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ABSTRACT: Existing bridges were designed using contemporaneous standards, but increased loading
due to increased freight demand must be considered in their ongoing safety management.
Finite-Element (FE) modelling provides the structural responses under known loads. However, such
models typically include many assumptions about structural behaviour. On the other hand, structural
health monitoring (SHM) provides valuable data about the actual structural behaviour and potentially
the structural condition. Typically, there are significant differences between the FE model prediction and
the SHM measurements. Due to the significant prior engineering knowledge about structural behaviour
and performance, an effective way to combine new observations with existing models is using Bayesian
updating strategies. This paper reviews the current state of the art of Bayesian updating, which has
undergone tremendous developments in the last decade or so. We discuss how engineers can benefit
from these developments, specifically for updating structural models based on data through the fusion of
prior engineering information and structural health monitoring data. The modern Bayesian workflow is
applied to a simple case study of a moving load on a beam. The work illustrates the potential benefits of
the approach for updating the performance prediction of structures based on data.

1. INTRODUCTION

1.1. Overview
Bridges are vital components of transport infras-

tructure. Due to their essential role, they require
careful ongoing management to provide a reliable
service. Existing bridges were designed to the
codes of practice at the time of their construction
but changing traffic loading and new requirements
should be considered.

Finite element models (FEM) can be used to de-
termine the internal forces, displacements, mode
shapes, frequencies, and other dynamic parame-
ters. There are different sources of uncertainties
and simplifications in the modelling and analysis
of structures. Uncertainties including model pa-
rameters such as geometric and material proper-
ties, model assumptions, simplifications of bound-

ary conditions and loads, and structural behaviour
affect the structural responses (Sun et al., 2020).

Using measured responses of the structural be-
haviour from SHM, the structural model can be up-
dated to improve FEM-based performance predic-
tion (Friswell and Mottershead, 1995).

1.2. Finite Element Model Updating
To calibrate the numerical model to the actual be-

haviour of the structure, Finite Element Model Up-
dating (FEMU) techniques have been developed. In
comparison to the actual structural data, the im-
proved FE model can generate results which are
closer to the actual situation of the structure. Up-
dated models have been used in different fields of
structural engineering like risk assessment, SHM,
and control of structures (Hemez and Doebling,
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2001; Mustafa et al., 2015).
Probabilistic approaches consider a statistical

problem focusing on the model and data mea-
surement uncertainties during the updating process
(Bouzas et al., 2022). This approach incorporates
modelling assumptions and measured structural be-
haviour to produce a probability distribution for pa-
rameters. Due to the difficulties and uncertainties
involved in determining the actual parameters (ini-
tial assumptions and measurement), probabilistic
methods are often the best choice in model updating
(Baisthakur and Chakraborty, 2020).

1.3. Bayesian Model Updating
Bayesian inference uses random variables and

probability density functions (PDFs) to define un-
certain parameters and Bayes’ theorem as a frame-
work for solving the model updating problems
(Asadollahi et al., 2018). This method allows com-
bining the empirical evidence and field measure-
ments with prior engineering information into the
probabilistic distributions of critical mechanical pa-
rameters of bridges (Asadollahi et al., 2018).

Since analytical methods of inferring a multivari-
ate probability density function (PDF) is generally
prohibitive, sampling processes are required for
Bayesian model updating. Markov Chain Monte
Carlo (MCMC) based simulation techniques cre-
ate a sequence of samples whose distributions
converge to the desired distribution using a se-
quence of random variables (Neal, 1993). Evo-
lutionary MCMC and Delayed Rejection Adap-
tive Metropolis (Haario et al., 2006)), Transitional
MCMC (Ching and Chen, 2007)), Metropolis-
Hasting (MH) (Chib and Greenberg, 1995)), and
Gibbs sampling (Cheung and Bansal, 2017)) are ex-
ample developments in MCMC techniques. How-
ever, generating the samples using a random walk
in which choosing the next step only depends on
the current one are inefficient. Simple methods like
MH and Gibbs sampling need, a long time to con-
verge to the desired distribution in large scale mod-
els with different parameters (Neal, 1993).

Hamiltonian Monte Carlo (HMC) sampling was
introduced by Duane et al. (1987). For simulating
the samples that follow a target distribution, it em-
ploys Hamiltonian dynamics to determine the next

state in the Markov Chain. As a result, it con-
sistently explores the probability space, and larger
steps are used for moving across the sample space.
In comparison to traditional random walk-based
MCMC algorithms, HMC often delivers faster con-
vergence with less correlation between samples,
and it provides important diagnostics on the model
specification (Baisthakur and Chakraborty, 2020).
However, the effectiveness of HMC is significantly
reduced by the poor selection of two hyperparam-
eters during sampling. Consequently, the No-U-
Turn sampler (NUTS) was developed by Hoffman
and Gelman to solve the difficulties in adjusting
these hyperparameters (Hoffman et al., 2014).

1.4. Bayesian Updating for Structures
Stochastic updating methods which are used in

civil engineering to update models with measure-
ments from SHM are relatively computationally
complex and expensive. Multi-dimensional prob-
lems which use MCMC methods require shorter
steps, so that the highest probability, the region will
be kept. However, this procedure causes highly au-
tocorrelated samples, and chain convergence only
occurs after many steps. Furthermore, traditional
MCMC methods do not provide diagnostics on
their performance, unlike HMC.

1.5. Contribution
Bayesian model updating of large-scale struc-

tures is rarely done or they use problematic older
sampling methods, as noted previously. New de-
velopments in Bayesian updating in sampling us-
ing HMC, NUTS and probabilistic programming
languages can avoid many of these problems. It
has larger steps and less correlated results, speeds
up convergence to the target distribution, and so
makes Bayesian updating more practical for large-
scale models. This paper discusses the current state
of the art of Bayesian updating focusing on HMC
and NUTS, and how engineers can benefit from
developments in Bayesian modelling using a large
amount of data from SHM. As a demonstration, a
simple case study of a point moving load on a beam
will be updated using modern Bayesian workflow
to show the efficiency of using new developments
of Bayesian sampling in practice.
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2. SAMPLING FOR BAYESIAN INFERENCE

2.1. Bayesian Inference
Considering the iterative stochastic method,

FEMU can be considered a statistical problem. The
prior belief of parameters that consider uncertainty
using the probability density function (PDF) is up-
dated by measured data (D) using Bayes’ theorem:

P(θ | D) =
P(D | θ)P(θ)

P(D)
(1)

where, θ and P(θ) represent uncertain parameters,
and the prior PDF for θ , respectively. D is the mea-
surement or data, the term P(D | θ) is the likeli-
hood function which is the probability of observ-
ing D for the specified model parameters (θ ). Fi-
nally, P(θ |D) is the updated (or posterior) distribu-
tion of the model parameters, while P(D) =

∫
P(D |

θ)P(θ)dθ is the normalization factor. And it is this
normalization factor that is so difficult to integrate,
that requires the use of sampling methods.

Priors can be obtained from many different
forms, including professional judgment, testing of
lab-scale experiments, and prior uncertainty quan-
tification of the relevant parameter(s). A very com-
mon approach is to use a conjugate prior distribu-
tion (Kim and Song, 2021; Bernardo and Smith,
2009; Lindley, 2005), in which the integration can
be done in closed form.

The likelihood function can be achieved by con-
sidering the equation for the probabilistic model
measurements and model output error. The PDF
of the posterior can be calculated using sampling
methods (Ereiz et al., 2022).

Having determined the priors and likelihood,
the calculation of the posterior (multidimensional)
PDF can be very challenging since it involves a
large number of parameters. The high-dimensional
integral in the denominator must be found by ap-
proximating methods or sampling. Sampling meth-
ods such as Markov chain Monte Carlo is the
most popular solution for this problem (Ereiz et al.,
2022).

2.2. Sampling Methodologies
Stochastic methods can generate long sequences

of samples for probability distributions in a way

that the empirical average converges to the corre-
sponding value (Betancourt, 2019). Creating these
samples is very challenging. Using a discrete-
time Markov-chain, samples can be produced from
successive states. The random walk Metropolis-
Hastings (MH) is one of the first widely used
MCMC algorithms that was improved and created
other methods by using first or higher order gra-
dient. This method moves to a new state near the
current sample randomly. Based on the density dis-
tribution, if a new point is more probable than the
current point movement will be accepted, and if a
less probable point obtains movement sometimes
will be rejected. MH produces samples with high
correlation and low acceptance rates based on ran-
dom walks. This means that all of the samples that
were taken are not effective and a large number of
iterations are required, causing computational com-
plexity in large-scale models (Roberts et al., 1997).
In complicated problems with the high dimension-
ality of the target distribution, simple proposals like
random walks will have a high rate of rejection and
thus require small steps. As a result, the movement
through the parameter space will be slow, and ex-
ploring the target distribution adequately often fails
(Betancourt, 2019).

Gibbs sampling converts sampling multi-
dimension problems to choosing a new sample
conditionally for each dimension (Lee, 2022).

To examine the effective number of samples,
the Gelman-Rubin statistic (denoted R̂) was intro-
duced (Gelman and Rubin, 1992). This diagnos-
tic analyzes the difference between multiple chains
to evaluate MCMC convergence. The variances
between-chains and within-chains will be estimated
for each parameter and if large differences exist, it
shows non-convergence (Betancourt, 2019).

HMC leads the Markov chain to the higher pos-
terior density regions using the gradient of the log-
likelihood. It needs transitions that follow the high
probability mass, and automatically generate the
desired exploration direction for the target distribu-
tion using a differential equation. The computation
may be more complicated but the acceptance rate
is higher even with a large step size. Trying to find
the next movement to a new point using a numerical
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integrator (typically leapfrog integrator) while stay-
ing in the regions with the most contribution to the
integral, step sizes can be increased in sample space
so the correlation will be reduced. Consequently,
the number of samples that are used to approximate
the integral decreases, and convergence to the target
occurs more rapidly (Betancourt, 2019).

Choosing an inappropriate leapfrog algorithm’s
step size and number of steps can decrease the
HMC’s efficiency. A very useful algorithm called
No U-Turn Sampling (NUTS) automatically tunes
HMC using a recursive approach without the need
for human input or expensive tuning cycles (Hoff-
man et al., 2014). As a result, HMC-NUTS is
a highly efficient sampler for exploring the mul-
tidimensional log-likelihood surface (Nishio and
Arakawa, 2019; Gelman et al., 2020).

2.3. Probabilistic Programming Languages
Probabilistic programming is an approach where

probabilistic models are defined and estimated au-
tomatically. There are a range of Probabilistic Pro-
gramming Languages (PPLs) such as BUGS, Win-
BUGS, JAGS (Just Another Gibbs Sampler), Stan,
and PyMC. Thus, in contrast to much of the liter-
ature in structural engineering, there is no longer a
need for bespoke programming of samplers or log-
likelihood functions.

PyMC is a PPL written in python providing users
with access to a modern framework of Bayesian in-
ference algorithms (e.g. NUTS and ADVI). Models
are created in user-friendly syntax, and visualiza-
tion is done using the related package ArviZ for the
post-processing of Bayesian models.

2.4. Principled Bayesian Workflow
Bayesian analysis needs a generative model for

parameters and data which can define a joint prob-
ability distribution between them. After choosing
priors and likelihood, it is very beneficial to do the
predictive simulation and check the priors. Prior
predictive checking yields the model performance,
given the prior distributions. It simulates using the
model instead of measured data. The model outputs
can be examined to observe the relationship be-
tween the outcome and prior distributions selected

so that the outcomes stay within a feasible region
(Martin et al., 2022).

The current state-of-the-art in fitting models in
Bayesian inference uses HMC-NUTS sampling.
Indeed, NUTS facilities the solution of com-
plex models without requiring specialist knowl-
edge of the sampler settings, opening up advanced
Bayesian modelling to a wider audience than previ-
ously possible (Gelman et al., 2020).

After running samples, chains should be eval-
uated. Divergence during sampling indicates a
poorly specified model that would benefit from
re-parametrization (Martin et al., 2022). There
shouldn’t be a substantial difference between dif-
ferent chains run, and all chains should look like
a ”furry caterpillar“. Chains meeting this require-
ment indicate that the choice of model and priors
are appropriate. Furthermore, the R̂ statistic will
indicate the effectiveness of the sampling for each
model parameter.

After checking posterior samples and checking
inference errors, posterior predictive checks should
be performed. Firstly, plots can be checked to iden-
tify if the inferred posterior distribution of param-
eters is of the reasonable form (e.g. uni-modal)
(Martin et al., 2022). Secondly, the actual data can
be overlaid with the posterior model predictions to
confirm the reasonableness of the estimated model,
using ArviZ or other visualization programs.

3. APPLICATION

The application of the current state of the art in
Bayesian Updating and using the above-mentioned
workflow in structural engineering is shown using
a simple beam example.

3.1. Beam Model

Figure 1 illustrates a simple beam with a length
of 20 m, flexural rigidity (EI = 200 MNm2) and a
moving point load (P = 100 kN). When the mov-
ing point load crosses the beam, the deflection that
occurs along the beam can be calculated. Based
on Macaulay’s Method (Caprani (2009)) a closed-
form expression of the deflection (δ ) of the beam is
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found:

δ =
PL3

6EI

[
a3(1− x) −⟨a− x⟩3

+a(1− x)3 −a(1− x)
]
.

(2)

The notation ⟨a−x⟩ represents a Macaulay bracket,
which is equal to zero when the term inside it is
negative and takes its value when the term inside
it is positive (Caprani, 2009). P is the point load,
a represents the location where the deflection is
sought, and x is the location of the moving point
load on the beam. In this application, it is assumed
that the beam length L and flexural rigidity EI are
uncertain.

L

x

P

EI

Figure 1: Beam and moving point load.

3.2. Generating Data
In this application, it is assumed that five sensors

are located along the beam, at 0.25L, 0.4L, 0.5L,
0.6L, and 0.75L. These sensors ’record‘ the deflec-
tion while the moving point load crosses the beam
(δm,), using Equation (2). Artificial Gaussian noise
was added to the deflections to reflect realistic mea-
surement conditions:

δm = δ + ε (3)

where ε ∼N (0.0,0.005), that is an unbiased addi-
tive noise with 5 mm standard deviation. Readings
were taken with a sample rate such that 200 read-
ings are made for each sensor during the movement.
One traverse of the point load was used to update
the uncertain parameters of the beam using PyMC
and HMC-NUTS sampling. An example of the the-
oretical and simulated measurements is shown in
Figure 2.

Figure 2: Function and data results plot.

3.3. Beam Model Updating

Typical of engineering problems, there is much
available prior knowledge that can assist in the def-
inition of plausible prior distributions for uncertain
parameters. Even better, using the advanced sam-
pling techniques described earlier, it is not neces-
sary to select conjugate priors, and the most appro-
priate physical prior distributions can be selected.
In this example, EI and L are considered uncertain
parameters with Beta and Normal distribution, re-
spectively. Although the normal distribution has
physically unreasonable negative support, it is a
maximum entropy distribution with a small vari-
ance around the nominal value of length, L, and
so remains plausible. In contrast, we demonstrate
the use of a non-conjugate prior for EI that re-
spects engineering bounds. Proposing the engi-
neering bounds (based on reasonable limits for the
elastic modulus of concrete) EImin = 150 MNm2

and EImax = 250 MNm2, EI can be parametrized
using beta-distributed η on (0,1), and then EI =
EImin +η(EImax −EImin). The distribution param-
eters (mean, µ and standard deviation, σ ) are pre-
sented in Table 1. Then, EI can be considered a
Deterministic in PyMC.

The likelihood function is described by a Normal
distribution with zero mean and a variance for the
error between model output and generated data. A
HalfNormal distribution with a scale parameter of
0.01 was used for the standard deviation, as this has
non-negative support.

The model structure is shown in Figure 3. A prior
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Table 1: The prior distributions.

Parameter Distribution Parameters Mode Support
EI (MNm2) Beta α = 2,β = 3 183.3 (150,250)

L (m) Normal µ = 20,σ = 0.01 20 (−∞,+∞)

predictive check shows that the model priors cover
the range of the readings well, e.g.. Figure 4.

Figure 3: Probabilistic model structure via GraphViz.

HMC-NUTS inference is run on the model using
PyMC and the resulting posterior density and trace
plots for EI and L are shown in Figure 5. Trace
plots demonstrate good results between and within
the chains. The R̂ statistic is close to 1.0 for all pa-
rameters indicating good convergence of the chains.
Kruschke plots of the posterior parameter densities
are shown in Figure 6.

3.4. Posterior Predictive Checks
Posterior predictive checks (PPC) are useful

ways to understand the model. PPC or sampling
from the posterior, using traces to draw different
samples of parameters and generate data. Figure 7

Figure 4: Prior predictive check (50 samples) for the
sensor at 0.75L.

shows the distributions of deflections: observed,
posterior mean, and samples from the posterior.

4. CONCLUSIONS

Recent developments in Bayesian methods can
help structural engineers improve model updating.
Using HMC-NUTS sampling, engineers are free to
use non-conjugate distributions, and can have im-
portant diagnostics to improve model building. In
most structural engineers’ problems, there is a well
prescribed model, but with uncertain parameters.
Priors can use engineering knowledge or experi-
ments.

The deflection of a simple beam with a moving
point load was used as a demonstration. The prior
and posterior predictive checks show the model is
acceptable, and the parameter estimates care accu-
rate. The updating procedure was done without any
user input in choosing the best algorithm and their
settings for best convergence and model-fitting.

Overall then, following a modern Bayesian
workflow can help structural engineers to update
priors with SHM data, and the updated model with
posterior parameter distributions can better predict
the uncertain real structure behaviour.
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Figure 5: Posterior density and trace plots of each chain.

Figure 6: Posterior plots
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