27.0 35.0 45.0 
15.0 - -0.015 -0.038 -0.018 
27.0 0.554 - -0.002 0.012 
35.0 0.264 0.864 - -0.03 
45.0 -0.090 0.310 0.737 - 
 

Correlation coeff. of 𝝈𝝈 posterior distribution 
Span (m) 15.0 27.0 35.0 45.0 
15.0 - 0.02 -0.032 -0.002 
27.0 0.651 - -0.013 0.004 
35.0 0.277 0.868 - 0.005 
45.0 -0.053 0.557 0.892 - 
     

Table 5: Fitting and intermediate span groups. 
Group Fitting Intermediate 
Span (m) 10,20,25,30,40,50 27,35,45 
 

 
Figure 4: Predicted GEV parameters by the HB model and the estimated parameter by SSB and MLE. Light blue 
area indicates 95% highest density interval prediction made by HB model. Note that the spans fitted for SSB and 
MLE were never used for fitting by the HB model. 
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span group. The results of the prediction by the 
HB model are then compared against GEV 
parameters estimated by SSB and MLE models 
fitted on the intermediate spans. 

 Figure 4 shows the GEV parameters 
predicted by the HB model across intermediate 
spans between 10 m and 50 m. The results of the 
HB prediction show good agreement with the SSB 
and MLE estimates fitted on the intermediate span 
group, with the 95% HDI and MLE point 
estimates often overlapping, despite the fact that 
the HB model never saw the intermediate spans 
during the fitting process. 

Figure 5  shows the predicted maximum load 
effect for the intermediate spans by the HB model, 
and the observed sample on Gumbel probability 
paper. The result shows good agreement with the 
observed data. Moreover, the true upper bound 
were captured by the predicted upper bound 95% 
HDI (light blue region) across all 3 intermediate 
spans, showing predictions made by the HB 
model is accurate.  

4. CONCLUSION 
In this paper, a Hierarchical Bayesian model for 
bridge traffic loading was developed by 

introducing a functional relationship between the 
mean and standard deviation of different bridge 
spans. The No-U-Turn Sampler was used to 
sample the posterior distribution of the model. 
Information from past studies indicating the upper 
bounded nature of traffic loading was used to limit 
the shape parameter to strictly negative values, 
creating an engineering informed prior, and a 
reparameterization of the Generalized Extreme 
Value distribution is proposed to allow prior 
predictive checks to be performed against sample 
mean and standard deviation, allowing a better 
informed priors compared to non-informative 
priors used in past studies. 

 The Hierarchical Bayesian model with the 
informed priors is shown to be accurate when 
tested against 3 years simulated traffic across 10 
different spans, ranging from 10 m to 50 m. The 
model accurately estimated and predicted the true 
upper bound of the traffic load for any arbitrary 
bridge spans. The results are also in good 
agreement with conventional methods while 
offering the following advantages: (1) Bayesian 
estimation offers full posterior distribution as 
opposed to point estimate from Maximum 
Likelihood Estimation, (2) simultaneous fitting of 

 
Figure 5: Gumbel probability paper plot of predicted intermediate spans by the HB model. Light blue area 
indicates 95% highest density interval of predicted upper bound. 
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multiple bridge spans results in lower 
uncertainties for parameter estimate due to 
shrinkage, (3) correlation between parameters 
from different spans are obtained in the posterior 
distributions, and (4) allows accurate prediction of 
intermediate bridge spans not used during the 
fitting process.  

Given the above advantages, the Hierarchical 
Bayesian model provides a framework for further 
studies on extreme bridge traffic loading across a 
road network, where weigh-in-motion data from 
multiple bridges across the network can be 
combined, parameters fit simultaneously, and 
predictions made on bridges where weigh-in-
motion data are not available. This provides a 
basis for estimating load effects across an entire 
road network at once; something not previously 
feasible. 
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