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ABSTRACT: Machine learning (ML) technology have been widely adopted in engineering practices 

recently by establishing the relationship between seismic intensities and the corresponding structural 

demands based on very limited experimental or numerical simulation databases. Nevertheless, its 

predictions are essentially deterministic, which largely have ignored the uncertainty inherent within the 

structural system. In this study, a new ML algorithm, that is natural gradient boosting (NGBoost), is 

applied to directly evaluate the conditional probability distribution P(y|x) instead of producing a point 

estimate E[y|x] for each value of x. This type of probability prediction can directly obtain the failure 

probability of the structure under an intensity measure (IM), while avoiding the extra input of 

uncertainties from structure properties in traditional ML methods. Therefore, the evaluation of structural 

seismic fragility is especially simple and efficient. Finally, seismic fragility analysis of a typical 3-span-

6-storey reinforced concrete frame (RCF) is carried out to illustrate and demonstrate the NGBoost model. 

The results indicate that the average accuracy of the NGBoost agrees with conventional ML algorithms 

reasonably well in seismic fragility analysis, while without re-input for each additional set of structural 

material properties and geometric parameters. 

Reliable and rapid estimate of the fragility of 

structures against seismic hazards have become 

one of the most essential tasks in civil engineering. 

The fragility curve is defined as the conditional 

failure probability that the damage measure (DM) 

of a structure reaches or surpasses the limit states 

under a selected ground motion intensity measure 

(IM). The conventional approaches to obtain DMs 

in seismic fragility analysis include very limited 

experimental data and expensive high-fidelity 

numerical simulation (Guan et al. 2021; Lyu et al. 

2020). Experimental models often bear inevitable 

simplifications or idealizations, and offer high 

accuracy only when the prediction effort targets 

structures or components that closely resemble 

the validation experiments (boundary conditions, 

scale, configuration, geometry, and so forth). 

Predicting complex behavior using physics and 

first-principle-based approaches, on the other 

hand, requires highly complex (e.g., three-

dimensional finite-element) simulation models, 

which currently have limited use in routine civil 

engineering design. With the aid of numerical 

analysis software with enormous computing 

power, accurate DMs can be extracted by the 

nonlinear time history analysis (NLTHA) 

(Mangalathu and Jeon 2019). Moreover, in the 

fragility analysis based on numerical simulation, 

the uncertainty of ground motion and structural 

parameters can be easily considered. However, 

the fragility calculation using accurate and 

conceptually straightforward Monte Carlo 

simulation (MCS) is time-consuming, especially 
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for complex structures, which currently have 

limited use in routine civil engineering design. 

The existing methods for generating fragility 

curves of structural are cloud (Cornell et al. 2002), 

stripe (Mangalathu and Jeon 2019) and 

incremental dynamic analysis (IDA) 

(Vamvatsikos and Cornell 2002) approaches. In 

the cloud method a linear regression between 

seismic response and IMs in logarithmic space is 

established with unscaled ground motions for 

NLTHA. Although this method requires relatively 

small amount of NLTHA and is easy to 

implement, its prediction accuracy may be poor 

due to without a wide range of ground motion IM. 

For the stripe method, the ground motion is 

expanded to the same IM level, and the 

probability distribution of DMs under this 

intensity is calculated. The IDA method 

continuously expands a ground motion to obtain 

the IDA curve reflecting the structural response 

under different IM. Then the IDA curves 

corresponding to all ground motion records are 

obtained repeatedly. Obviously, the perform of a 

large number of NLTHAs in the stripe and IDA 

approaches requires considerable computing time. 

Various machine learning technologies, 

support vector machines (SVM) (Cherkassky 

1997), random forest (RF) (Breiman 2001), 

extreme gradient boosting (XGBoost) (Chen 

2016), and artificial neural networks (ANN) (de 

Lautour and Omenzetter 2009), have been used to 

solve various problems in the field of civil 

engineering, such as the classification of failure 

mode and the prediction of associated shear 

strength for reinforced concrete beam-column 

joints (Mangalathu and Jeon 2018), performance 

classifications and predictions for reinforced 

masonry shear walls (Siam et al. 2019), and the 

prediction of shear strength for reinforced 

concrete deep beams (Feng et al. 2021). Similarly, 

these ML methods can also be applied to the 

seismic fragility analysis of structures, because 

their model establishment relies on data-driven 

without considering the physical mechanism. ML 

methods can establish the relationship between 

seismic intensities and the corresponding 

structural demands based on experimental or 

numerical simulation databases. ML methods has 

the advantages of low calculation cost and high 

estimation accuracy in predicting DM and 

evaluating fragility of structure. Nevertheless, its 

predictions are deterministic, largely have ignored 

the uncertainty inherent within training and 

testing data.  

Instead of producing a point estimate like 

E[y|x], the conditional probability distribution 

P(y|x) for each value of x should be evaluated (i.e., 

probabilistic estimation includes the Bayesian 

approaches (Kim et al. 2020) and NGBoost (Chen 

et al. 2022; Duan 2019)). 

In this paper, an efficient probabilistic ML 

method is proposed for seismic fragility analysis 

of structures. The present paper is organized as 

follows: In Section 1, natural gradient boosting 

(NGBoost) is detailly introduced. The framework 

for seismic fragility analysis using the NGBoost 

method is provided in Section 2. A reinforced 

concrete frame (RCF) is analyzed and the 

performance of the proposed approach is 

discussed in Section 3 and Section 4, respectively. 

Conclusions are provided in Section 6. 

1. NATURAL GRADIENT BOOSTING FOR 

PROBABILISTIC PREDICTION 

The NGBoost can produce a prediction of 

probability distribution Pθ(y|x), where parameters 

θ (e.g., mean μ and standard deviation σ) is the 

functions of x. The loss function and the gradient 

in above gradient boosting will not be feasible to 

gradually obtaining the optimal probability 

prediction (Chen et al. 2022; Duan 2019). There 

are a new scoring rule S and Natural Gradient be 

selected in the NGBoost.  

Scoring rule S(θ, y) is used to evaluate the 

difference between a predicted distribution and an 

actual observation distribution, which is similar to 

the loss function L(F(x), y) of point prediction in 

the deterministic ML model. The maximum-

likelihood estimation (MLE) (1993 Eliason) score 

ℒ is commonly used scoring rule, which is given 

by 

  ( ), log | ,y P y= −θ θ x             (1) 
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where P(θ|x, y) is the likelihood of parameters θ. 

Continuous ranked probability score (CRPS) is 

another scoring rule(Gebetsberger et al. 2018). 

The negative gradient is the steepest descent 

direction would be to minimize the loss function, 

which relies on Euclidean distance between two 

parameter vectors and cannot represent the true 

“distance” between two distributions. In 

distribution space, the distance between two 

probability distributions determined by the 

parameter vector is expressed by KL divergence 

(Duan 2019) as follows 

   
( | ) ( | )

( || ) log ( | ) log ( | )KL
Q x Q x

D Q P P Q
 

=  − x θ x θ                                    (2) 

The natural gradient does is the direction of 

steepest descent in distribution space that 

minimizes the scoring rule ℒ(θ, y) is expressed as 

 
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where Pθ=Pθ(y|x); ∇θℒ[θ, y] is conventional 

gradient with respect to θ; Iℒ(θ) is Fisher 

Information that the target variable 𝑦 carries about 

the probability distribution, which can be written 

as 

   
T

( ) , ,y PI y y
  
 =   
 

θ θ θ       (4) 

To specify the algorithm, a set of training 

samples D=(xi, yi), i=1, 2, ..., N, are given, 

boosting iterations M, learning rate η, type of the 

probability distribution Pθ, scoring rule S, and 

weak prediction model f are determined. The type 

of the probability distribution for regression 

problem (studied in this paper) in the NGBoost 

include normal, lognormal, and exponential 

distributions.  

At the beginning of the algorithm, an initial 

parameter θ0 based on the training set is obtained: 

 0

1
arg max ,

N

ii
y =

= θ θ                 (5) 

Then, for each decision tree the individual 

natural gradients Gi
(j) with respect to the estimated 

parameters up to that stage as 
( ) 1,

j j

i i iG y

− =  θ
.  

The natural gradients Gi
(n) together with the 

input vectors xi to train the set of base learners of 

that stage f (j)(x). Next, the distribution parameters 

of this stage are updated as follows： 
( ) ( ) ( ) ( ) ( )( )1j j j j

i i if x   
−

= −                (6) 

( ) ( )( )1( )
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M

jj

i i

i

j

i f x y


 
=

−
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where, ρ(j) is the scaling factor, which scales 

equally on all distribution parameters. When the 

boosting iterations M is reached, the training is 

over. Finally, the mean and the variance 

prediction models F(M)= (Fμ
(M), Fσ

(M)) are obtained. 

2.  FRAMEWORK FOR SEISMIC 

FRAGILITY ANALYSIS  

In the seismic fragility analysis, the conditional 

probability that the structural responses exceed 

the threshold of a certain damage level under each 

ground motion IM needs to be calculated. The 

responses of buildings and bridges typically 

obtained by employing NLTHA, where the input 

variables consist of structural parameters xS and 

ground motion parameters xGM. The outputs are 

the structural response yR that represented by 

different damage measures of the structure under 

any earthquake, such as maximum inter-story drift 

ratio (MIDR) and curvature ductility (CD). The 

damages of a structure are generally divided into 

four states: slight, moderate, extensive, and 

complete damages (HAZUS 2022). As a surrogate 

model to approximate the expensive NLRHAs, 

the ML model is trained based on sufficient and 

perfect samples set to efficiently evaluate the 

output responses. The implementation procedure 

of NGBoost-based seismic fragility analysis is 

shown in Fig. 1. 
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Fig. 1. Implementation procedure of NGBoost-based seismic fragility analysis. 

2.1 Data generation 

The uncertainty in geometry and material 

parameters of structure needs to be reasonably 

characterized. In this study, Latin hypercube 

sampling  is used to conduct efficient sampling 

according to the preset distribution of input 

variables. Then Open System for Earthquake 

Engineering Simulation Platform (OpenSees) 

(McKenna 2006) is employed to construct the 

NLTHA models. Finally, a large number of 

numerical models based on variable input samples 

(including structural parameters xS and ground 

motions parameters xGM) are conducted to obtain 

datasets (xS, xGM, yR) where yR is output responses. 

2.2 Model training 

A mathematical model to predict the probability 

distribution Pθ(yR|xS, xGM) for each the structural 

and ground motion parameter vectors (xS, xGM) 

can be constructed based on the NGBoost. In 

order to perform NGBoost training and testing, 

the datasets are split into training and testing sets, 

e.g., 75% and 25% of the total data, respectively.  

Before starting training, like the traditional 

gradient boosting algorithm, five key 

hyperparameters of the NGBoost needs to be 

initialized, including the frame-level 

hyperparameters (i.e., the number of weak 

learners M, and learning rate η) and model-level 

hyperparameters (i.e., maximum depth D, 

minimum sample numbers for splitting NS, and 

minimum sample numbers for a leaf NL). Firstly, 

η, D, NS, and NL are set as the initial value and the 

training will be stopped when M is reached. It is 

also necessary to predefine the distribution type of 

response variables in NGBoost, such as normal, 

lognormal, and exponential distributions. Then, 

the model training is performed based on the 

training data set, where the hyperparameters are 

iteratively optimized through the grid-searching 

method (Chen et al. 2022). In grid-searching, the 

10-fold cross validation (CV) score is used to 

evaluate the performance of the model, which 

usually avoids the unexpected deviation caused 

by random sampling. 

Finally, the accuracy of the model is 

investigated further through the testing set using 

various metrics such as root mean squared error 

(RMSE) and the coefficient of determination (R2). 

If RMSE is near zero and R2 is near 1.0, this means 

good accuracy of the prediction potential.  

2.3 Fragility curves 

For NGBoost-based seismic fragility 

assessment after the probability prediction model 

is established, the basic steps are: 

a) Determine a group of ground motion 

intensities. 

b) Conduct probability prediction model 

with IMs to obtain the conditional distribution of 

corresponding output responses (i.e., mean μy and 

standard deviation σy), then directly calculate the 

exceedance probability of structure damage under 

given value of IM, as follows 

( ) 1 LS
GM

y
P IMs x





− 
= = − 

 
          (8) 

c) Repeat Step b) for each value of IM to 

obtain the fragility curves. 

Obviously, the acquisition process of 

fragility curves based on the NGBoost is very 

concise, that avoid the generation of random 
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samples for structural parameters and the time-

consuming Monte Carlo method in calculating the 

exceedance probability. 

3. DATABASE PREPARATION FOR 

NGBOOST PREDICT 

3.1 Ground motion records  

A suite of 100 ground motion records were 

obtained from the PEER database to evaluate 

seismic structural fragility. However, the most of 

them are between 0.3g and 0.6g. Under such 

earthquake intensity, it is difficult to produce 

enough structural damage at different levels, 

especially complete collapse. Therefore, the 

randomly selected 15 ground motion records are 

successively scaled according to Sa from 0.05g to 

1.6g by 0.05g per step to obtain 32×15=480 

ground motions records. The unselected 

100−15=85 ground motions are randomly scaled 

2 times to obtain 2×85=170 ground motions. The 

corresponding 650 set of IMs including PGA, 

PGV, SAI, EPA, and SaT1 are calculated according 

to Ref. (Wang et al. 2017) as ground motion inputs. 

 

Fig. 3. Fiber-based model of 3-span-6-storey reinforced concrete frame. 

Table 1. RCF attributes and its probability distribution 

Features Type Mean COV Lower Upper 

Concrete bulk density N 26.5 (kN/m3) 0.0698 20.95 32.05 

Core concrete compressive strength L 33.6 (MPa) 0.21 17.63 61.32 

Core concrete peak strain L 0.0022 0.17 0.0013 0.0036 

Core concrete ultimate strain L 0.0113 0.52 0.0023 0.044 

Cover concrete compressive strength L 26.1 (MPa) 0.14 17.02 39.26 

Cover concrete ultimate strain L 0.004 0.2 0.0022 0.0071 

Rebar diameter in columns N 25 (mm) 0.04 22 28 

Rebar diameter in beams N 20 (mm) 0.04 17.6 22.4 

Rebar diameter in beams N 18 (mm) 0.04 15.84 20.16 

Rebar yielding strength L 378 (MPa) 0.074 302.0 470.5 

Rebar elastic modulus L 201 (kMPa) 0.033 181.96 221.79 

Rebar hardening ratio L 0.02 0.2 0.0108 0.0355 

Damping ratio N 0.05 0.1 0.035 0.065 

Note: LN, lognormal; N, normal; U, uniform. 

3.2 Building numerical model and associated 

uncertainties 

A typical 3-span-6-storey reinforced concrete 

frame (RCF) shown in Fig. 3, is explored to 

demonstrate the proposed approach in this study. 
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The RCF can be efficiently and accurately 

simulated based on the fiber model using 

OpenSees. Compared with the macro model based 

on solid elements, the fiber-based model can 

reduce the time cost while maintaining the 

structural features, which is very advantageous for 

the seismic fragility analysis requiring a large 

number of model calculations. The process of 

fiber-based numerical model establishment on 

OpenSees software is detailed in Ref. (Cao 2023). 

The prototype of the frame structure is a 3-

span-6-storey high rest building. Due to the errors 

of design properties and construction conditions, 

the uncertainties of geometric and material 

properties should be considered in the numerical 

model of the frame structure. Based on the 

insights from previous research, 13 structure-

related uncertainties are considered as random 

variables. Table 1 summarizes the considered 

random variables and their statistical properties. 

The LHS is used to generate random samples to 

transfer uncertainties of structural parameter to 

fiber-based numerical models. In accordance with 

the number of ground motions, a total 

480+170=650 sets of random samples for these 13 

structural variables are implemented. 

Then, 650 fiber-based models were batch 

calculated based on OpenSees software to obtain 

the MIDR of the RCF as the output response. It 

should be pointed out that, the structural 

parameters are randomly matched with the ground 

motions for model analysis. Finally, the datasets 

were obtained with input variables, including 13 

structural parameters xS and 5 ground motion 

parameters xGM, and output variables yR.  

3.3 Training and prediction 

The whole datasets were divided into training 

sets with 480 selected ground motions and test 

sets with 170 unselected ground motions, 

respectively. At the beginning of training, hyper-

parameters M, η, D, NS, and NL are recommended 

to be 300, 0.01, 5, 4 and 1. In order to obtain high 

performance probability prediction model, the 

grid-searching method based on the 10-fold CV is 

used optimize the hyperparameters. In addition, 

the common normal and lognormal distribution 

are compared for discussing the impact of the 

selection of response distribution type on the 

model.  

The optimal hyperparameters and evaluation 

indicators corresponding to two different 

distributions are compared in Table 2. Normal 

distribution is better than lognormal distribution 

in R2 index and RMSE of training set, but 

lognormal distribution is better in test set. It 

should be noted that the test set is used to 

investigate the prediction accuracy of the model, 

thus its corresponding indicators are expected to 

be better.  

4. SEISMIC FRAGILITY ANALYSIS USING 

PROBABILISTIC NGBOOST MODEL 

4.1 Performance of the prediction 

To illustrate the applicability of the NGBoost 

method in seismic fragility analysis, common ML 

algorithms, such as support vector machines 

(SVM), random forest (RF), and extreme gradient 

boosting (XGBoost) are also used to predict the 

MIDR. Table 3 summarizes the R2 and RMSE of 
Table 3. Comparison of R2 and RMSE for various ML 

methods (training set and test set) in this RCF 

Error Measure SVM RF XGBoot NGBoost 

R2 (training set) 0.98 0.98 0.99 0.95 

R2 (test set) 0.70 0.86 0.88 0.86 

RMSE (training set) 0.13 0.12 0.09 0.21 

RMSE (test set) 0.43 0.28 0.27 0.30 

MIDR. Table 3 summarizes the R2 and RMSE of 

above-mentioned four methods. The XGBoost-

based prediction model shows a best performance 

for point estimation, while the NGBoost-based 

probability prediction model performs is very 

similar to the XGBoost, but obviously better than 

SVM. It should be further explained that in 

addition to providing relatively accurate point 

estimation, the NGBoost-based probability model 

can also give the variance of the point to reflect 

the inherent uncertainty of the response. 

The established NGBoost model is applied to 

evaluate the seismic fragility of the RCF, and the 

specific steps are described in Section 4.3. In this 
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study, the MIDR corresponding to the four 

earthquake-induced damage level are slight (less 

than 1/550), moderate (1/550-1/100), extensive 

(1/50-1/25) and complete damages (more than 

1/25). The fragilities for the RCF at the above four 

damage states are evaluated by traditional, various 

ML and NGBoost methods in Fig. 4. The fragility 

curves are variable under the influence of 

different methods, but basically keep consistent 

prediction results, such as slight, moderate and 

extensive damages. In Fig. 4(d), the large 

difference of the curve is derived from the 

assumption that there is a linear relationship 

between the logarithm of IM and the logarithm of 

DM in the traditional method. Another reason 

may be that the performance of the surrogate 

model is poor due to the very few training samples 

corresponding to the damage state. In addition, the 

fragility curves the RCF at the slight, moderate 

and extensive damages obtained by using 

NGBoost and traditional methods are compared in 

Fig. 5. The curves are very close, which indicates 

that the NGBoost method has good applicability 

in structural seismic fragility analysis. 

 

 

Fig. 4. Fragility curves using various methods for the RCF. (a) Slight damage; (b) Moderate damage; (c) Extensive damage, 

and (d) Complete damage. 

 
Fig. 5. Fragility curves using the traditional and NGBoost 

methods for the RCF. 

5. CONCLUSIONS 

In this study, a probabilistic machine learning 

method is proposed for seismic fragility analysis. 

The probabilistic ML method, i.e., NGBoost, can 

efficiently predict probability distribution, e.g., 

mean and standard deviation, of damage measures 

by establishing the mapping of ground motion and 

structural parameters to structural response. This 

feature is very convenient for the fragility 

estimation of structure, compared with traditional 

ML methods.  
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A typical structure is analyzed to illustrate 

and demonstrate the efficiency of the proposed 

approach. Compared with the traditional ML 

methods, such as SVM, RF, and XGBoost, the 

NGBoost method's point estimation accuracy is 

equivalent to the optimal NGBoost, but 

significantly better than the SVM. The 

exceedance probability of the structure under a 

given IM can be directly calculated by the 

obtained distribution parameters of the response. 

The fragility curves drawn are consistent with the 

traditional methods and the above-mentioned 

three ML methods. However, it should be pointed 

out that the fragility assessment process by the 

proposed method is more simplified.  

This proposed framework can be further 

extended to develop a ground motion IMs 

selection algorithm for the purpose of assessing 

the structural system, because one can readily 

identify the ground motions that significantly 

affect the variability of the fragility. In addition, 

the advantages of the NGBoost are more 

significant in the seismic fragility assessment of 

regional buildings because it avoids repeated 

training models for different building. 
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