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ABSTRACT: The purpose of this paper is to present some preliminary results obtained from the
application of a dedicated Artificial Intelligence-based monitoring software to an OpenSees numerical
model of a railway bridge to assess its health conditions in near real-time. The proposed approach is
based on the construction of an unsupervised Machine Learning algorithm in a full data-driven scenario,
with the aim of establishing a reliable method for anomaly detection even in the absence of a numerical
model. A reference pattern is obtained by collecting data at high sampling frequency on several fixed
nodes as trains of various masses cross the undamaged bridge at different velocities; after
pre-processing, the data are fed into various types of autoencoders which are trained to produce outputs
as close as possible to the inputs. It is then shown that the algorithm actually flags the data produced
when damage scenarios are activated in the OpenSees model as coming from a damaged structure. Our
solution can be also adopted as a binary classifier once a threshold for reconstruction errors has been
fixed.

1. INTRODUCTION
Artificial Intelligence (AI) and especially Deep

Learning (DL) algorithms are widely employed in
the Civil and Structural Engineering context since
large amounts of data can now be transmitted and
processed in a relatively short time [Tibaduiza Bur-
gos et al. (2020)]. Systems for early anomaly de-
tection draw from a broad ensemble of Machine
Learning (ML) techniques, the final purpose being
the ability to automatically recognize possible dam-

age that may affect a given structure so that appro-
priate measures can be taken in time.

Although most data analysis methods are well es-
tablished, the scientific community has yet to agree
on the sequence of processes to be performed, start-
ing from the acquisition of raw data via sensors to
get reliable predictions. This is especially a pivotal
issue in Structural Health Monitoring (SHM), al-
though general consensus exists regarding AI, with
specific reference to the algorithms worth adopt-
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ing in unsupervised or supervised cases. In the
SHM framework, we rely on unsupervised algo-
rithms whenever the training data come from struc-
tures in healthy conditions, as the dedicated pro-
gram has no way to distinguish between undam-
aged and damaged scenarios. In such cases, us-
ing the data available, AI tries to infer the under-
lying process that produces the observed output,
hence learning to identify data that is statistically
incompatible with that generation process, as the
paradigm of SHM is that any structural change is
reflected in the mechanism that produces the ob-
served data. The dedicated literature recommends
autoencorder neural networks as the type of algo-
rithms best suited for accomplishing this task. Con-
versely, supervised algorithms are adopted when-
ever the training set also contains data correspond-
ing to damage scenarios that may be generated by
running dynamic numerical simulations using the
Digital Twin (DT) of the physical structure under
examination. In this case, the literature advises sev-
eral multiclass DL algorithms for optimal perfor-
mance [Farrar and Worden (2013)].

In the present work, we have restricted our fo-
cus to the unsupervised case, using the accelero-
metric time series we obtained by running rail-
way bridge dynamics for a Finite Element Method
(FEM) created using Asdea’s Scientific ToolKit for
OpenSees (STKO) advanced GUI for OpenSees
[Petracca et al. (2017)] for both the training and for
the test phase. This was done with the intent to es-
tablish a standard procedure for managing strictly
data-driven contexts, from data collection to output
emission, with the idea of providing a robust solu-
tion for application in real monitoring cases.

The paper is organized as follows. Section 2
presents the bridge model and provides informa-
tion on the simulation set-up. Section 3 explains
how raw data are pre-processed and how the fea-
tures from the extracted raw data are fed as inputs
to the neural network. Section 4 is dedicated to
the presentation of the results, and in particular, we
show how the algorithm correctly classifies undam-
aged and damaged data series. Section 5 examines
the conclusions drawn and suggests further devel-
opments.

2. THE MODEL
2.1. STKO modelization

The model used for testing our baseline anomaly
detection solution was created using the STKO in-
terface for OpenSees, and reproduces a steel truss
railway bridge with riveted connections consisting
of 3 spans (Figure 1). The structure is approxi-
mately 93 m long, 5 m wide, and has two piers that
are 4.8 m high. Each lateral span measures ∼ 28
m, while the central one is ∼ 35 m long. Further
information about the model is provided below:

- the braces were modeled using T-profile truss
elements

- piers were modeled using 4-node shell ele-
ments (ASDShellQ4)

- the ballast was modeled using springs
- tracks were modeled using IPE beam elements
- both top and bottom chords were modeled us-

ing double-T beam elements
- verticals were modeled using IPE300 beam el-

ements
- diagonals were modeled using double-C beam

elements
Regarding boundary conditions, the piers were

fixed to the base; one of the two abutments blocks
linear displacements along the x, y and z directions
and rotations about the x axis, while the other abut-
ment blocks linear displacements along the y and z
axis. The spans are attached to the piers by means
of rigidLinks OpenSees elements.

The monitoring system of the bridge consists
of a network of 12 triaxial accelerometric sensors,
which sample at a rate of 1 kHz, located at highly
representative nodes as depicted in Figure 1.

Figure 1: Schematic representation of the bridge and
sensor positions.

Damage scenarios can be introduced by reduc-
ing the elastic moduli of 32 different structural ele-
ments by modifying them as a percentage from 0 to
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Figure 2: Locations of the 32 elements whose elastic
modulus the user can reduce. Legend: DC (diagonal in
compression), DT (diagonal in tension), CC (chord in
compression), CT (chord in tension).

100, giving the possibility to determine which ele-
ments to damage. Figure 2 shows the elements for
which the user can reduce the elastic modulus, con-
sisting of 8 diagonals in compression, 8 diagonals
in tension, 8 chords in compression and 8 chords in
tension.

2.2. Numerical Simulations
Numerical simulations were performed as fol-

lows. A single run refers to the passage of one
train across the railway bridge which generates a
single instance in terms of the AI algorithm. Par-
tially following Parisi et al. (2022)’s strategy, trains
were modeled using their mass and velocity, rep-

resented as random variables extracted from log-
normal distributions with parameters respectively
µmass = 62 ton, σmass = 5 ton and µvelocity = 8.33
m/s, σvelocity = 1 m/s, while the length of the trains
is constant and fixed to 40 m. A single run lasts
for T = 50 s, regardless of the exact moment the
caboose of the train crosses the last bridge ele-
ment, to obtain consistent time windows for pro-
cessing. The output of the STKO program consists
of accelerometric time series considering the com-
ponents along x, y and z axis for each of the 12 con-
trol points, for a total of 36 time series for each run.

3. THE ALGORITHM
3.1. Feature Extraction

Univariate analysis was applied to each time
series to aggregate the information embedded in
the entire run through a minimal set of parame-
ters. This is the first step in eliminating redundant
data. A collection of temporal, spectral and statis-
tical features was extracted using the Python TS-
FEL library [Barandas et al. (2020)] as suggested
in [Buckley et al. (2022)]1. In particular, a set of
163 features was selected for each of the 36 ac-
celerometric series obtained for each run, consid-
ering the whole set of default features the library
computes after removing a large number of Fourier
coefficients to discard frequencies higher than 30
Hz. The features obtained were then arranged in a
matrix A of dimensions Nruns×(Nfeatures ×Nsensors),
where Nfeatures = 163 and Nsensors = 36 in this case.

3.2. Feature Reduction
The second step for database reduction consists

of the simple application of a linear PCA algorithm
at fixed retained variance.

3.2.1. Training Phase
Dataset standardization is first performed on A in

such a way that

Ai j 7→
Ai j −µA

j

σA
j

for any i, j (1)

1See https://tsfel.readthedocs.io/en/latest/

for a complete list of computed features.

3



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

where µ j and σ j are, respectively, the mean
and the standard deviation computed along the j-
th column of A. After covariance matrix C =

1
Nruns−1A⊤A is computed, the spectral decompo-
sition of C = OΛO⊤ is performed, being Λ =
diag(λ1, . . . ,λNfeatures×Nsensors) the matrix containing
the eigenvalues of C in non-increasing order2. A is
then projected along the first n components, which
retain a given amount of the total variance (99% in
our case):

X = APn , Pn = O [ : , : n] , (2)

where (we used Python notation) Pn is the Nruns ×n
matrix containing the first n columns of O.

3.2.2. Test Phase
Once the algorithm is trained, new data are stan-

dardized as in (1) using the same µA
j s and σA

j s com-
puted over the matrix A. Then, the dataset is pro-
jected along the n eigendirections, multiplying by
matrix Pn as in (2).

3.3. The Neural Network
The rows {xi}Nruns

i=1 of matrix X represent single
input instances for the neural network. The first al-
gorithm tested was a vanilla autoencoder (AE) with
input dimension n and just one hidden intermediate
layer, which represents the latent space and has di-
mension d = ⌊n⌋+ 1. This choice was motivated
by the purpose of testing one of the most simple
neural network architecture before performing an
optimal hyperparameters choice through dedicated
tools. The graph is fully connected, as depicted in
Figure 3, and a hyperbolic tangent is used as an ac-
tivation function.

In the training phase, the normalized sum of Eu-
clidean distances between the inputs and outputs
was adopted as a loss function. Let fθ ,φ (xi) be the
reconstructed version of input xi, where θ and φ in-
dicate the collection of parameters of the encoding
and decoding portions respectively. For the recon-
struction error, we take the following quantity:

eθ ,φ (xi) =
∥∥xi − fθ ,φ (xi)

∥∥
2 . (3)

2C is symmetric positive semi-definite, its eigenvalues are
non-negative, and its eigenvectors form an orthogonal basis
for RNfeatures×Nsensors .

input

latent space

output

Figure 3: Schematic representation of the vanilla au-
toencoder used.

µ

σ

sample

input output

Figure 4: Schematic representation of the variational
autoencoder used.

The loss function is obtained by averaging the
whole training dataset:

LAE (X) =
1

Nruns

Nruns

∑
i=1

eθ ,φ (xi) , (4)

so that biases and weights converge to the values
that best allow the network to get outputs as similar
as possible to the inputs belonging to the training
set in the ℓ2 norm.

The second neural network adopted was a vari-
ational autoencoder (VAE), whose architecture is
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described in Figure 4. Unlike the simple vanilla au-
toencoder, the latent representation is not determin-
istic, as the latent vector is sampled from a mul-
tivariate, Gaussian distribution with mean vector
µ and diagonal covariance matrix σ I. Let pθ (z)
equal the prior probability of obtaining the latent
vector, z, pθ (z | xi) equal the posterior distribution
of z given xi, and pθ (xi | z) be the conditional prob-
ability of xi given z, where θ again represents the
collection of encoder parameters. The true poste-
rior distribution is generally intractable and is then
approximated by a distribution of qφ (z | xi) (φ the
collection of parameters for the decoder), which is
chosen to be Gaussian, and represents the proba-
bility of observing the output xi given the latent
variable z. The evidence lower bound (ELBO) is
typically adopted as a loss function for VAEs, be-
ing a mixture of cross-entropy between the original
and reconstructed dataset and Kullback-Leibler di-
vergence that measures the functional distance be-
tween the true prior and the approximated posterior
(see Kingma and Welling (2013) for derivation):

LVAE
θ ,φ (X) =

1
Nruns

Nruns

∑
i=1

ℓθ ,φ (xi) , (5)

ℓθ ,φ (xi) = Eqφ (z|xi) [log pθ (xi | z)]

− KL
(
qφ (z | xi)∥pθ (z)

)
. (6)

The first term at the right-hand side of (6) can be
estimated through a reparametrization trick, while
Kullback-Leibler divergence assumes a simple ex-
pression after forcing pθ (z) to be a standard Gaus-
sian on Rd . For details, we again recommend con-
sulting [Kingma and Welling (2013)].

For the sake of notational simplicity, hereafter,
we will use ei ≡ eθ ,φ (xi).

3.4. Statistics of the Reconstruction Error
From a probabilistic point of view, the collec-

tion of reconstruction errors {ei}Nruns
i=1 represents a

set of independent identically distributed random
variables on R+, as single train passages are mu-
tually independent. The resulting statistics are a
generalized chi-square distribution because compo-
nents of xi and its reconstructed counterpart are,
in principle, correlated. Various methods can be
applied for deducing probability distribution p(ei)

from data, thus establishing a threshold for distin-
guishing undamaged from damaged data in the in-
ference phase. Once threshold α ∈ (0,1) is estab-
lished, a given instance can be considered anoma-
lous when its reconstruction error e is such that
p(e) < α . We used kernel density estimation
(KDE) method for inferring the pdf of the under-
lying process. In our application, the bandwidth
h of the kernel, which is the main parameter of
the method, was estimated via Silverman’s rule

of thumb h = 0.9min
(

σe,
IQR
1.34

)
N
− 1

5
runs, where σe is

the standard deviation of reconstruction errors, and
IQR represents the interquartile range. The thresh-
old for acceptability α was fixed to 0.005, a value
that finds its validity a posteriori. Note that, in this
initial phase of the construction of our framework,
we expect a structure in a healthy state to produce
false alarms with probability α . To further perfect
the framework, a method for alarm validations is
thus required and will be introduced in the future.

4. RESULTS
The training of the two algorithms was per-

formed using Nruns = 500 train passages, con-
sequently inferring the reconstruction error pdf
and obtaining values for emin and emax such that
p(e < emin) < α and p(e > emax) > α . Figure 5
shows the shape of the pdfs deduced from the train-
ing data for AE and VAE, alongside the correspond-
ing frequency histogram.

We initially focused on the predictive capability
of the two algorithms as anomaly detectors by in-
troducing damage on node DC1. Specifically, FEM
dynamics were run after the elastic modulus of the
mentioned beam element was reduced by a factor
of 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.10, con-
sidering 10 runs for each of these percentages of
damage. In addition, we ran 25 further simulations
for the undamaged bridge in order to check if the
trained algorithms would classify the correspond-
ing inputs as non-anomalous. Figure 6 shows the
collection of reconstruction errors for the training
set (from 0 to 499, blue colored) and for the test
set corresponding to the 25 undamaged data sets
(500 to 524, green colored if regular, red colored
if anomalous), using thresholds (the dashed, gray
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Figure 5: The pdf (the orange lines) inferred from
training data in the case of AE (upper) and VAE (bot-
tom). Histograms (in blue) were obtained using 20
bins.

lines) corresponding to the values of emin and emax.
For the AE, the mean reconstruction error of the
training set is µAE

training ≃ 1.00 ·10−2, compared with

a value of µ
AE, undamaged
test ≃ 9.53 · 10−3 for the set

of the 10 undamaged tests. For the VAE, we ob-
tained µVAE

training ≃ 8.90 · 10−3 and µ
VAE, undamaged
test ≃

8.55 · 10−3. Both the average reconstruction error
values calculated for the test sets are statistically
compatible (regarding the statistics deduced from
training data) with the means of the training sets
(significantly within 1σ ).

Figure 6: The reconstruction error for training and
non-damaged test sets for AE (top) and VAE (bottom).

Figure 7 shows the collection of reconstruc-
tion errors for the training set and for the
afore-mentioned damage configurations (enumer-
ated from 500 to 559, red colored, in increasing
damage order), adopting the log-scale for the y-axis
since reconstruction errors spread on various scales.
Notice that both algorithms recognize all the "dam-
aged" instances as anomalous, although the recon-
struction error appears to be non-monotone in the
elastic modulus reduction. It is also worth noting
that VAE is, in this case, more damage-sensitive
compared to the AE-based solution since the errors
corresponding to the test set cover a larger interval.
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This is also a consequence of VAE’s pdf appearing
more peaked around its maximum. The computa-
tional costs are comparable for the two neural net-
work autoencoders employed.

Figure 7: The reconstruction error for training and
damaged test sets as indicated in the text for AE (top)
and VAE (bottom).

We performed a second test running numerical
dynamics simulations for each of the 32 damage lo-
cations as in Figure 2. In order to have strong data
consistency, we fixed the mass and the velocity of
the train crossing the bridge to the mean values of
62 tons and 8.33 m/s and reduced the elastic mod-
uli of beam elements by a factor of 0.02. Figure 8
again illustrates reconstruction errors for the train-

ing sets and for the 32 different damage scenarios.
The evidence supports the conclusion that our so-
lutions correctly classify all the instances given as
inputs as anomalous.

Figure 8: The reconstruction error for training and the
second damaged test sets as indicated in the text for AE
(top) and VAE (bottom).

5. CONCLUSIONS
This work represents a simple yet reliable frame-

work for SHM in the full data-driven case. The
results obtained so far are promising as our de-
tector succeeded in recognizing healthy states and
classifying the various configurations of damage
types/severity as anomalous. Despite this, we were
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unable to define a connection between elastic mod-
ulus reduction and the output obtained. In the fu-
ture, more effort will be made towards selecting
features and exploring the space of the neural net-
work’s hyperparameters to enable our solution to
estimate the actual damage level from the value of
the reconstruction error obtained. After that, we can
move towards considering the supervised case and
trying to identify possible damage locations from
test data. The introduction of a digital twin of the
monitored structure would also improve the overall
accuracy of the solution.
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