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ABSTRACT: An approximate analytical technique is developed for determining both the response
evolutionary power spectrum (EPS) and the corresponding non-stationary autocorrelation function of
nonlinear oscillators endowed with fractional derivative elements. Specifically, first, a stochastic
averaging/linearization treatment is employed for deriving an input-output relationship in the joint
time-frequency domain. The derived relationship between the excitation and the response evolutionary
power spectra can be construed as an extension of earlier results in the literature to account for fractional
derivative elements in the oscillator equation of motion. Further, the response non-stationary
autocorrelation function can be also evaluated readily based on Priestley’s EPS theory. A bilinear
hysteretic oscillator with fractional derivative elements is considered as a numerical example. The
reliability of the developed technique is demonstrated by comparisons with pertinent Monte Carlo
simulation data.

1. INTRODUCTION
Fractional calculus has been used widely over

the last few decades in various fields of science
and engineering (e.g., Sabatier et al., 2007; Miller
and Ross, 1993). Indicatively, the necessity for
more accurate modeling of viscoelastic materials
has led to the development of enhanced mechanics
theories that exploit the concept of non-integer
order (fractional) derivatives (e.g., Makris and
Constantinou, 1992; Di Paola and Zingales, 2012).

Further, pertinent solution approaches have
been developed over the years for determining
the stochastic response and assessing the
reliability of linear and nonlinear systems with
fractional derivative elements (e.g., Jesus and
Tenreiro Machado, 2009; Spanos and Malara,
2014; Pinnola, 2016; Pirrotta et al., 2021;
Kougioumtzoglou et al., 2022; Fragkoulis and
Kougioumtzoglou, 2023; Zhang et al., 2023).

Nevertheless, developing techniques in the
joint time-frequency domain and determining the
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response evolutionary power spectrum (EPS) of
nonlinear oscillators with fractional derivatives is
a topic that has received only limited attention in
the literature (e.g., Kougioumtzoglou and Spanos,
2016).

In this paper, an approximate analytical
technique is developed for determining both the
response EPS and the corresponding response
non-stationary autocorrelation function of
nonlinear/hysteretic oscillators with fractional
derivative elements. Specifically, first, a stochastic
averaging/linearization treatment is employed for
deriving an input-output relationship in the joint
time-frequency domain. The derived relationship
between the excitation and the response EPS can
be construed as an extension of earlier results
in the literature (Kougioumtzoglou, 2013) to
account for fractional derivative elements in
the oscillator equation of motion. Notably, the
expression for the nonlinear system response
EPS employs the concept of conditional EPS. To
elaborate further, the nonlinear system response
EPS can be construed as the sum of the response
EPS corresponding to equivalent, response
amplitude dependent, linear systems, appropriately
weighted by the non-stationary response amplitude
probability density function (PDF). Furthermore,
the response non-stationary autocorrelation
function can be also evaluated readily based
on Priestley’s EPS theory (Priestley, 1988).
A nonlinear bilinear hysteretic oscillator with
fractional derivative elements is considered as a
numerical example. The reliability of the developed
technique is demonstrated by comparisons with
pertinent Monte Carlo simulation (MCS) data.

2. MATHEMATICAL FORMULATION
2.1. Stochastic averaging/linearization of

nonlinear oscillators with fractional
derivative elements

The equation of motion of a stochastically
excited nonlinear oscillator with fractional
derivative elements is given by

ẍ(t)+βDα
C x(t)+ z(t,x, ẋ) = w(t), (1)

where x(t) denotes the response displacement
and a dot over a variable denotes differentiation

with respect to time. Further, z(t,x, ẋ) is an
arbitrary nonlinear function that can also account
for hysteretic modeling, and w(t) is a Gaussian
zero-mean non-stationary stochastic process with
a broad-band EPS Sw(ω, t). Furthermore, β is a
constant and Dα

C (·) denotes the Caputo fractional
derivative of order α (0 < α < 1) defined as
(Podlubny, 1998)

Dα
C x(t) =

1
Γ(1−α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ. (2)

Next, assuming relatively light damping, the
oscillator follows a pseudo-harmonic response
behavior described by (Roberts and Spanos, 1986)

x(t) = A(t)cos(ω(A)t +ψ(t)) (3)

and

ẋ(t) =−ω(A)A(t)sin(ω(A)t +ψ(t)). (4)

In Eqs. (3-4), A(t) and ψ(t) denote the response
amplitude and phase, respectively, that vary slowly
with respect to time and are considered constant
over one cycle of oscillation.

In the following, applying a statistical
linearization treatment (Fragkoulis et al., 2019), an
equivalent to Eq. (1) linear system is defined as

ẍ(t)+(β0 +β (A)) ẋ(t)+ω
2(A)x(t) = w(t), (5)

where β0 = 2ζ0ω0 is a damping coefficient, with ω0
denoting the natural frequency of the corresponding
linear oscillator and ζ0 represents the damping
ratio. As shown in Fragkoulis et al. (2019),
the amplitude-dependent equivalent damping and
stiffness elements are given by

β (A) =
S(A)

Aω(A)
+

β

ω1−α(A)
sin
(

απ

2

)
−β0 (6)

and

ω
2(A) =

F(A)
A

+βω
α(A)cos

(
απ

2

)
, (7)

where

S(A) =− 1
π

∫ 2π

0
z(Acosφ ,−Aω(A)sinφ)

× sinφdφ , (8)

2



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

F(A) =
1
π

∫ 2π

0
z(Acosφ ,−Aω(A)sinφ)

× cosφdφ , (9)

and φ(t) = ω(A)t + ψ(t). Note that in deriving
Eqs. (6) and (7) an error between Eqs. (1) and (5)
has been defined and a minimization procedure has
been applied in the mean square sense.

Next, noticing that β (A) and ω(A) depend on the
non-stationary response amplitude A, and thus they
can be construed also as non-stationary stochastic
processes, the corresponding time-varying mean
values can be evaluated by applying the expectation
operator to Eqs. (6-7) (Kougioumtzoglou and
Spanos, 2009). This yields

βeq(t) =−β0 +
∫

∞

0

S(A)
Aω(A)

p(A, t)dA

+β sin
(

απ

2

)∫ ∞

0

1
ω1−α(A)

p(A, t)dA

(10)

and

ω
2
eq(t) =

∫
∞

0

F(A)
A

p(A, t)dA

+β cos
(

απ

2

)∫ ∞

0
ω

α(A)p(A, t)dA.

(11)

Clearly, the non-stationary response amplitude
PDF p(A, t) is required for the evaluation of the
time-varying equivalent elements in Eqs. (10) and
(11). In this regard, p(A, t) is expressed in the form
(Fragkoulis et al., 2019)

p(A, t) =
GA
c(t)

exp
(
− GA2

2c(t)

)
, (12)

where G =
sin(απ

2 )
ω

1−α

0
and c(t) denotes a time-

dependent coefficient to be determined. The
rationale behind the choice of the time-dependent
Rayleigh PDF of Eq. (12) relates to the fact that the
linear oscillator stationary response amplitude PDF
is a Rayleigh one (see also Spanos, 1978; Spanos
and Lutes, 1980). In Kougioumtzoglou and Spanos
(2009) it was further shown that Rayleigh PDF
representation with a time-dependent coefficient

is suitable for nonlinear oscillators also and
under evolutionary stochastic excitations as well.
Furthermore, it was demonstrated by Fragkoulis
et al. (2019) that the generalization shown in
Eq. (12) is valid for nonlinear oscillators endowed
with fractional derivative terms. Specifically,
employing a stochastic averaging treatment of
Eq. (5), substituting Eq. (12) into the associated
Fokker-Planck equation

∂ p(A, t)
∂ t

=− ∂

∂A

{(
−1

2
(β0 +βeq(t))A

+
πS(ωeq(t), t)

2ω2
eq(t)A

)
p(A, t)

}

+
1
4

∂

∂A

{
πS(ωeq(t), t)

ω2
eq(t)

∂ p(A, t)
∂A

+
∂

∂A

(
πS(ωeq(t), t)

ω2
eq(t)

p(A, t)

)}
,

(13)

and manipulating yields the deterministic first-
order nonlinear differential equation (Fragkoulis
et al. 2019)

ċ(t) =−
(
β0 +βeq(t)

)
c(t)+πG

S(ωeq(t), t)
ω2

eq(t)
.

(14)

Eq. (14) can be readily solved by a Runge-Kutta
numerical integration scheme to compute the time-
dependent coefficient c(t), which is substituted into
Eq. (12) to determine the non-stationary response
amplitude PDF p(A, t).

2.2. Response evolutionary power spectrum and
non-stationary autocorrelation function
of nonlinear oscillators with fractional
derivative elements

In this section, a novel closed-form expression
is derived for determining the response
EPS of nonlinear oscillators with fractional
derivative elements, which can be construed
as a generalization of earlier results in the
literature (Kougioumtzoglou, 2013) to account
for fractional derivative terms in the oscillator
equation of motion. Next, the corresponding
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non-stationary response autocorrelation function
can be determined readily by resorting to the
Priestley’s theory of EPS (Priestley, 1988).

Specifically, taking into account the slowly-
varying in time nature of the equivalent elements
ωeq(A) and βeq(A), considered to be approximately
constant over one cycle of oscillation, employing
a GHW-based representation of the excitation
and response processes and relying on the GHW
orthogonality properties, Kougioumtzoglou (2013)
derived the relationship

Sx(ω, t) =
∫

∞

0
Sx(ω, t|A)p(A, t)dA. (15)

In Eq. (15) Sx(ω, t|A) denotes the conditional EPS,
originally proposed as a concept by Miles (1989;
1993), which can be viewed approximately as
the response EPS of a linear oscillator possessing
natural frequency equal to ω(A) and damping
element equal to β (A). It is given by

Sx(ω, t|A) = Sw(ω, t)

(ω2(A)−ω2)
2
+(β (A)ω)2 . (16)

Thus, the nonlinear response EPS can be construed
approximately as the sum of the “linear” response
EPS appropriately weighted by the value of the
corresponding response amplitude PDF p(A, t).
Clearly, Eq. (15) represents a generalization of
the celebrated input-output spectral relationship of
linear random vibration theory to treat nonlinear
systems subjected to non-stationary stochastic
processes. Remarkably, considering section 2.1, it
is readily seen that Eq. (15) can be used in a rather
straightforward manner to treat a broader class of
systems; that is, oscillators endowed with fractional
derivative elements.

Further, based on Priestley’s theory of EPS
(Priestley, 1988), the non-stationary response
autocorrelation function can be evaluated as

Rx(t,τ) =
∫

∞

−∞

Sx(ω, t)exp(iωτ)dω, (17)

where τ denotes the time lag between two time
instants.

3. NUMERICAL EXAMPLE
A bilinear hysteretic oscillator with fractional

derivative elements is considered for assessing
the reliability of the developed semi-analytical
technique. In this regard, z(t,x, ẋ) in Eq. (1) takes
the form

z(t,x, ẋ) = γω
2
0 +(1− γ)ω2

0 xyz0, (18)

where γ denotes the post- to pre-yield stiffness
ratio, xy is the critical value of the displacement
at which yielding occurs, and z0 represents
the hysteretic component corresponding to the
elastoplastic characteristic. The latter is described
by (Roberts and Spanos, 2003)

xyż0 = ẋ(1−H(ẋ)H(z0 −1)−H(−ẋ)H(−z0 −1)) ,
(19)

where H(·) denotes the Heaviside step function.
The initially at rest oscillator is subjected to

non-stationary stochastic excitation described by
the non-separable EPS of the form (Spanos and
Solomos, 1983; Fragkoulis et al., 2019)

Sw(ω, t) = S0

(
ω

5π

)2
exp(c0t)t2 exp

(
−
(

ω

5π

)2
t
)
.

(20)
The parameter values used for the non-separable
excitation EPS are S0 = 1 and c0 = 0.15, while
the natural frequency and the damping coefficient
of the oscillator are ω0 = 12.57 and β0 = 0.05,
respectively. Further, the post- to pre-yield stiffness
ratio is γ = 0.2, whereas xy = 0.016. Lastly, the
fractional order of the oscillator is α = 0.5. For
comparison of the analytical results with MCS data,
realizations compatible with the excitation EPS of
Eq. (20) are produced by utilizing the spectral
representation methodology (10,000 samples); see,
e.g., Liang et al. (2007). The L1-algorithm is
used for the numerical integration of Eq. (1) and
for determining response realizations (e.g. Koh
and Kelly, 1990). Further, EPS estimates based
on the ensemble of the response realizations are
obtained by employing a formula derived in Spanos
et al. (2005) that relies on the theory of generalized
harmonic wavelets.

Next, considering Eq. (18), Eq. (8) becomes

S(A) =
{ 4xy

π

(
1− xy

A

)
, A > xy

0, A ≤ xy
(21)
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whereas Eq. (9) takes the form

F(A) =
{ A

π

(
Λ− 1

2 sin(2Λ)
)
, A > xy

A, A ≤ xy
(22)

with Λ = arccos
(

1− 2xy
A

)
. Also Eqs. (10) and (11)

become

βeq(t) =−β0 +
βGsin

(
απ

2

)
c(t)

×
∫

∞

0

A
ω1−α(A)

exp
(
− GA2

2c(t)

)
dA

+
4xyω2

0 (1− γ)G
πc(t)

×
∫

∞

xy

1− xy
A

ω(A)
exp
(
− GA2

2c(t)

)
dA (23)

and

ω
2
eq(t) =ω

2
0 − (1− γ)ω2

0

{
exp

(
−

Gx2
y

2c(t)

)

− π

Gc(t)

∫
∞

xy

(
Λ− 1

2
sin(2Λ)

)
A

×exp
(
− GA2

2c(t)

)
dA
}

+
βGcos

(
απ

2

)
c(t)

×
∫

∞

0
ω

α(A)Aexp
(
− GA2

2c(t)

)
dA, (24)

respectively.
Next, applying the herein proposed technique,

the response EPS is determined and is plotted
in Figure 1. This is also compared and found
in satisfactory agreement with the corresponding
MCS-based estimate plotted in Figure 2. It is seen
that the technique is capable of capturing the salient
aspects of the nonlinear system response EPS. In
fact, it succeeds in predicting, approximately, the
evolution in time of the effective natural frequency
of the bilinear hysteretic oscillator, starting from
the linear regime at early time instants and reaching
nonlinear response behavior as the intensity of the
excitation increases with time.

Lastly, applying Eq. (17) yields the non-
stationary response autocorrelation function that is
plotted in Figure 3.

Figure 1: Nonlinear response EPS of a bilinear
hysteretic oscillator with fractional derivative elements
(ω0 = 12.57, β0 = 0.05, α = 0.5, γ = 0.2, xy = 0.016,
S0 = 1); analytical solution.

4. CONCLUDING REMARKS

An approximate analytical technique has been
developed for determining both the response EPS
and the response non-stationary autocorrelation
function of nonlinear/hysteretic oscillators
endowed with fractional derivative elements.
This has been done in two steps. First, a recently
developed stochastic averaging/linearization
treatment (Fragkoulis et al., 2019) has been
employed for deriving an approximate expression
for the nonlinear oscillator non-stationary response
amplitude PDF. Second, the non-stationary
response amplitude PDF has been used for
extending an input-output EPS relationship in the
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Figure 2: Nonlinear response EPS of a bilinear
hysteretic oscillator with fractional derivative elements
(ω0 = 12.57, β0 = 0.05, α = 0.5, γ = 0.2, xy = 0.016,
S0 = 1); MCS-based estimate (10,000 realizations).

joint time-frequency domain (Kougioumtzoglou,
2013) to account for fractional derivative elements
in the oscillator equation of motion. Lastly, the
non-stationary response autocorrelation function
can be readily evaluated by resorting to Priestley’s
EPS theory. A nonlinear bilinear hysteretic
oscillator with fractional derivative elements
has been considered as an indicative numerical
example. The reliability of the obtained results has
been demonstrated by comparisons with pertinent
MCS data.
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Figure 3: Non-stationary response autocorrelation
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