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ABSTRACT: In efforts to manage the risk of unexpected failures caused by stochastic loads, e.g., 

earthquakes and wind loads, the first-passage probability often needs to be evaluated. With the growing 

complexity of modern engineering systems, estimating the first-passage probability with low 

computational costs in the structural design process is essential. This paper presents a new active 

learning-based framework to incorporate constraints on the first-passage probability into reliability-based 

design optimization (RBDO) of stochastic dynamical systems. An alternative mixture-distribution-based 

formulation of the first-passage probability is utilized to handle the high-dimensional sequences of 

stochastic excitations during the optimization. The design parameter sensitivity of the first-passage 

probability is introduced to facilitate the use of a gradient-based optimizer in the RBDO iterations. These 

procedures employ heteroscedastic Gaussian process-based surrogates and active learning scheme to 

reduce the high computational costs in the first-passage probability estimation. The numerical example 

dealing with the optimal design of an eight-story building system subjected to stochastic wind excitations 

demonstrates the accuracy and efficiency of the proposed method. 

1. INTRODUCTION  

Finding the optimal design of a structural system 

concerning safety, cost or performance is one of 

the most essential tasks in engineering practice. 

The optimal design should achieve the primary 

design objectives of managing reliability 

operation even under stochastic loads caused by 

natural and human-made hazards, e.g., wind loads 

and earthquakes. Therefore, appropriate strategies 

are required for uncertainty quantification and 

optimization in the structural design process. 

To this end, reliability-based design 

optimization (RBDO) has received significant 

attention in recent years (Dubourg et al. 2011; 

Kim 2022). RBDO aims to achieve optimal 

structural designs satisfying the probabilistic 

constraints on the structural performance 

indicators. In particular, when the structural 

systems are subjected to stochastic excitations, the 

first-passage probability, i.e., the probability that 

the maximum structural response exceeds a 

prescribed threshold over a given time interval, 

has been widely adopted as a critical reliability 

measure (Yi and Song 2021). Thus, structural 

design optimization under constraints on first-

passage probability needs to be investigated to 

assure the target reliability of stochastic 

dynamical systems in the design process. 

However, obtaining a reliable optimal design 

is challenging since RBDO needs to evaluate the 

system’s performance repeatedly. Furthermore, 

the evaluation of the first-passage probability 
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given design parameters usually should handle a 

large number of random variables. Several 

methods such as simulated-based approaches 

(Dubourg et al. 2011; Suksuwan and Spence 

2018), surrogate-based methods (Zhang et al. 

2017; Kim and Song 2021), and system-

reliability-based scheme (Chun et al. 2019), have 

been proposed to alleviate the computational 

burden of RBDO. Their applications to practical 

problems, however, still require a substantial 

number of model evaluations. Therefore, 

minimizing the number of system performance 

evaluations is an essential task with the growing 

complexity of today’s structural systems. 

To overcome the technical challenges, this 

study proposes a new active learning-based 

method for RBDO under constraints on the first-

passage probability. An alternative mixture-

distribution-based formulation of the first-passage 

probability is utilized to handle the high-

dimensional sequences of stochastic excitations 

during the optimization. A sampling-based design 

parameter sensitivity of the first-passage 

probability is introduced to facilitate the use of a 

gradient-based optimizer in the RBDO iterations. 

In addition, the heteroscedastic Gaussian process 

(HGP) surrogate model and its active learning 

process are employed to reduce the high 

computational costs in the first-passage 

probability estimation. A numerical design 

example of an eight-story building structure 

subjected to stochastic wind excitations 

demonstrates the performance and merits of the 

proposed method. 

The paper first provides a brief overview of 

the general RBDO problem subjected to 

stochastic loads. Section 3 provides the detailed 

procedures of the proposed active learning-based 

RBDO approach. Section 4 presents the numerical 

investigations of the proposed method through an 

eight-story building system. Lastly, the paper 

concludes with a summary and discussion. 

2. PROBLEM DEFINITION 

The conventional RBDO can be formulated as 

follows: 

 𝜽∗ = argmin
𝜽 ∈ 𝛀𝜽

 𝑓(𝜽) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑃𝑓𝑖
(𝜽) ≤ 𝑃𝑓𝑖

𝑡 ,    𝑖 = 1, … , 𝑛𝑐 (1) 

where 𝜽 denotes the vector of design parameters 

used to define the structural system, which often 

includes the mean vector of the random variables; 

𝑓(𝜽) denotes the cost function representing the 

objective of optimizing the structural system; 

𝑃𝑓𝑖
(𝜽) and 𝑃𝑓𝑖

𝑡  respectively denote the probability 

of i-th failure mode with given design parameters 

and the corresponding threshold value of the 

failure probability associated with the target 

reliability of the structural system, 𝑖 = 1, … , 𝑛𝑐 ; 

and 𝛀𝜽 is an admissible set of 𝜽. 

In general, the assessment of the performance 

constraints in Eq. (1) requires the evaluation of the 

following multidimensional integral: 

  𝑃𝑓(𝜽) = ∫ ∫ 𝑓𝑿|𝜽(𝒙; 𝜽)𝑓𝒁(𝒛)
 

𝑔(𝑿,𝒁)≤0
𝑑𝒛 𝑑𝒙 (2) 

where 𝑓𝑿|𝜽(𝒙; 𝜽)  and 𝑓𝒁(𝒛)  are the probability 

density functions (PDFs) of random vectors 𝑿 

and 𝒁, respectively; 𝑿 ∈ ℝ𝑛𝑥  denotes the vector 

of basic random variables including time-

invariant random parameters associated with the 

structural systems and hazard model, e.g., 

damping coefficients, story stiffness, and basic 

wind speed; 𝒁 ∈ ℝ𝑛𝑧  denotes the vector of 

environmental random variables often used to 

represent the external stochastic loads in time or 

frequency domain, e.g., the sequence of random 

phase angles in a random process model. Note that 

the environmental random vector 𝒁 is usually not 

considered as design parameters. Meanwhile, the 

design parameters may include the distribution 

parameters of the basic random variables in 𝑿. 

The limit-state function for the structural 

performance of interest, 𝑔(⋅)  can be written as: 

𝑔(𝑿, 𝒁) = 𝑢0 − 𝑚𝑎𝑥
0<𝑡≤𝜏

|𝑢(𝑿, 𝒁, 𝑡)| (3) 

where 𝑢(⋅) is the structural response time history, 

which is affected by the two vectors of random 

variables 𝑿 and 𝒁; 𝑢0 is the prescribed threshold 

on the structural response; |⋅|  denotes absolute 

value expression; 𝜏 is a time duration considered 
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for the evaluation. Note that the random vector 𝒁 

in Eq. (2) and (3) usually incorporates the high-

dimensional sequence of stochastic excitations 

and eventually makes the performance assessment 

a high-dimensional stochastic problem. 

3. PROPOSED ACTIVE LEARNING-BASED 

RBDO METHOD 

3.1. Mixture-distribution-based formulation of 

first-passage probability 

The estimation of the first-passage probability in 

Eq. (2) requires a high-dimensional integral at 

each design optimization iteration, which may 

entail prohibitive costs of computational 

simulations. Thus, this study adopts an alternative 

formulation of the first-passage probability 

recently proposed by Kim et al. (2023). The 

probability of failure in Eq. (2), without loss of 

generality, can be expressed as 

𝑃𝑓(𝜽) = ∫ 𝑃𝑓|𝑿(𝒙)𝑓𝑿|𝜽(𝒙; 𝜽)
 

𝒙∈ℝ𝑛𝑥
𝑑𝒙 (4) 

where 𝑃𝑓|𝑿(𝒙)  is the conditional first-passage 

probability given basic random variables, where 

the peak response is typically approximated as a 

lognormal random variable in the performance-

based engineering framework (Ellingwood 2004; 

Kim et al. 2021). Thus, the first-passage 

probability in Eq. (2) can be estimated using 

Monte Carlo (MC) integration as 

𝑃̂𝑓(𝜽) ≅ 1 −
1

𝑛𝑘
∑ Φ (

ln 𝑢0−𝜆(𝒙𝑘)

𝜁(𝒙𝑘)
)

𝑛𝑘
𝑘=1  (5) 

where 𝒙𝑘 is k-th random sample generated from 

𝑓𝑿|𝜽(𝒙; 𝜽), 𝑘 = 1, … , 𝑛𝑘 ; Φ(⋅) is the cumulative 

distribution function (CDF) of the standard 

Gaussian distribution; 𝜆(⋅)  and 𝜁(⋅)  are 

respectively the mean and standard deviation of 

the natural logarithm of the peak response 

ℳ(𝒙, 𝒛) = 𝑚𝑎𝑥
0<𝑡≤𝜏

|𝑢(𝑿, 𝒁, 𝑡)|.  Figure 1 illustrates 

the alternative formulation of first-passage 

probability. 

 

 
Figure 1: Illustration of alternative formulation of 

first-passage probability given design parameters 

3.2. Design parameter sensitivity of the first-

passage probability 

In RBDO, the design parameter sensitivities of 

probabilistic constraints are required to use an 

efficient gradient-based optimization scheme. To 

derive the sensitivity of the first-passage 

probability with respect to the design parameters, 

which is often defined as distribution parameters, 

e.g., mean and standard deviation, the score 

function approach is adopted in this study (Lee et 

al. 2011). 

Since the alternative formulation of the first-

passage probability in Eq. (5) is expressed as a 

function of only time-invariant random vector 𝑿, 

and not the high-dimensional random vector 𝒁, 

the design parameter sensitivity of the first-

passage probability for i-th design parameter can 

be approximated by MC samples as 

𝜕𝑃̂𝑓(𝜽)

𝜕𝜃𝑖
=

1

𝑛𝑘
∑ [1 − Φ (

ln 𝑢0−𝜆(𝒙𝑘)

𝜁(𝒙𝑘)
)] 𝑠𝜃𝑖

(𝒙𝑘; 𝜽)𝑛𝑘
𝑘=1   

(6) 

where 𝑠𝜃𝑖
(𝒙𝑘; 𝜽)  is the score function for 𝜽, 

whose analytical calculation can be obtained by 

the joint PDF of the random vector 𝑿, defined as 

𝑠𝜃𝑖
(𝒙; 𝜽) =

𝜕 ln 𝑓𝑿|𝜽(𝒙;𝜽)

𝜕𝜃𝑖
 (7) 

It should be noted that the score function in Eq. 

(7) can be computed as a post-processing of the 

samples generated for the first-passage 

probability estimation, and thus design parameter 
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sensitivity in Eq. (6) can be evaluated without 

additional performance evaluations. 

3.3. Active learning of heteroscedastic Gaussian 

process-based surrogates in RBDO 

The proposed formulation of the first-passage 

probability in Eq. (5) and its corresponding design 

parameter sensitivity in Eq. (6) are determined by 

the distribution parameter functions 𝜆(⋅)  and 

𝜁(⋅) . Thus, accurate estimations of these 

parameter functions are essential for valid 

predictions of the first-passage probability and 

optimization. The recent study by the authors 

(Kim et al. 2023) demonstrated that the Gaussian 

process-based surrogates with heteroscedastic 

noises can efficiently predict these distribution 

parameters capturing the variability of stochastic 

excitation sequence whose influence varies over 

the input space 𝒙. The predictions of distribution 

parameters by HGP models, i.e., 𝜆̂𝐻𝐺𝑃(⋅)  and 

 𝜁𝐻𝐺𝑃
 (⋅)  are derived as (Lázaro-Gredilla and 

Titsias 2011) 

𝜆̂𝐻𝐺𝑃(𝒙) = 𝒌𝑦
T(𝑲𝒚 + 𝑹)−1 ln 𝓜𝓓  (8) 

𝜁𝐻𝐺𝑃
 (𝒙) = √exp(𝜂 + 𝜁2/2) + 𝛼2 (9) 

where 𝑲𝒚  and 𝒌𝒚
  are covariance matrix and 

vector of the covariance function, respectively; 

𝓜𝓓 is the maximum response observations; 𝑹 is 

a diagonal matrix with elements 𝑅𝑖,𝑖 = exp(𝑚𝑖 −

𝑉𝑖,𝑖/2),   𝑖 = 1, … , 𝑛; 𝑚𝑖  and 𝑉𝑖,𝑖  are respectively 

ith elements of the parametric models; 𝜂, 𝜁 and 𝛼 

are a set of parameters described as kernel 

matrices of latent functions for signal and noises 

(See Kim et al. 2023 for details). Therefore, the 

HGP-based predictions of distribution parameters, 

i.e., 𝜆̂𝐻𝐺𝑃(𝒙) and , 𝜁𝐻𝐺𝑃
 (𝒙), in Eq. (8) and Eq. (9), 

facilitate efficient calculations of the first-passage 

probability and sensitivity in RBDO. 

To increase the computational efficiency for 

the RBDO of complex engineering systems, the 

active learning scheme is employed (Kim and 

Song 2020; Wang and Broccardo 2020). The 

following learning function is introduced to 

adaptively train the surrogates: 

𝐿𝛼(𝒙) = Φ (
ln 𝑢0−𝜆𝐻𝐺𝑃(𝒙)

𝜁̂𝐻𝐺𝑃(𝒙)
) (10) 

The HGP surrogates are refined by adaptively 

selecting simulation points that are identified by 

minimizing the learning function in Eq. (10). This 

refinement process is repeated 𝑛𝑙  times at each 

optimization iteration. 

Thus, the proposed method identifies the 

reliable optimal solutions by combining the 

adaptive training process of HGP surrogates with 

the design optimization procedure guided by the 

design parameter sensitivities. Figure 2 shows the 

flowchart of the proposed active learning-based 

RBDO method. 

 

 
Figure 2: Flowchart of the proposed active learning-

based RBDO method 
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4. NUMERICAL EXAMPLE: VISCOUS 

DAMPER DESIGN OF AN EIGHT-STORY 

BUILDING STRUCTURE AGAINST 

STOCHASTIC WIND EXCITATIONS 

4.1. Structure and wind hazard model 

To demonstrate the efficiency and accuracy of the 

proposed method, we investigate a design of 

viscous dampers of an eight-story building 

structure showing bilinear behavior under 

stochastic wind loads (Figure 3). The building 

structure is subjected to the dynamic forces 

caused by fluctuating winds. The properties of 

structural systems are provided in Table 1 (FEMA 

2012). 

 

 
Figure 3: Structural archetype 

 
Table 1: Structural parameters of an eight-story 

building system. 

Parameter Value 

Height (ft) 106 

Width (ft) 120 

Weight (kip) 12,276 

Story elastic stiffness 

(kip/in) 

6,000 

Hardening stiffness ratios 0.05 

Modal damping ratios 0.02 

 

The stochastic wind hazard model 

(Suksuwan and Spence 2018) is used to 

characterize the stochasticity of winds based on 

the quasi-steady model. The following power 

spectral density (PSD) model (Kaimal et al. 1972) 

is employed to generate uncertain components of 

the wind speed at height ℎ𝑖: 

𝑆(𝜔) = 𝑣𝑓
2 𝑎𝑠ℎ𝑖

𝑣̅(ℎ𝑖)

1

(1+𝑏𝑠𝜔ℎ𝑖/𝑣̅(ℎ𝑖))
5/3 (11) 

where 𝜔  is turbulence frequency; 𝑎𝑠  and 𝑏𝑠  are 

the spectrum constants; 𝑣̅ is the mean wind speed; 

and 𝑣𝑓  is the friction velocity of the wind flow 

(ASCE 2017). The Davenport coherence model 

(Davenport 1967) is used to introduce the 

correlation between the uncertain components of 

the wind speeds at different heights. 

Based on the wind hazard model, the random 

histories of fluctuating winds are simulated by the 

spectral representation method (Deodatis 1996). 

Figure 4 presents the comparison between the 

target and simulated normalized PSD of wind 

velocity. 

 
Figure 4: Target and simulated normalized PSD of 

the wind velocity 

4.2. Random variables and performance 

objective 

Suppose linear viscous dampers are considered 

for the purpose of protection (or retrofitting) of the 

structure against stochastic wind loads. The ten 

parameters associated with the structural systems 

(capacity of dampers) and wind hazard model 

(basic wind speed and air density) are considered 

as basic random variables 𝑿. The mean values of 

the damper’s capacity are considered as design 

parameters (𝜃1, … , 𝜃8)  in the problem. The 

environmental random vector 𝒁 includes 16,384 

random sequences of standard Gaussian random 

variables. The target first-passage probability is 

set as 𝑃𝑓
𝑡 = 6.5 × 10−3. 

The objective of the design is to minimize the 

damper costs, which are assumed to be 

proportional to their mean capacity, while 

satisfying the constraint on the first-passage 

probability (Zhang et al. 2017). The response of 
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interest is the eighth-floor (top) relative drift, 

whose threshold value is 𝑢0 = 0.11 (𝑖𝑛), and the 

time duration 𝜏 is set to 10 minutes. 

4.3. Results 

After the proposed method is initiated with 150 

initial observations by dynamic simulations, five 

points are adaptively incorporated into the 

surrogate refinement process at each optimization 

step. Figure 5 and Figure 6 confirm the cost and 

design parameters are successfully converged to 

the final values through a small number of design 

iterations. 

 

 
Figure 5: Convergence history of the cost function 
for the eight-story building example 

 

 
Figure 6: Convergence histories of design 

parameters for the eight-story building example 

 

Figure 7 shows the convergence history of 

the first-passage probability estimated by the 

HGP surrogate model during optimization. The 

results confirm that the proposed method enables 

convergence toward the optimal designs 

satisfying first-passage probability constraints 

through only 440(=150+58*5) structural 

performance evaluations. 

 

 
Figure 7: History of the first-passage probability 

estimated by surrogates for the eight-story building 
example 

5. CONCLUSIONS 

This paper proposed a new active learning-based 

RBDO method to identify the reliable optimal 

designs of structural systems subjected to 

stochastic loads. An alternative first-passage 

probability formulation and its corresponding 

design parameter sensitivity were introduced to 

facilitate an efficient gradient-based optimizer in 

RBDO. The HGP surrogates and its adaptive 

training process were proposed to enhance 

computational efficiency. The application to an 

eight-story building system demonstrated the 

superb performance and merits of the proposed 

approach. 

6. ACKNOWLEDGMENTS 

This research was supported by the National 

Research Foundation of Korea (NRF) Grant 

funded by the Korea government (NRF-

2021R1A2C2003553). The authors were 

supported by the Institute of Construction and 

Environmental Engineering at Seoul National 

University. These supports are gratefully 

acknowledged 

7. REFERENCES 
ASCE. (2017). Minimum Design Loads and 

Associated Criteria for Buildings and Other 
Structures. ASCE/SEI 7-16, American Society 

of Civil Engineers. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 7 

Chun, J., Song, J., and Paulino, G. H. (2019). System-
reliability-based design and topology 

optimization of structures under constraints on 

first-passage probability. Structural Safety, 76, 

81-94. 
Davenport, A. G. (1967). The dependence of wind 

loads on meteorological parameters. In Proc. 

Int. Res. Seminar, Wind Effects on Buildings 
and Structures, Ottawa, Univ. of Toronto Press, 

19-82. 

Deodatis, G. (1996). Simulation of ergodic 
multivariate stochastic processes. Journal of 

Engineering Mechanics, 122(8), 778-787. 

Dubourg, V., Sudret, B., and Bourinet, J. M. (2011). 

Reliability-based design optimization using 
kriging surrogates and subset simulation. 

Structural and Multidisciplinary Optimization, 

44(5), 673-690. 
Ellingwood, B. R., Rosowsky, D. V., Li, Y., and Kim, 

J. H. (2004). Fragility assessment of light-frame 

wood construction subjected to wind and 
earthquake hazards. Journal of Structural 

Engineering, 130(12), 1921-1930. 

FEMA, P. (2018) Assessing Seismic Performance of 

Buildings with Configuration Irregularities, 
Calibrating Current Standards and Practices. 

Kaimal, J. C., Wyngaard, J. C. J., Izumi, Y., and Coté, 

O. R. (1972). Spectral characteristics of 

surface‐ layer turbulence models. Quarterly 

Journal of the Royal Meteorological Society, 

98(417), 563-589. 
Kim, J., and Song, J. (2020). Probability-Adaptive 

Kriging in n-Ball (PAK-Bn) for reliability 

analysis. Structural Safety, 85, 101924. 
Kim, J., and Song, J. (2021). Quantile surrogates and 

sensitivity by adaptive Gaussian process for 

efficient reliability-based design optimization. 
Mechanical Systems and Signal Processing, 

161, 107962. 

Kim, J. (2022). Active learning methods and 

applications to reliability analysis and 
optimization of complex structural systems 

[Doctoral dissertation]. SNU Open Repository. 

https://hdl.handle.net/10371/187568 
Kim, J., S. Yi, and Song, J. (2023). Estimation of first-

passage probability under stochastic wind 

excitations by active-learning-based 

heteroscedastic Gaussian process. Structural 
Safety, 100, 102268. 

Kim, T., Kwon, O. S., and Song, J. (2021). 

Clustering‐ based adaptive ground motion 

selection algorithm for efficient estimation of 

structural fragilities. Earthquake Engineering & 
Structural Dynamics, 50(6), 1755-1776. 

Lázaro-Gredilla, M., and Titsias, M. K. (2011). 

Variational heteroscedastic Gaussian process 
regression. In: ICML, 841-848. 

Lee, I., Choi, K. K., and Zhao, L. (2011). Sampling-

based RBDO using the stochastic sensitivity 
analysis and dynamic Kriging method. 

Structural and Multidisciplinary Optimization, 

44(3), 299-317. 

Suksuwan, S., and Spence, S. M. (2018). Efficient 
approach to system-level reliability-based 

design optimization of large-scale uncertain and 

dynamic wind-excited systems. ASCE-ASME 
Journal of Risk and Uncertainty in Engineering 

Systems, Part A: Civil Engineering, 4(2), 

04018013. 

Wang, Z., and Broccardo, M. (2020). A novel active 
learning-based Gaussian process 

metamodelling strategy for estimating the full 

probability distribution in forward UQ analysis. 
Structural Safety, 84, 101937. 

Yi, S. R., and Song, J. (2021). First-passage 

probability estimation by Poisson branching 
process model. Structural Safety, 90, 102027. 

Zhang, J., Taflanidis, A. A., and Medina, J. C. (2017). 

Sequential approximate optimization for design 

under uncertainty problems utilizing Kriging 
metamodeling in augmented input space. 

Computer Methods in Applied Mechanics and 

Engineering, 315, 369-395. 
 


