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ABSTRACT: For long-span bridges, the critical traffic loading condition is when vehicles are closely 

spaced during congestion events. While congestion can take various forms, most previous studies 

consider only a queue of vehicles with inter-vehicle gap distances based on constant values or those 

values taken from a statistical distribution. These models do not capture the trends present in recurrent 

traffic congestion where stop-and-go waves and oscillating congested traffic patterns can be present. For 

long-span bridges located in areas of heavy traffic these congestion events can occur daily, and this high 

frequency can increase the probability of a critical load case occurring. In this paper, an ARMA auto-

regression moving average algorithm is used to generate future predictions of load effect from measured 

past effects. The concept is illustrated using traffic data collected from images taken with an Unmanned 

Aerial Vehicle (UAV) hovering over a highway subject to recurrent congestion. Vehicle positions and 

spacing data taken from the UAV are complemented by truck weight data from a nearby weigh-in-motion 

station. The ARMA model is shown to be an effective method of simulating congested event data. The 

methodology and findings have relevance for the development of a more accurate site-specific traffic 

load model for long-span bridges. 

1. INTRODUCTION 

In short to medium span bridges, the critical 

loading event involves an individual heavy 

vehicle or a small group in free flowing traffic. In 

contrast, the critical loading events for long-span 

structures are caused by congested traffic (Ivy et 

al. 1954; Flint & Neill Partnership, 1986; 

Buckland et al. 1980; Lutomirska and Nowak 

2013). During congestion events, the gaps 

between vehicles reduce and the cumulative effect 

of many closely spaced vehicles produces the 

critical load event.  

The accurate evaluation of traffic loading 

patterns on long-span bridges is however 

problematic. Data on inter-vehicle gaps, 

traditionally collected with inductive loop 

detectors, is not generally available for congested 

traffic as the loops are generally ineffective in 

stop-and-go conditions (Klein et al. 2006). 

Existing load models account for the variability of 

truck weights using Weigh-in-Motion (WIM) 

data. However, on a long-span bridge, the 

phenomenon of convoying is important, i.e., how 

many heavy vehicles are bunched together and 

what is the distance to the next convoy. For 

overturning moment in a bridge tower, vehicles 

can have an adverse or relieving effect. A key 

question then is the probability of a large bunch of 

closely spaced heavy vehicles followed by a 

lightly loaded section of traffic. WIM data does 

not include any of this information as WIM 

systems do not operate effectively in congested 

conditions. Conventional approaches, such as 

‘squashing’ measured vehicle data by reducing 

the inter-vehicle gaps to a minimum, are highly 

ineffective and tend to be conservative. This 

results in excessive conservatism in new bridge 

designs and unnecessary interventions in existing 

bridges where characteristic maximum load 

effects have been over-estimated. 
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In this paper, a camera system in an 

Unmanned Aerial Vehicle (UAV) is proposed to 

collect data on inter-vehicle gaps and truck 

convoying patterns in congested traffic. Clearly a 

camera cannot detect vehicle weight but it has 

been found that weight estimates based on vehicle 

length is an effective means of calculating load 

effects. 

This paper also proposes an ARMA model to 

simulate long-span bridge load effects from a 

limited supply of data. ARMA is a method of 

estimating future values from past data. An 

ARMA simulation is shown to generate a data set 

whose individual values are very different from 

those measured. However, the underlying trend, 

as it affects an extreme value calculation, is a very 

good match to the measurements. 

 

2. DATA COLLECTION AND PROCESSING  

The N7/M7 is a national primary route connecting 

Dublin to the south of Ireland. Prior to 2019 it was 

a three-lane carriageway in each direction for 20 

km up to Junction 9 where the number of lanes 

reduced to two. With an Annual Average Daily 

Traffic (AADT) flow of approximately 105,000 

vehicles, the lane drop at Junction 9 caused 

significant recurrent congestion during evening 

rush hour periods (Figure 1). The area was 

identified as being suitable for collecting 

congested traffic data from a bird’s eye view using 

a UAV. A detailed description of the site and data 

collection and processing techniques are 

presented in Quilligan and OBrien (2020). 

Traffic footage was collected using a DJI 

Phantom 4 Advanced quadrotor. Allowing for 

take-off, landing and a safe reserve of battery 

power, an average of 20 minutes traffic footage 

was collected in each flight. A limitation of the 

UAV used is that data collection is restricted to 

periods of no rain and wind speeds less than 35 

km/h. The UAV hovered at a height of 120 m 

above ground and a distance of 30 m from the 

carriageway (Figure 2). At this height the road 

length captured was approximately 165 m, with a 

ground sampling distance of approximately 4.3 

cm. 

 
Figure 1: View of congested traffic forming due to 

lane drop at Junction 9. 

 

 
Figure 2: Congested traffic observed from UAV. 

 

The video footage was analysed using the 

cloud-based platform, DataFromSky (DFS). The 

system uses a deep learning convolution neural 

network algorithm to detect vehicles. Vehicle 

trajectories are filtered using vehicle kinematic 

models to ensure that small tracking errors do not 

result in sudden changes in positioning (Adamec 

et al. 2020). 

The trajectory data output from DFS allows 

the density of the captured roadway length to be 

determined. Values are scaled from the captured 

road length to the standard 1 km distance which 

allows for density-time plots to be generated. To 

facilitate the determination of bridge load effects 

the data, recorded in a time reference, is 

transformed to a space reference using the 

equation: 
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𝑑𝑥𝑖 =  𝑣𝑖̅  ×  𝑑𝑇 (1) 

where 𝑑𝑥𝑖 is the space transform for frame i, 𝑣𝑖̅  is 

the mean velocity for all vehicles in frame i (m/s) 

and dT is the sampling period (s). The effect of the 

transform is to rescale the X-axis, i.e. the axis is 

stretched when the mean velocity is high and 

squashed when the mean velocity is low. 

Vehicle weights are accounted for by using 

Monte Carlo simulation to infer a ‘typical' Gross 

Vehicle Weight (GVW) for each vehicle recorded 

in an image from a Cumulative Density Function 

(CDF) for that class of vehicle (Figure 3). The 

CDFs are created using data from a WIM site 

located 5.4 km from the test location.  

 

 
Figure 3: Cumulative Density Functions for vehicle 

weights for different vehicle classes. 

 

Using the GVW data, the total weight of 

vehicles present can be determined for each frame 

of measured UAV data. Dividing the total weight 

of vehicles by the road length provides an 

Equivalent Uniformly Distributed Load (EUDL) 

for each frame. To simplify post processing of this 

data the X axis is broken into 10 segments and the 

EUDL per 10 m segment computed (Figure 4). 

This data then represents the load from a 

measured traffic stream and can be used to 

determine bridge load effects when it is traversed 

over an influence line. 

 

 
Figure 4: Load vs space for of 2 hours of combined 

UAV data. 

 

3. CONGESTION MODELLING 

3.1. Long-Span Load Effects 

The effect of the traffic streams on long-span 

bridges is determined using an influence line over 

which the measured and simulated traffic streams 

can be passed. The Overturning Moment (OTM) 

in the tower of a suspension bridge is chosen for 

this study as it represents an important load effect 

where traffic can have an adverse or relieving 

effect, depending on its location on the structure. 

The OTM influence line used is illustrated in 

Figure 5 and is based on that of the Golden Gate 

(Enright et al. 2013) and Forth Road bridges. 

OTMs are positive for vehicles in the first side-

span, negative for vehicles in the main-span and 

assumed to be negligible for vehicles in the far 

side-span. Lane 2 (slow) data is only used for this 

study as the measured data has a higher 

percentage of HGVs and there is therefore a 

greater load intensity in this lane. 
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Figure 5: Influence line for tower Overturning 

Moment in suspension bridge of total length 1,500 m. 

3.2. Conventional ‘Squashed’ Traffic Model 

In many previous studies traffic data collected 

under free flowing conditions has been used to 

create a congested traffic stream by ‘squashing’ 

the gaps between following vehicles. To simulate 

full stop events, the bumper-to-bumper gap 

between vehicles has typically been set to 1.5 m 

(approximately equivalent to a 5.0 m axle-to-axle 

distance) by various studies (Ivy et al. 1954; 

ASCE 1981; Prat 2001; Hendy et al. 2015; Micu 

et al. 2018). To simulate the moving congestion 

present in recurrent congestion conditions, larger 

gap values have been used, some constant and 

some based on statistical distributions (Koshini 

1985; Vrouwenvelder and Waarts 1993; Bailey 

1996; Lutomirska and Nowak 2013). 

For this study a conventional ‘squashed’ 

traffic model is used and the resultant load effects 

are compared to those from measured and 

simulated ARMA traffic streams. The squashing 

traffic model takes the vehicle class and arrival 

sequence data directly from the UAV-measured 

dataset. As this data does not have values for 

vehicle length, data from a nearby WIM station is 

used to create a probability density function of 

vehicle lengths for each vehicle class. A ‘typical’ 

length for each vehicle in the traffic stream is then 

generated using Monte Carlo simulation from the 

relevant distribution. A constant bumper-to-

bumper gap of 4.5 m is used which is 

representative of the values adopted in the above 

referenced studies for slow moving congestion. 

3.3. ARMA Model  

As noted above, the measured UAV data is 

limited in its duration. Collection of additional 

data is restricted by the need to manually operate 

the UAV during congestion events and by certain 

weather conditions which prevent the flying of the 

UAV. As such a model that simulates additional 

data based on the trends present within the 

measured data is required.  

Time series analysis is widely used as a data 

forecasting technique in many disciplines. An 

ARMA model combines auto-regressive (AR) 

and moving average (MA) functions to extract 

relevant information from a stationary time series, 

and can obtain effective predictions using limited 

historical data (Wang et al. 2020). Box et al. 

(1970) developed the concept of the ARMA 

model, proposing three parts to the process: model 

selection, parameter estimation and model testing. 

For a stationary time series {xt}, the ARMA(p,q) 

model can be written as: 

𝑥𝑡 = 𝑐 + ∑ 𝜙𝑖  𝑥𝑡−1

𝑝

𝑖=1

+ ∑ 𝜃𝑗  𝜀𝑡−𝑗

𝑞

𝑗=1

+ 𝜀𝑡 (2) 

where c is a constant, 𝜙𝑖  is the autoregressive 

parameter, p is the autoregressive order, 𝜃𝑗  is the 

moving average parameter, q is the moving 

average order and 𝜀𝑡 is white Gaussian noise with 

zero mean and constant variance. 

While a preliminary order determination is 

undertaken by inspection of the truncation and 

tailing characteristics of the autocorrelation and 

partial autocorrelation coefficients, the Akaike 

Information Criterion (AIC) method is used to 

determine the appropriate orders of the model by 

studying a range of combinations. The AIC 

evaluates how well a model fits the data it was 

generated from. The best-fit model, indicated by 

the minimum AIC (Akaike 1974), is the one that 

uses the fewest possible independent variables to 

explain the greatest amount of variation, and is 

defined as: 
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𝐴𝐼𝐶 = 2𝐾 − 2𝑙𝑜𝑔𝐿 (3) 

where K is the number of model parameters and L 

is the likelihood estimate, a measure of model fit.  

The model is verified by checking whether 

the residual sequence of the fitted model is a white 

noise sequence. The resultant ARMA model can 

then be used to simulate new traffic streams which 

can be used to determine long-span load effects.  

4. RESULTS 

The sample of load data presented in Figure 4 is 

used in this study to determine OTMs in the tower 

of a 1,500 m suspension bridge under measured, 

conventional squashed and simulated ARMA 

traffic streams. 

4.1. Conventional ‘Squashed’ Traffic Model 

The tower OTM from the measured and 

conventional squashed traffic streams are 

illustrated in Figure 6. While there are similarities 

in the load effect curves from the measured and 

squashed traffic streams, there are some 

significant differences. A peak positive moment 

of +1.17 MNm is recorded under the measured 

stream, compared to +0.15 MNm under the 

squashed stream. The effect of having high 

density traffic on the first side-span combined 

with light free flowing traffic on the relieving 

main span is not captured by the squashed model, 

i.e. loading squashed traffic on both positive and 

negative sides of the full influence line results in 

a relieving effect which underestimates the 

maximum positive bending moment. 

A fully bounded solution using the squashed 

traffic stream is possible if the relieving sections 

from the influence lines are removed, a process 

often adopted in industry practice. The load effect 

from these simulations is also illustrated in Figure 

6. This model produces a series of extreme 

positive and negative OTMs, with a peak positive 

moment of +2.28 MNm recorded, which is 

approximately double the peak measured value.  

 

 
Figure 6: Tower OTM under measured and 

conventional ‘squashed’ traffic streams. 

 

While the squashed traffic streams presented 

here are simplified, they highlight how 

conventional squashed gap models do not 

adequately represent patterns of load effects 

produced by the measured traffic congestion. 

4.2. ARMA Model 

ARMA models for a range of autoregressive and 

moving average orders are created and their 

resultant AIC values are presented in Table 1.  

Table 1: AIC values for different p and q orders. 

 p value 

q value 0 1 2 3 4 

0  30,492 30,491 30,492 30,794 

1 36,483 30,490 30,492 30,493 30,495 

2 34,170 30,492 30,493 30,497 30,496 

3 32,987 30,494 30,495 30,496 30,491 

4 32,228 30,495 30,497 30,497 30,495 

 

It is evident that the many of the AIC values 

are of a similar magnitude, with the lowest value 

for the ARMA(1,1) model. Figure 7 presents a 

plot of the standard residuals for this model 

compared to the measured data. The plot indicates 

that the model is a good fit as it corresponds to a 

white noise sequence with zero mean.  

Table 2 presents the key parameters for this 

first order ARMA(1,1) model. 
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Figure 7: Standard residuals from ARMA(1,1) model. 

 
Table 2: ARMA(1,1) model parameters. 

Parameter Value 

Constant, c 1.354 

Autoregressive parameter,  0.950 

Moving Average parameter,  -0.031 

Variance 42.82 

 

Figure 8 illustrates the tower OTM under the 

measured and five simulated ARMA traffic 

streams. Visual comparison of the measured and 

ARMA load effects is difficult. However it is 

evident that there are similar ranges and 

frequencies of peaks and troughs. 

Block maximum values are often plotted 

when calculating characteristic maximum load 

effects to determine the trend of increasing load 

effect with reducing probability. This trend has a 

significant influence on the calculated 

characteristic maximum, and is a key feature in 

extreme value data.  

Figure 9 illustrates maximum values taken 

from 1 km blocks of  measured and simulated load 

effects, plotted on Gumbel probability paper. It is 

evident that the ARMA model captures the nature 

of the measured data from these plots, with a 

similar slope, although the mean is slightly higher. 

 

 
Figure 8: Tower OTM under measured and simulated 

ARMA traffic. 

 

 
Figure 9: Gumbel probability paper plot of 1 km 

block maximum values for measured and ARMA 

traffic streams. 

 

To allow a comparison with the load effect 

from conventional squashed traffic stream, 1 km 

block maxima are taken from the upper and lower 

bound curves in Figure 6 above, and are presented 

in Figure 10. The slopes and offsets of the block 

maxima values from the squashed traffic streams 

are significantly different to those derived from 

the measured and ARMA streams.  
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Figure 10: Gumbel probability paper plot of 1 km 

block maxima values for measured, conventional 

squashed and ARMA traffic streams. 

 

Using the load effect data from the squashed 

traffic streams to extrapolate to a given return 

period would lead to inaccurate values for both 

positive and negative OTM. This data clearly 

indicates that the adoption of a conventional 

squashed traffic model does adequately represent 

the features present in the measured traffic data 

and the resultant load effects. 

5. CONCLUSIONS 

This paper investigates the novel use of an ARMA 

model to generate patterns of recurrent congestion 

on long-span bridges based on measured data 

from a UAV. For long-span bridges located in 

areas of high traffic these congestion events can 

occur daily, and this high frequency can increase 

the probability of a critical load case occurring.  

The developed ARMA model is shown to 

capture the trends present in measured data and 

the resultant load effects have a representative 

spread of results when compared to those from the 

measured data.  

It is shown that the use of a conventional 

‘squashed’ traffic model to extrapolate load effect 

data to a given return period could lead to 

inaccurate non-conservative values. The ARMA 

model on the other hand demonstrates good 

potential for the calculation of site specific 

characteristic maximum load effects on long-span 

bridges. 
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