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ABSTRACT: Climate disasters such as hurricanes significantly impact coastal communities, posing critical 
challenges to their resilience. Besides direct economic and social losses, coastal communities suffer from 
indirect cascading consequences of these extreme events. In particular, debris-related impacts pose significant 
economic burdens, while also resulting in cascading consequences. These consequences include, for example, 
structural damage due to debris impact, functionality impairment to transportation networks affecting access 
to emergency facilities, and delayed recovery of other systems. As a result, there is a need to better understand 
and model debris and its uncertain impacts on coastal communities in the face of storm events. This paper puts 
forward a probabilistic framework to evaluate hurricane-induced debris and its impacts at the community 
scale, which is essential in conducting a comprehensive resilience analysis of coastal communities. This 
framework poses interdependent probabilistic models spanning from the spatial estimation of debris presence 
and volume for hurricane events, to debris-induced physical damages and network level performance impacts 
(considering transportation infrastructure as an illustration). Moreover, this study use Monte Carlo approach 
to conduct simulations, which is accelerated by utilizing a deep neural network surrogate model in 
transportation network connectivity analysis. Select features of the proposed framework are illustrated using 
testbed community data and existing or approximated input models relevant to the Galveston region in Texas, 
USA. The results indicate the importance of capturing debris impacts when considering community-scale 
resilience metrics in coastal regions, without which the consequences of these events and equity of access to 
emergency facilities in the aftermath of them can be underestimated. 

1. INTRODUCTION 
Climate-induced events, such as hurricanes and 
tsunamis, exert a pronounced impact on 
communities, thereby creating critical impediments 
to their capacity for recovery and adaptation. As an 
example, the overall costs and damages from 
weather and climate disasters in the United States 
since 1980 exceed $2.275 trillion (Smith 2020). 
Additionally, the ability of coastal communities and 
their infrastructure to withstand and recover from 
extreme events is affected by the chain reaction of 
consequences that follow (Almutairi et al. 2020; 
Dong and Li 2016). These consequences can range 
from connectivity loss to critical facilities (e.g., due 
to debris accumulation) to long-term physical and 

mental health issues (Almutairi et al. 2020; Lowe et 
al. 2015). Debris generated during extreme climate 
events accounts for a significant proportion of 
disaster recovery costs, estimated at approximately 
27%. Additionally, the damages to roadway 
infrastructure in conjunction with debris can impede 
the functionality of transportation networks (FEMA 
2007; Tuzun Aksu and Ozdamar 2014). For 
example, accessibility to emergency facilities is 
critical in the aftermath of extreme events, which 
highly relies on transportation networks (Cui et al. 
2016; Green et al. 2017). Concerns regarding the 
annual risks of such consequences associated 
withstorm induced debris are expected to rise given 
projections of climate change and land-use 
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modification (Field 2012; Highfield et al. 2014; 
Masozera et al. 2007; Winsemius et al. 2016).  

Several studies have focused on predicting 
debris generated from weather and climate disasters 
such as hurricanes, tsunamis, and floods. Escobedo 
et al. (2009) proposed a model to predict tree debris 
using data from seven hurricanes in Florida. HAZUS 
(FEMA 2012) proposed models to predict hurricane-
induced debris from the built environment and trees 
using hazard and structural measures, which is one 
of the most widespread methods. More recently, 
Gonzalez-Duenas et al. (2022) developed a data-
driven model to predict the amount of waterborne 
debris following a severe storm using machine 
learning techniques. However, these models focus on 
predicting the total volume of debris in specific 
areas, rather than providing insight into its 
distribution at a resolution sufficient for inferring 
infrastructure impacts. This lack of information 
hampers decision-making regarding the impact of 
debris on connectivity loss in roadway infrastructure, 
for example. To address this gap, recent studies have 
begun to focus on debris dispersion and its effect on 
community-level connectivity (Kameshwar et al. 
2021; Nistor et al. 2017; Park and Cox 2019). 
Despite recent advancements in debris dispersion 
modeling, current models are limited in their ability 
to predict the distribution of debris, particularly in 
regards to its impact on community-level 
connectivity in roadway infrastructure. This study 
aims to address this limitation by proposing a 
probabilistic debris dispersion model that 
incorporates uncertainty in order to more accurately 
evaluate the distribution of debris and its impact on 
community-level connectivity. 

Identifying areas without access to emergency 
facilities, including medical centers and fire stations, 
is crucial to support emergency response (Green et 
al. 2017; Albano et al. 2014). This is important since 
the prompt emergency response is pivotal for the 
safety of residents within communities (Kocatepe et 
al. 2019). While few studies evaluated connectivity 
to emergency facilities considering debris presence, 
a comprehensive probabilistic methodology that 
captures the range of uncertainties in the problem is 
also lacking (Kameshwar et al. 2021). To address the 
mentioned knowledge gaps, this study presents a 
probabilistic methodology to evaluate connectivity 

loss to emergency facilities in the aftermath of 
hurricane events considering debris presence. 

While infrastructure system reliability and 
resilience simulations are becoming more complex 
and popular in decision-making, there is high 
demand for more efficient ways to conduct these 
analyses. One of the most popular approaches to 
quantify the uncertain impact of natural hazards on 
communities and infrastructures is through the use of 
Monte Carlo simulation for sampling and uncertainty 
propagation. However, this method suffers from high 
computational costs, especially when used for 
complex systems (Nabian and Meidani 2018). One 
of the ways to accelerate these types of simulations 
is using surrogate models. Surrogates can 
approximately describe the relationship between 
inputs and outputs of the system and become a 
substitute for heavy simulations (Nabian and 
Meidani 2018). While there are several surrogate 
modeling techniques, each one suitable for different 
problems and available data, a deep neural network 
(DNN) is used for this study.  In fact, DNN surrogate 
has been constructed and used to speed up the 
connectivity analysis, which is the most time-
consuming parts of the simulation. 

The remainder of this paper is structured as 
follows: First, the overarching probabilistic 
methodology is presented with details of models, 
which includes the introduction of a developed 
debris dispersion model along with the use of deep 
neural network surrogate model for network impact 
computation (section 2). Then, the proposed 
methodology is showcased by applying it to 
Galveston Island, TX (section 3). Section 4 
concludes the paper with the key contribution, 
findings, conclusions, and recommendations for 
future work.  

2. METHODOLOGY 
The proposed methodology in this study requires a 
set of interacting probabilistic models, which are 
explained separately in the following sections. It is 
emphasized that the proposed methodology is not 
limited to the specific models showcased in the 
application of this study.  
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2.1. Hazard Modeling 
Hazard group models consist of event selection and 
intensity estimation models. Multiple scenarios with 
various return periods can be considered along with 
hindcasts of previous historical events or scenarios 
of interest to stakeholders of a region. In the present 
study, output from the current state-of-the-art 
ADCIRC+SWAN simulation model (ADCIRC; 
SWAN) is used to evaluate the intensity measures 
needed for debris and damage models. 

2.2. Debris Modeling 
This model receives the event intensity measures 
evaluated by hazard models and then predicts the 
volume of the debris in the interested area. In the 
current study, the state-of-the-art probabilistic model 
developed by Gonzalez-Duenas et al. (2022b) is 
adopted, which was developed using gaussian 
process regression to predict uncertain debris 
volume. Moreover, it uses a wide range of variables 
related to the storm, built environment, 
demographics of the region, and natural 
environment, which makes it an advantageous 
choice compared to other available models. For 
example, considered storm and hazard-related 
parameters include surge depth, bathymetry, wave 
height, wave period, wave direction, water velocity, 
among others. Furthermore, this model evaluates the 
debris volume in three different low, intermediate, 
and high resolutions that are square grid cells of 500, 
250, and 125 m. The results of this model (debris 
volume in each cell) are used as an input for the 
debris dispersion model, which is proposed in the 
next section. 

Existing models can estimate the volume of 
debris within an area (or cell), but fail to indicate the 
spatial distribution of it at a resolution required for 
subsequent analyses of infrastructure impacts. For 
instance, considering debris impacts on 
transportation network, we are interested in knowing 
not only the volume of debris within an interested 
area but also if the debris is accumulated on 
roadways and whether it hinders functionality of the 
network. This process is uncertain, which 
necessitates use of probabilistic models with high 
resolutions. Although some studies have recently 
begun to addressed the question of debris dispersion 
experimentally and numerically, they are either 

limited to other hazard events such as a tsunami or 
disperse debris in a deterministic way that can result 
in a bias in the predictions (Kameshwar et al. 2021). 
Hence, to address the knowledge gap, a debris 
dispersion model is developed in the current study.  

The debris dispersion model is developed using 
the concept of random fields. A random field is a 
random function over an arbitrary domain that takes 
a random value at each point in the domain. In fact, 
a random field is the representation of the joint 
probability distribution for a set of random variables 
(Adler and Taylor 2007). While it has many 
applications in physics, biology, ecology, and data 
science, this is the first time that it has been used for 
debris dispersion (Hernández-Lemus 2021). Given 
the volume of debris, the distribution of the debris 
can be evaluated using a random field function. For 
the purpose of this study, a conditional random field 
function is used to account for locations that debris 
tends to get stuck there. For instance, there is a higher 
chance for debris to accumulate near the buildings’ 
locations. 

2.3. Transportation Network Performance 
Debris accumulation on the roadways can prevent 
emergency vehicles from having a complete access 
to the transportation network. While most of the 
studies only consider damages to the roadway 
infrastructures, this study aims to evaluate debris 
impacts on the transportation network, without 
which the connectivity loss in the aftermath of 
hurricane events can be underestimated. 

Given the distribution of debris on ground, 
accumulated debris on the roads can make them 
impassable. One vehicle can pass through one road, 
while the road is considered impassable for the other 
due to differences in the ground clearance height. In 
the current study, emergency vehicles are considered 
for transportation network analysis, such as 
ambulances and fire trucks. Lognormal distribution 
with a mean of 25 cm and a coefficient of variation 
of 0.2 is considered for the ground clearance height 
of the emergency vehicles (Sobanjo 2006). In each 
sample, one realization of ground clearance is 
compared to the height of the debris in each road to 
determine whether the road links are impassable for 
the particular group of emergency vehicles or not. 
Therefore, the updated transportation network and 
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available roads are different in each sample. 
Eventually, using Monte Carlo sampling, the 
probability of each road becoming impassible is 
evaluated for different types of emergency vehicles.   

2.4. Serviceability of Emergency Facilities 
While having updated transportation network 
condition is crucial for emergency response, it is not 
sufficient for identifying isolated regions with 
limited access to critical facilities such as medical 
centers and fire stations. These facilities have a 
critical role in reducing impacts in the aftermath of 
hurricane events, which emphasizes the importance 
of having access to different parts of the affected 
region. To evaluate the access of different parts of 
the region to the nearest medical center or fire 
station, a connectivity loss ratio (CLR) is used 
(Panakkal et al. 2022). CLR is defined as 1 −
𝐷𝐷𝑛𝑛/𝐷𝐷𝑓𝑓  where 𝐷𝐷𝑛𝑛  is the shortest distance between 
the considering node to the nearest particular type of 
emergency facilities (e.g., medical centers) under 
normal situations and 𝐷𝐷𝑓𝑓 is the shortest distance for 
the same pair of nodes after roads condition became 
updated due to the hurricane event. CLR can vary 
between 0 and 1 with zero denoting no impact from 
hurricane event on the network accessibility and one 
denoting complete loss of connectivity to the nearest 
emergency facility of a certain type. Eventually, the 
node results can be aggregated at certain geographic 
levels, such as census blocks or census tracts, to 
visualize the impacts of hurricane events on the 
accessibility of different parts of the community to 
emergency facilities. This way, decision-makers can 
identify the most vulnerable regions and priorities 
risk-reduction activities based on the results.  

Connectivity analysis is the most time-
consuming part of the Monte Carlo simulation. As a 
result, DNN has been used to make a surrogate 
model for accelerating connectivity analysis. DNN is 
a type of artificial neural network with multiple 
layers of nodes (also known as artificial neurons) that 
perform computations and transformations on the 
input data to produce output. It is designed to 
automatically learn and extract complex features 
from input data through the use of backpropagation 
and gradient descent optimization algorithms. Part of 
the samples has been simulated without any 
surrogate model. Then, the results have been used to 

train a DNN model for the connectivity analysis part, 
which is then used to accelerate the next simulations. 
The configuration of DNN is set based on Nabian 
and Meidani (2018). 

3. CASE STUDY: GALVESTON ISLAND 
In this section, a testbed community is used to 
demonstrate the proposed methodology.  

3.1. Overview of Galveston Island 
Galveston Island, TX, is used to demonstrate the 
methodology presented in the previous section. 
Galveston is a coastal town in Texas with a total 
population of more than 53,000 that forms about 
22,000 households. Galveston is primarily adopted 
for this study due to its susceptibility to hurricane 
hazards since it is located in the hurricane-prone Gulf 
of Mexico region. This island has experienced 
several major hurricane events, such as Ike (2008) 
and Harvey (2017) with $752 million and $345 
million cost respectively for debris removal 
activities, which make it an ideal testbed for 
considering debris impacts on coastal communities 
(FEMA 2007).  Figure 1 shows Galveston Island and 
its location in the Gulf of Mexico.  

3.2. Hazard Scenario 
While the proposed methodology is compatible with 
various sets of hazard models, dynamically coupled 
versions of Advanced Circulation (ADCIRC) and 
Simulating Waves Nearshore (SWAN) simulation 

 Figure 1: The study area showing the location of 
Galveston Island in the hurricane-prone Gulf of 
Mexico. 
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results of FEMA 36 storm were used to estimate 
needed parameters in the following models. FEMA 
36 is a probabilistic 500-year return period storm 
event in the Houston-Galveston area, which is 
widely used in research studies (Fereshtehnejad et al. 
2021). Some of the parameters that have been 
estimated using the mentioned simulation are the 
surge depth, wave height and direction, flow 
velocity, and wind field characteristics.  

3.3. Debris Dispersion 
Having the outputs of the hazard model, debris 
volume can be predicted probabilistically for each 
grid in the area of interest. In this study, 250 m grids 
are used to predict the volume of the debris based on 
the recommendation by Gonzalez-Duenas et al. 
(2022a). Figure  shows the output of the debris 
volume prediction model in Galveston Island for one  
 sample. It can be seen that most of the debris has 
concentrated in the populated area, where buildings 
and infrastructures are located. Furthermore, the 
southern part of the island is more impacted by the 
debris since the storm hit the island from the south 
and measurements that are directly correlated with 

the volume of debris were higher at those parts of the 
island. Moreover, Figure  demonstrates the 
distribution of debris using the debris dispersion 
model introduced in the methodology section for the 

same sample. It can be seen that debris dispersion is 
completely consistent with the debris volume results.  

3.4. Transportation Network Condition 
As mentioned before, different types of vehicles can 
be considered in this study. Although access to 
emergency facilities for normal vehicles can play an 
incontrovertible role in the aftermath of a hurricane 
event, connectivity for emergency vehicles is 
considered the main shape of emergency response in 
the analyses. Figure  illustrates the probability of 
road closure for emergency vehicles due to debris 
presence in the aftermath of the hurricane event. 
Debris tends to accumulate in the island's most 
populated area, mainly in its central parts. 
Consequently, considering debris impacts is crucial 
in the coastal community risk and resilience, 
particularly in the transportation network analysis, 
without which the impacts of hurricanes would be 
underestimated. 

 
Figure 3: Probability of road links closure in the 
aftermath of hurricane event. 

3.5.  Network Level Impact 
Given that the majority of computational expenses in 
the analysis pertain to network connectivity analysis, 
it has been deemed appropriate to model it utilizing 
a DNN with two hidden layers. The input data is a 
set of binary values showing whether the road links 
of the network are closed due to debris presence or 
not. The outputs are the CLR of 23 different census 
tracts, which are used to measure the quality of 
connection from those census tracts to emergency 
medical centers. Moreover, 30 percent of the data has 
been used to validate the surrogate model. 

Since the dimension of input data is high 
(number of links in the network), the computation 
burden of the neural network and its accuracy may 
be affected. Hence, Principal Component Analysis 
(PCA) has been conducted to reduce the 
dimensionality of the input first. Figure  shows the 

Figure 2: A realization result of debris volume 
prediction model; and debris dispersion model. 
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result of PCA on the data. As shown, the same 
accuracy can be achieved by using only half of the 
data in the new dimension. As a result, the first 400 
principal components of the input data are used to 
train the DNN model. 

Figure 4: Percentage of cumulative variance explained 
by the principal components of input data. 

Figure 5 shows the results of the DNN model 
for training and validation. In this study, two hidden 
layers have been used with Adam optimizer, a 
replacement optimization algorithm for gradian 
decent. Furthermore, the mean squared error loss 
function and R-squared metric are used with having 

30% of the data for validation. As it can be seen, the 
model is trained very fast and can be used as a 
substitution for regular and time-consuming 

connectivity analysis, which takes minutes to 
complete. The benefits of using the DNN surrogate 
model are even more when the network is larger and 
more complex. 
Finally, the serviceability of emergency facilities 
using the CLR, which is defined in the methodology 
part, is evaluated. The analyses are conducted 
considering emergency vehicles using transportation 
network to reach different regions. Figure 6 shows 
the average CLR for census tracts. Moreover, the 
distributions of CLRs have been shown for some 
census tracts, which can give valuable information 
for risk assessment and decision-making.  

4. CONCLUSION 
This study proposed a methodology to evaluate 
hurricane-induced debris impacts on coastal 
communities’ risk by integrating various models 
from hazard to cascading consequences and 
introducing a new model on debris distribution 
estimation. The results indicate the importance of 
considering debris impacts along with damages to 
roadway infrastructure in the risk assessment of 
coastal transportation networks, without which the 
impacts of hurricane events would be 
underestimated. Furthermore, the proposed 
methodology gives a quantitative tool to determine 
the most critical components of infrastructure 
systems and find the optimal allocation of limited 
resources to improve coastal communities’ 
functionality in the aftermath of hurricane events.  
Despite the advances posed in this paper, there are 
several lines of future improvement to the model and 
opportunities to leverage it. While the debris 
dispersion model is able to probabilistically estimate 
the location and height of debris in each sample and 
cell, it is conditioned only to the location of 

Figure 5: Loss and score change for training and 
validation data. 

Figure 6: Connectivity loss ratio and its distribution for 
census tracts to emergency medical centers. 
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buildings. Other factors such as the local topography 
could be considered leveraging the proposed 
conditional random field approach. Moreover, this 
framework provides a foundation for evaluating 
hurricane-induced debris effects on other 
infrastructures, such as power networks, where 
debris may similarly pose physical and functional 
threats to their operation. Conducting a more 
comprehensive simulation would result in 
heightened computation costs. Hence, a deep neural 
network surrogate model is proposed to remedy this. 
Different scale models for transportation networks 
besides surrogate models can be used to conduct 
Multifidelity Monte Carlo estimation that can make 
the simulation process even more efficient 
(Peherstorfer et al. 2016). Finally, this work can be 
extended to include models of the recovery dynamics 
and the process of debris removal which can 
influence diverse metrics of community resilience. 
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