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ABSTRACT: Road bridges are one of the most important infrastructure assets for global transportation.
With the growing freight demands, traffic loads on bridges are also increasing. Specifically, the increase
of heavy load platforms (superloads) may impose an unacceptable risk for existing bridges. Because
these events are statically-significant, they offer a unique opportunity to determine the true behaviour of
the bridge. Notably, measurements from these events can be used to determine statistical parameters
which are commonly used in reliability assessement. These measurements can also be very useful for
calibrating a model of the bridge, as may be used for bridge assessment. Intuitively, heavy vehicle
crossings have inherit randomness in their properties – such as nominal axle loads, vehicle speed, and
travel paths. This paper evaluates the variations in model updating performance when considering the
random nature of heavy load platforms movements. This paper also provides statistical parameters
determined based on measurements for reliability assessment. For this work, bridge load effects were
measured for multiple heavy load platforms across a reference bridge. Statistical evaluation of the
bridge load effects of multiple heavy load platforms is conducted. Grillage analysis is used to simulate
the crossing of these heavy load platforms. Following this, model updating is conducted for each heavy
load platform measurement by tuning key model parameters (e.g., longitudinal stiffness of beams). The
variations in the updated models (i.e., updated parameters and model outputs) are then evaluated. The
findings should inform users on the variability in bridge load effect due to heavy load platforms and its
influence on bridge model errors.

1. INTRODUCTION

Road bridges are constantly exposed to varying
traffic loads over their lifespan. With the grow-
ing freight demands, traffic loads on bridges are
also increasing (Hung, 2014; Decò and Frangopol,
2013). Specifically, the increase of heavy load plat-
forms (superloads) may impose unacceptable risk
for existing bridges. Because these events are stat-
ically significant (load magnitude greater than nor-
mal traffic), they offer a unique opportunity to de-
termine the true behaviour of the bridge.

The reliability assessment of bridges is an im-
portant part of road asset management throughout
the life cycle of bridge structures. Reliability as-
sessment has an extensive literature and the sta-

tistical parameters, specifically the bias factor (λ )
and coefficient of variation (CoV), are important in-
puts towards reliability assessments. However, the
bias factor and CoV are typically uncertain parame-
ters estimated based on engineering experience. To
this, measurements of statistically-significant heavy
loads crossing road bridges can be valuable in de-
termining benchmark bias factor and CoV for use
in heavy load reliability assessments.

Model calibration of bridge structures using
measurement data aims to enhance existing numer-
ical models such that the computed results have rea-
sonable fidelity with the measurements. Studies of
Okasha et al. (2012) and Polanco et al. (2016) are
a few examples of model calibration applications in
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bridge assessments, both which subsequently con-
tribute towards bridge structural reliability. Eval-
uating the model calibration procedure of bridges
also allow for assessment of properties properties,
including corrosion effect (Heitner et al., 2019),
non-destructive damage indicator, and bridge ca-
pacities (Sipple and Sanayei, 2015; Costa et al.,
2015). Concerning model calibration procedures,
measurements of bridge load effects from crossings
of superloads are also valuable inputs. However,
heavy platform loads have inherit randomness in
their properties – such as nominal axle loads, ve-
hicle speed, and travel paths - which can affect the
performance of model calibration.

Accordingly, the aim of this paper is two fold: (1)
to evaluate the effects of heavy load vehicles on the
model updating performance of bridge numerical
models, and; (2) to provide bias factor and CoV ob-
tained from measurements of heavy load vehicles,
of which can be useful for practitioners in reliabil-
ity assessment. A road bridge located in Melbourne
is subjected to heavy platform loads and chosen for
the purpose of this study. Monitoring systems in-
stalled during the crossings of heavy platform loads
allow bridge load effect measurements to be ob-
tained. Statistical parameters for reliability assess-
ment (bias factor and CoV) are determined from
these measurements. Additionally, model updating
procedures are carried out for the bridge numerical
model using the measurements. The influence of
heavy platform loads on the model updating perfor-
mance were also evaluated and discussed.

2. SUPERLOAD MONITORING DATA AND NU-
MERICAL SIMULATION

2.1. Strain measurement
Strain measurements were collected from a long

term monitoring system of a road bridge located
along the Hamilton Highway, Melbourne, Aus-
tralia. The bridge is a three-span, simply-supported
I-girder bridge illustrated in Figure 1.

The bridge was subjected to scheduled heavy
platform crossings (Figure 2) for a period be-
tween Jan 2019 to Nov 2020. The magnitude of
heavy platform loads ranged from 76 Tonne to 138
Tonnes. Taking account the maximum recorded
load (138 Tonnes), a total of 55 individual mea-

surements containing the heavy platform load were
used for this study. The measurements are treated
as a probabilistic database to determine statistical
parameters as well as measured inputs for model
calibration.

Table 1 outlines the sensor channels that were
placed along the superstructure of the bridge in Fig-
ure 1. Strain gauges were primarily placed at top
and bottom flanges of beam girders to determine
the midspan bending moments.

Table 1: Strain gauge location and identification.

Channel ID Strain gauge location
S2-B1-T Span 2, Beam 1, Top flange
S2-B1-B Span 2, Beam 1, Bottom flange
S2-B2-B Span 2, Beam 2, Bottom flange
S2-B3-B Span 2, Beam 3, Bottom flange
S2-B4-T Span 2, Beam 4, Top flange
S2-B4-B Span 2, Beam 4, Bottom flange

Figure 3 summarises the strain readings for the
55 individual crossings of the heavy platform load.
It is observed that the strain data of top flange strain
gauges (Table 1) are very small relative to the bot-
tom strains. This can suggest that the top flange
strain gauges are located close to the neutral axis of
the beam girders. As can be seen, the magnitude
of strain values appear consistent throughout the 55
moves albeit having slight variations in magnitude.
Since the time axis is normalised, this suggest that
the variations of strains between moves can be due
to other varying factors such as travel path, site con-
ditions, and axle loads.

2.2. Grillage modelling
Grillage modelling is adopted for the nu-

merical study of this work as it is commonly
adopted by practitioners due to its rapid modelling
means whilst providing reasonable analysis accu-
racy (American Association of State Highway and
Transportation Officials (AASHTO), 2012). The
grillage model is a two-dimensional (2-D) repre-
sentation of three-dimensional (3-D) structure of
the bridge using linear elements aligned in a grid.
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Figure 1: Components of the subjected road bridge. DL indicates the location of its data acquisition station.

Figure 2: Heavy platform loads along the highway.

A grillage consist of longitudinal and transverse el-
ements connected to one another in a grid form
that represent the deck and its main structural ele-
ments. Typically, longitudinal elements are used to
model the supporting girders while transverse ele-
ments are used to represent the slab deck. Supports
are placed at nodes of grillage model to represent
the position of boundary conditions such as piers or
abutments.

Figure 4 shows the grillage model of the bridge
deck. The grillage model is created using the
free and open-source ospgrillage python pack-
age developed by the authors (Ngan and Caprani,
2022). This is used to quickly create and per-
form bridge deck grillage analyses. ospgrillage

wraps OpenSeesPy, which is a Python interpreter
of OpenSees - an open-source structural analysis
framework well-suited for various structural and
geotechnical systems (McKenna, 2011). The gird-
ers and slabs are aligned in the global x and z-axis
respectively. All grillage members are modelled
using elastic beam elements. Nodal restraints are
placed at pier locations to simulate the supports.
The mesh for each spans are segregated and non-
continuous along the pier support node lines since
there is minimal deck continuity between the spans.
The grillage model is discretized into an even num-
ber of grid spacings such that the nodes along the
mid-span of each beam girder position correspond
to the locations of sensors in Table 1.

The top and bottom longitudinal strains are com-
puted from the bending moments extracted at the
mid-span node locations using the relationship for
bending stress and Hooke’s law, giving:

σy = κy =
εtop − εbtm

h
· y = My

EI
(1)

where the symbols have their usual meanings and
are all stated for the longitudinal direction.

2.3. Statistical evaluation of heavy loads
The probability density function (PDF) for the

maximum absolute strains values of each channel
in Figure 3 are given in Figure 5.

The statistical parameters of the strain measure-
ments are given in Table 2. Here, the strains of each
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Figure 3: Strain gauge readings from 55 heavy plat-
form crossings (138 Tonnes). Strain readings are in
microstrain (µε) and normalised across time.

beam girder computed using the grillage model are
considered as the nominal values, as that is what an

assessor would determine. The bias is calculated
as the ratio of mean and nominal values. For top
flange strain channels in Table 1, the bias is not de-
termined due to the very small near zero nominal
values. The calculated bias factors in Table 2are
generally lower than one - which is typically the
case for load effect. The CoV is the ratio of stan-
dard deviation and mean.

Table 2: Statistics of the absolute maximum strains for
strain channels. Units in microstrain, µε

Sensor Mean Std. dev. Bias CoV %
S2-B2-B 107.89 20.80 0.98 0.19
S2-B3-B 68.95 4.93 0.64 0.071
S2-B1-T 1.089 0.422 - 0.387
S2-B1-B 19.39 5.08 0.57 0.261
S2-B4-T 1.04 0.51 - 0.484
S2-B4-B 78.14 6.51 1.03 0.083

3. MODEL CALIBRATION
3.1. Sensitivity-based model updating

The sensitivity-based model updating procedure
is used, which is an iterative process that tunes
model parameters to minimise the error between
strain measurements and corresponding strains cal-
culated from grillage models (Mottershead et al.,
2011). Here, the grillage models is treated as a
function (black box) that calculate the correspond-
ing strain values of the measurements. This rela-
tionship between calculated strains and model pa-
rameters can be defined as:

R = f (P) (2)

where R and P are vectors containing model pa-
rameters and model responses respectively. Here,
the black box that describes the relationship be-
tween R and P, f , is the numerical grillage model.
The parameter and response vectors can be shown
as:

P =
[
p1, p2, ..., p( j−1), p j

]
(3)

R =
[
r1,r2, ...,r(i−1),ri

]
(4)
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Figure 4: Plan view of grillage model, detailing dimensions (in mm)

Figure 5: Probability density of updating parameters. Mean value for each channel are also indicated.

where R and P has i and j number of elements
respectively. From 2, sensitivity can be calculated
for all responses with respect to all parameters. A
sensitivity matrix of dimension (i× j), S, is then
obtained:

S = Si j =

[
δRi

δP j

]
. (5)

The sensitivity matrix is calculated during each
iteration to optimise the sensitivity-based objective
function. Upper and lower bound constraints can
be applied to updating parameters to prevent unrea-
sonable solutions for the physical parameters. Con-
vergence is achieved once the average parameter
change is below the defined tolerance of 1%.
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3.2. Selection of model parameters
A parametric study is first performed to iden-

tify model parameters of the grillage model that
are sensitivity towards the computed strains. This
is important as the selection of parameters should
be carefully considered as they potentially result
in non-convergence or non-unique solutions. The
parametric study is conducted by manually tun-
ing and adjusting the model parameters (primarily
the stiffness or elastic modulus), which influence
the bending moment behaviour since the measured
strains attributes to bending strains (top and bot-
tom flanges). It is found that the elastic modulus -
while being a proxy for adjusting the bending stiff-
ness - is sensitive towards the bending moments
(and strains) at midspans of Beams 1 to 4. Con-
sequently, the concrete elastic modulus of Beams
1 to 4 (Eb1 to Eb4) are chosen to be updated dur-
ing model calibration. It should be note that the
concrete elastic modulus acts as a proxy to tuning
the bending stiffness of the beam girders, amongst
other sources of stiffness. The selected parameters
allow a functional yet minimal model calibration
as the number of chosen parameters is kept as low
as possible (four parameters to match six measure-
ments) to avoid ill-conditioned numerical solutions
(Jaishi et al., 2007). The updating parameters are
given a lower bound of 5 to avoid deviating to neg-
ative values and lose their physical meaning. An
upper bound of 1000 is also in place to avoid any
extreme non-convergence of parameters.

The target R matrix of Equation (4) comprise of:
(1) the maximum absolute strain value of the mid-
span bending (top and bottom strain) channels, and
(2) the root-mean-square error between measured
and calculated strain from grillage model. The
latter is considered to correlate the shape profiles
of the strain time histories between measured and
computed strain readings.

3.3. Calibration Results
Figure 6 shows the strain time histories from the

initial model and calibrated model for a single sim-
ulation of load crossing. The respective strain mea-
surement used in the calibration procedure are also
plotted alongside each channel in Figure 6. As can
be seen, the model calibration procedure improves

the prediction of absolute maximum strains. Over-
all, the updated responses captures the behaviour of
the bridge deck reasonably well - notably the max-
imum strains at each beam as well as the deck con-
tinuity

Figure 6: Comparison of model responses from calibra-
tion with measurements for a single movement.

Table 3 summarises the average initial and up-
dated parameters for all 55 heavy load moves.
The statistics of the updated parameters are also
summarised alongside Table 3. Based on the up-
dated model, the parameter values attained phys-
ically non-meaningful values for Beams 1 and 4
for both span 1 and 2. This is expected since the
concrete elastic modulus acts as a proxy in cap-
turing at best other phenomenon which are not
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represented by grillage model. Such phenomenon
can include cracked concrete behaviour, additional
stiffness from non-structural components, and so
forth. Overall, the higher order of magnitude ob-
served in the final parameters values are attained
in order to correspond to the lower strain values in
measurements.

The PDF of updated parameters is shown in Fig-
ure 7. As can be seen, the updated parameters fol-
low a non-normal distribution.

4. CONCLUSIONS
In this paper, a road bridge located in Melbourne

is subjected to heavy platform loads. A total of
55 strain measurements from the heavy platform
crossings were obtained from the data acquisition
system of the bridge. The strain measurement from
heavy platform moves (138 Tonnes) can be signifi-
cant to determine the statistical parameters for reli-
ability assessments. Additional, the heavy platform
prove to be statically-significant for model calibra-
tion procedures to determine the true behaviour of
the bridge.

Grillage modelling approach is adopted to model
the bridge deck. The bending moments at midspan
of the instrumented beams (Beam 1 to 4) was ob-
tained by moving the 138 tonne heavy platform
load across the grillage model. The concrete elastic
modulus of four beam girders (Beam 1 to 4) were
chosen to be updated during model calibration due
to their sensitivity towards the strain measurements.

The following conclusions were made:

1. The bias factor and CoV of strain sensor mea-
surements for top and bottom beam flange dur-
ing heavy load vehicles were provided in this
paper.

2. The updated grillage model of the bridge
showed good correlation in strain measure-
ments albeit some parameters attained phys-
ically non-meaningful values. This indicates
that these parameters act as surrogate for phe-
nomenon not captured in the simple grillage
model.

Overall, the results in this study should inform
practitioners and researchers on both the assess-
ment and model calibration of bridges using heavy

vehicle data. In particular, the statistical parame-
ters in this paper which are determined on the basis
of measurements can be useful for practitioners in
reliability assessment.
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