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ABSTRACT: Artificial Intelligence has rapidly supplanted classical statistical methods for data analysis
and prediction-making in many scientific areas in the last few years due to substantial technological
advances in hardware that enable the robust dedicated algorithms to produce reliable results in
reasonable software execution times. Looking specifically at applications in the field of Structural
Health Monitoring, automated algorithms aim to replace visual inspections for structural condition
assessments, as they can reduce maintenance costs and identify damage not otherwise detectable. In this
paper, we propose a well-structured approach covering the entire monitoring process, overcoming the
critical issues that available algorithms suffer from, including the availability of suitable training data
and compatibilities among the solutions used for different tasks throughout the entire anomaly detection
process. This is possible through the adoption of a standard data storage format and the numerical
construction of a digital twin of the structure under inspection. This way, ad hoc baseline patterns may
be generated to feed artificial neural networks that are truly supervised, and any alarms created can,
therefore, be checked by running dynamic simulations of the corresponding FEM model.

1. INTRODUCTION

In the last few decades, Structural Health Mon-
itoring (SHM) has benefited greatly from the out-
standing progress made in the field of outlier
detection-oriented algorithmic theory and from the
considerable increase in CPU velocity and GPU
performance in parallel computing. Such progress

paved the way for anomaly detection in the context
of Civil Engineering, making available the possi-
bility of fast data collection, transmission and pro-
cessing methods for a near real-time response of the
overall structural state. Over the years, new, auto-
mated techniques stood alongside traditional, i.e.,
in-person, facility surveillance, and gradually sup-
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planted visual inspection and monitoring as soon as
networks of synchronized sensors were integrated
in "smart structures". This paradigm change re-
sulted in a substantial cost reduction for mainte-
nance and, above all, in increased reliability when
assessing structural conditions.

Data-driven methods, i.e., detection techniques
entirely based on the analysis of real data, enable
the recognition of hidden patterns embedded in the
data flow, and report any anomalous streams of in-
formation that indicate possible damage that would
be otherwise undetectable. This reflects the under-
lying, foundational assumption of automated moni-
toring methods: damage, whether cracks, collapses,
local mechanisms, or gradual deteriorations, are
present as data anomalies that can be recognized.
Whenever data analysis detects possible outliers,
dedicated algorithms may be employed for damage
localization and for evaluating damage type and ex-
tent. Then, in the decision-making phase, the re-
maining lifetime of the structure is assessed, and
expert engineers can promptly establish whether or
not to restrict access to the facility as a precaution-
ary measure.

Artificial Intelligence (AI) has a prominent role
in this context since it provides various solutions to
the problems posed by SHM. In particular, Machine
Learning (ML) methods are capable of recognizing
atypical patterns in the datasets via statistical com-
parison of near real-time signals and an adequately
large set of training data that the algorithms use to
infer the processes that generate "healthy" and, if
available, "damage" scenarios.

In the SHM arena, model-based algorithms are
often adopted on their own or combined with data-
driven algorithms for damage detection. Such
methods provide for the construction of a Digital
Twin (DT) of the examined structure, so that data
collected by sensors can be used as forcing terms
for Finite Element Method (FEM) dynamics nu-
merical simulations. The more accurate the model
in terms of geometrical, environmental and phys-
ical properties, the more reliable the predictions
made by the algorithm.

Although the idea of combining data-driven and
model-based approaches is definitely not new, such

hybridization still represents a challenging issue for
Civil and Computer Engineering as, without a uni-
fied framework, there is nothing to act as a mortar
between the disciplines.

In this work, we propose a comprehensive solu-
tion for SHM, which has the advantage of being
conceived as a chain of tools and algorithms de-
signed and optimized specifically to perform their
unique tasks. The Scientific ToolKit for Opensees
(STKO) GUI for OpenSees [Petracca et al. (2017)]
is employed for the DT modeling and dynamics,
as it offers a Python interface for customization,
which conveniently connects the model-based and
data-driven approaches, of which the data-driven
approach is entirely developed in Python. More-
over, a unique data format (the HDF5 format) is
adopted for I/O operations to avoid data incompati-
bilities.

2. THE MONITORING PROCESS
Currently, the main issues that arise in the auto-

mated monitoring process regard the establishment
of a robust framework that covers all the interme-
diate steps from data acquisition to output produc-
tion and interpretation. The Civil Engineering com-
munity offers many suggestions that may fit very
specific cases [Tibaduiza Burgos et al. (2020)], but
an objective standard for SHM is still lacking. In
particular, the pre-processing sequence of manip-
ulations that transform rough data time-series into
a suitably small set of features to be processed via
AI tools represents the most controversial part of
the entire monitoring problem. Differences among
the various solutions may already emerge during
data collection, as different devices register differ-
ent physical quantities at a given sampling rate.

The information embedded in the time series
recorded for a fixed time window is typically ex-
tracted as a reduced set of representative features,
as the whole time series would be intractable from
the AI point of view. Such features can be divided
into global, if extracted through multivariate analy-
sis by considering data of a given time window as
a whole, with the typical aim of estimating modal
characteristics, or local, if data are unpacked be-
fore calculating temporal and/or spectral indicators
for each time series. Further pre-processing steps,
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including data standardization and projection onto
a subspace of lower dimension, may eventually be
performed to eliminate redundant information, tak-
ing into account various evironmental effects and
preparing the input for the ML algorithm.

Conversely, there is a general agreement about
the ML techniques recommended for supervised
and unsupervised learning; we note that we refer
to unsupervised learning whenever the set used for
AI training contains only data collected from struc-
tures in full, healthy, operational conditions, while
supervised learning requires the training set to con-
tain both regular and anomalous data.

We present a broad, automated solution that self
adapts in a smart way to the widest set of structures
equipped with sensors, covering all possible envi-
ronmental and external conditions and providing
unsupervised as well as supervised solutions. In our
scheme, data-driven and model-based algorithms
are designed to coexist; moreover, the two strate-
gies are mutually reinforcing, meaning that each of
them compensates for the limitations of the other
if considered alone for monitoring purposes. Nev-
ertheless, the data-driven part keeps its supremacy
within the proposed framework, as it can be run re-
gardless of the realization of a digital twin of the
monitored structure.

As we intend for our algorithm to catch all pos-
sible damages according to the broadest definition
given by Farrar and Worden (2007), we constructed
two different AI solutions that work in parallel, to
independently detect both local and global dam-
ages, if any. In the following sections, we outline
our monitoring solutions. Our very first input con-
sists of 3-dimensional time series of linear acceler-
ations, angular velocities and inclinations, all sam-
pled at the frequency of 1 KHz1, while the temper-
ature value is appended to the features list at a later
stage in order to mitigate its effects on the data. Op-
timal sensor placement is taken for granted in this
context; optionally, filters for noise removal can be
applied to time series before any other data process-
ing method.

1The unit adopted for data acquisition is the MonStr device
provided by ASDEA Hardware.

3. THE DATA-DRIVEN ALGORITHM

Here we introduce the portion of the framework
dedicated to data analysis and anomaly detection.
In what follows, when referring to data we intend
the time series of monitored quantities collected
within a fixed time window. The length of a single
time window is a user-defined parameter, although
it is recommended to adopt a value greater than or
equal to 100 times the fundamental period of the
reference structure for optimal modal parameter es-
timation [Ubertini et al. (2013)]. Time windows
can be immediately consecutive or partially over-
lapping.

3.1. Univariate analysis. Local detectors

For a given time window:
• for any 1-d time series (i.e, for each physical

quantity and each of the three coordinates), a
set of temporal, spectral and statistical quan-
tities are computed. Following the work of
Buckley et al. (2022), we exploit the TSFEL
library for Python in our setup for feature ex-
traction [Barandas et al. (2020)], cutting all
Fourier coefficients above 30 Hz

• alternatively, features are arranged as follows:
– unpacked: to construct independent clas-

sifiers, features extracted from different
devices are kept distinguished to feed
separate algorithms

– compacted together. Information coming
from devices is mixed to feed a single al-
gorithm

• temperature (and any other information about
environmental conditions, if measured) is
added to features in both cases

3.2. Multivariate analysis. Global detectors

Accelerometric time series are packed together
to extract modal parameters. The user can run SSI-
cov and SSI-data algorithms [Peeters and De Roeck
(2001)] to extract natural frequencies, damping ra-
tios and modal shapes. Multivariate statistics is also
applied to get classical indicators, again using the
dedicated functions the TSFEL library makes avail-
able to perform this task.
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3.3. Feature reduction
Regardless of feature arrangement, feature pro-

jection on a subspace of lower dimension is re-
quired to get rid of data redundancy, and account for
environmental effects. Linear Principal Component
Analysis (PCA) is adopted to accomplish this task
after performing feature rescaling (through simple
standardization or min-max scaling). The result-
ing features, which retain a fixed percentage of to-
tal variance, consist of linear combinations of the
original ones and are mutually independent. Once
computed for the training dataset, the same mathe-
matical objects that perform data rescaling and pro-
jection are employed for test-data pre-processing to
maintain data consistency.

3.4. Unsupervised training
In this case, training data are acquired from phys-

ical structures in an entirely healthy state so that
AI has no chance to learn how to directly identify
possible anomalies embedded in the data. The user
can choose from among various algorithms belong-
ing to the family of artificial neural network autoen-
coders (AE) best suited to their needs [Bank et al.
(2020)]. The logic of such deep learning methods
lies in the capacity to suitably reconstruct the in-
puts produced by the same process which gener-
ates the training instances, and badly reconstruct-
ing any instance whose underlying, production pro-
cess differs from the "healthy" one. This is real-
ized by inferring the statistics of reconstruction er-
ror from training data, that is the normalized ℓ2 dis-
tance between the input and its reconstructed coun-
terpart, then introducing a threshold to distinguish
regular from anomalous instances (see Figure 1).
Also, anomalous trends can be identified by keep-
ing track of reconstruction errors over time, to mon-
itor slow parameter variations that correspond to
structure deteriorations.

3.5. Supervised training
In this case, training data can be split into two

or more subsets, one corresponding to data com-
ing from the structure in the healthy state, while the
others concern various damaged scenarios. In its
more basic form, we only distinguish between dam-
aged/undamaged instances; however, if more accu-

x Encoder z Decoder x̂

Figure 1: Schematic representation of an autoencoder.
The input data x is mapped to the lower dimensional
vector z through an artificial neural network (the en-
coder); then, x̂ is obtained from z through the action
of another artificial neural network that is symmetric
with respect to the encoder (the decoder). The training
phase aims to let the parameters of the network con-
verge to the values that make x̂ similar to x in some
suitable metrics.

rate information is provided, the damaged subset
may be furtherly split into smaller subsets accord-
ing to damage location and severity (see e.g. the
approach used in Parisi et al. (2022)). The produc-
tion of damaged datasets typically requires the con-
struction of the digital twin of the structure, which
enables the user to generate dynamics for regular
and custom damaged settings.

Supervised ML algorithms are preferred in this
case to exploit the flagged information contained
in the data, bypassing any statistical study that is
needed a posteriori in the unsupervised case. Vari-
ations of the multilinear perceptron (see Figure 2)
are advised with a softmax function as an activa-
tor for the output layer in order for the output to
directly classify the input instance as regular or
anomalous. If in the training phase the data has
been further refined, i.e., the output is non-binary,
damage location and severity can also be inferred
[Parisi et al. (2022)].

Alongside Deep learning algorithms, ensamble
learning methods like random forests [Ho (1995)]
are successfully used in multiclass classification
problems with improved accuracy with respect to
artificial neural networks [Breiman (2001)], al-
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though the training phase is usually costly from a
computational point of view (see Figure 3). How-
ever, the computational time taken by the two
strategies for the inference phase is generally com-
parable. The use of random forests may also pre-
vent algorithm overfitting [Zhou et al. (2013)].

input
layer

hidden layer

output
layer

Figure 2: Schematic representation of a multilayer per-
ceptron. The input instance is mapped to a binary out-
put for a classifier that distinguishes between regular
and anomalous inputs, and has more than two neuronal
components for a finer anomaly classification.

Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

Figure 3: Schematic representation of a random forest
of n decisional trees. Each tree is independently trained
using a different portion of the training set and works
as a multiclass classifier. In the inference phase, the in-
put instance is mapped to the mean class in regression
or to the class which gets the majority of votes.

4. THE MODEL-BASED ALGORITHM
When considering the model-based situation

alone, we refer to the model-based solution as the
algorithm that uses dynamic data acquired by sen-
sors as input forces for the discrete-time evolution

of the FEM model corresponding to the structure
under examination. The idea is to let the model
evolve according to the input data, periodically
checking its overall conditions. This approach has
the advantage of providing a direct, clear response
compared to a data-driven solution that needs sta-
tistical interpretation of the received output, partic-
ularly when additional information beyond a rough
reporting of anomalies is requested. The user can
also visually inspect the behavior of the structure
under given loads, and interpretation of results is
thus immediate. The potential and limitations of
this method, i.e., the reliability of the outputs, are
totally related to the accuracy with which the nu-
merical model reproduces the physical structure in
terms of geometry, material, physical properties,
and meshing. Moreover, as such properties are mu-
table over time and affect structural dynamics, a
periodic updating of the model is requested in or-
der for the actual facility and its digital twin to dy-
namically match. Our solution uses genetic algo-
rithms to minimize the appropriately chosen met-
ric that account for differences among natural fre-
quencies and modal shapes (see Levin and Lieven
(1998)). The tunable parameters for minimization
are the elastic moduli of FEM elements.

We adopted STKO for the model-based por-
tion as it is a straightforward solution to meet our
need to maximize software and I/O interaction, as
STKO’s Python scripting interface permits the user
to customize and program the pre and postproces-
sors as needed. Moreover, STKO includes all mate-
rials, elements, conditions and interactions offered
in OpenSees, and also hosts all the codes needed
for the AI software to perform.

5. MAIN ADVANTAGES OF OUR HYBRID
SOLUTION

Our proposal for completely automated monitor-
ing represents a step towards the establishment of
a well-functioning standard for SHM, without rein-
venting the wheel of digital-twinning. In the fol-
lowing bulleted list, we highlight the pros of adopt-
ing our hybrid method, considering that our ma-
chinery becomes full data-driven in the absence
of a digital replica of the structure. Furthermore,
as with every digital twin framework, the numeri-
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Figure 4: Example of a FEM model of a structure mod-
eled within STKO. The figure shows different mode
shapes.

cal model can be used for "what-if" analysis and,
mainly, to enrich the training set with custom dam-
aged datasets, thus unlocking access to supervised
methods.

5.1. Our improvements
• Double-check anomalies detected by the data-

driven solution: in order to prevent false
alarms, potential anomalies are verified by
running the corresponding numerical dynam-
ics and noticing if damage is really produced.

• Damage type, localization and extension: if a
binary classifier is employed as an AI detector,
a numerical simulation provides missing in-
formation regarding damage characterization,
suggesting possible actions to the user (closure
of the facility, possible repairs).

• Software compatibility: the entire workflow
that realizes the sequence of operations de-
scribed in the previous sections is perfectly
embedded in the STKO program. The hard-
ware and software solutions are designed by
the same developers to accomplish a precise,
specific task and be integrated one with the
other. Hence, there is no need to integrate soft-
ware programs produced by different compa-
nies.

• Data format compatibility: in the various
steps, all data are organized and exchanged in
the HDF5 format. The central node itself rear-
ranges measurements collected by distributed
devices in an HDF5 file. This way, there is
a complete inner coherence that prevents any
data loss that often occurs in the process of

conversion to different data formats, that is
also time-wasting.

• Smart use of CPUs and GPUs: dedicated,
powerful graphic cards perform parallel com-
puting for the AI part as the TensorFlow
Python library for deep learning distributes
by default independent processes on the GPU.
The TSFEL library for features extraction
gives the user the opportunity to split pro-
cesses on available threads for a quicker re-
sponse. Concerning the model-based al-
gorithm, STKO supports multi-processing
solvers of OpenSees.

Figure 5 depicts the workflow described in this
section.

6. CONCLUSIONS
Digital twin implementation stands at the fron-

tier of research in Civil and Computer Engineer-
ing, thus far representing the more reliable solu-
tion for automating the damage detection process
for physical structures. We proposed our frame-
work for letting data-driven and model-based ap-
proaches coexist and mutually reinforce each other,
avoiding typical issues encountered in the realiza-
tion of the scheme and motivating our algorithmic
choices. The use of specifically designated soft-
ware improves our solution’s stability and strength,
while the adoption of a unique data format for the
whole process eliminates any possible incompati-
bilities or data loss. In the future, we will spend
more time challenging our algorithm with simu-
lated and real data and checking the accuracy of the
outputs obtained. Focus will be placed on develop-
ing more user options so that the machine can adapt
perfectly even to very unique structures requiring
monitoring services.
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