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ABSTRACT: The spatial variation of a soil parameter is usually modeled as the summation of spatial 

trend and spatial variability. Traditionally, the trend is assumed deterministic and is fitted by spatial data. 

However, previous studies showed that it is more reasonable to model the trend as uncertain rather than 

deterministic. This paper proposes a probabilistic trend model that is based on the Gaussian process 

regression (GPR). In this model, the spatial trend is represented as a stationary normal random field with 

an auto-correlation function modeled by the squared exponential (QExp) model, which produces smooth 

random field realizations in order to mimic the trend. In contrast, the spatial variability is modeled as a 

stationary normal random field modeled by the Whittle-Matern (WM) model. Numerical and real 

examples are adopted to illustrate the effectiveness of this GPR method. 

The spatial variation of a soil parameter [e.g., 

cone penetration test (CPT) data] is usually 

modeled as the sum of the spatial trend (t) and 

spatial variability () (Phoon and Kulhawy 1999). 

The spatial variability () is typically modeled as 

a stationary random field (Vanmarcke 1977). In 

the geotechnical literature, the probabilistic 

modeling of the spatial trend (t) is not addressed 

until recently. In fact, the trend is customarily 

regarded as deterministic (e.g. Fenton 1999; 

Phoon et al. 2003). Ching and Phoon (2017) 

developed a method of probabilistically modeling 

the spatial trend based on the sparse Bayesian 

learning (SBL) approach (Tipping 2001). In this 

SBL method, the spatial trend is represented as the 

weighted sum of sparse basis functions (BFs). The 

weights are zero-mean normal random variables 

with variances (s1
2, …, sm

2) [many BFs are de-

activated after screening, and there remains m 

active BFs (m is usually small)], i.e., the SBL 

method models the spatial trend as a zero-mean 

normal random field whose auto-covariance 

function is governed by (s1
2, …, sm

2). Ching et al. 

(2020, 2021) further modified the original SBL 

method by deriving Kronecker-product formulas 

to resolve the issue of high computational cost for 

three-dimensional (3D) problems. 

Recently, Yoshida et al. (2021) adopted a 

different strategy of probabilistically modeling 

the spatial trend. The spatial trend is still modeled 

as a zero-mean normal random field (same as the 

SBL method), but the kernel strategy (Rasmussen 

and Williams 2006) is adopted to directly model 

the auto-correlation function of the trend as a 

kernel function. This strategy of modeling the 

spatial trend is denoted as the Gaussian process 

regression (GPR) in the current paper. Ching et al. 

(2023) further extended the GPR method to 3D 

problems by adopting Kronecker-product 

algorithms to minimize computational cost. The 

purpose of the current paper is to introduce the 

GPR method and also to demonstrate its use on 

numerical and real examples. 

1. MODEL FOR SPATIALLY VARIABLE 

SOIL PARAMETER 

Let   Rn1 contain the soil parameters at n 

positions (p1, p2, …, pn) in space, where pi = (hi, 

zi) contains the horizontal coordinates hi = (xi, yi) 

and vertical coordinate zi.  is modeled as the 
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summation of the spatial trend t and a zero-mean 

spatial variability : 

 = +t   (1) 

where t  Rn1 and   Rn1 contain the trend and 

spatial variability, respectively. 

1.1. Model for spatial variability 

Let us denote the auto-covariance matrix for  by 

  Rnn. In the current paper, the horizontal and 

vertical auto-correlations are assumed separable: 
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where  is the standard deviation of the spatial 

variability; () denotes the auto-correlation 

function for a separation distance of . The 

Whittle-Matérn (WM) model (Guttorp and 

Gneiting 2006; Liu et al. 2017; Wang et al. 2018; 

Ching et al. 2019) is adopted to model both 

horizontal and vertical auto-correlations of : 
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where  is the smoothness parameter;  is the 

scale of fluctuation (SOF);  is the Gamma 

function; and K is the modified Bessel function 

of the second kind with order . There are two sets 

of scale of fluctuation (SOF) and smoothness: the 

horizontal ones are denoted by (h, h), and the 

vertical ones are denoted by (z, z). As a result, 

the auto-covariance parameters of the spatial 

variability (denoted by ) include (2, h, z, h, 

z). 

1.2. GPR model for trend 

The Gaussian Process Regression (GPR) method 

treats the trend (t) as random and models it as a 

zero-mean normal random field. Let us denote the 

auto-covariance matrix for t by t  Rnn, which 

depends on the auto-covariance parameters of the 

spatial trend, denoted by t. As a result,  is zero-

mean with auto-covariance matrix equal to t + : 
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For the GPR method developed by Yoshida et al. 

(2021), the trend is modeled as a stationary zero-

mean normal random field with auto-correlation 

defined by a Gaussian kernel function k(pi, pj). In 

3D, the Gaussian kernel can be written as 
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where t,h and t,z are the scales of fluctuation 

(SOFs) of the spatial trend in the horizontal and 

vertical directions, respectively. For the GPR 

model, the trend auto-covariance matrix t Rnn 

is governed by t = (t
2, t,h, t,z): 
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where K  Rnn is the kernel matrix. Ching et al. 

(2023) further extended the GPR method to 3D 

problems by adopting Kronecker-product 

algorithms to minimize computational cost. These 

3D algorithms are adopted in the current paper.  

1.3. Bayesian analysis and conditional random 

field simulation 

The GPR method developed by Ching et al. (2023) 

is Bayesian. For the Bayesian analysis, prior 

probability density functions (PDFs) for t and  

are required. In the examples presented later, the 

logarithms of t and  follow uniform prior PDFs 

with upper and lower bounds. Conditioning on the 

observed data (D), the transitional Markov chain 
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Monte Carlo (TMCMC) algorithm (Ching and 

Chen 2007) is used to draw posterior samples of 

t and . Then, the conditional trend and random 

field samples (conditioning on D) can be further 

simulated. 

2. SIMULATED EXAMPLE 

 

Consider the following 1D example: (z) = t(z) + 

(z), where t(z) = 100 + 100z – 1000z2 + 

1000z3, the spatial variability (z) is zero-mean, 

with standard deviation  = 20 and SOF () = 0.1, 

and simulated by a single exponential auto-

correlation model (Vanmarcke 1977). The  data 

are obtained at equally spacing depths (z1, z2, …, 

zn) = (0, 0.01, 0.02, …, 1.0) (n = 101). Once the  

data are simulated (the simulated data are shown 

in Figure 1a as the dark line), the actual values of 

the auto-correlation parameters  and trend are 

treated as unknown. The simulated  data are 

analyzed by the GPR method to draw posterior 

samples of t and  as well as to simulate the 

conditional trend and random field samples. The 

upper and lower bounds of the uniform prior PDF 

for  are conservatively chosen so that they are 

away from the actual values of . The prior PDF 

for ln(t) is chosen to be uniform over ln[(sample 

mean of )/3] to ln[(sample mean of )3]. The 

prior PDF for ln(t) is chosen to be uniform over 

ln(0.1) to ln(10).  

The TMCMC analysis results are shown in 

Figure 1. The red solid and dashed lines in Figure 

1a show the posterior median and 95% confidence 

interval (CI) of the trend, respectively. Figure 1b 

shows the posterior samples of t, whereas 

Figures 1c,d show the posterior samples of . The 

posterior samples of trend and  exhibit some 

consistency in the sense that the 95% CI or sample 

clouds mostly cover their actual values. 

3. REAL CASE STUDIES 

3.1. 2D example – South Parklands, Adelaide 

(South Australia) 

This case study is a test site at South Parklands, 

Adelaide (South Australia) with more than two 

hundreds CPT soundings performed in a stiff, 

overconsolidated clay known as Keswick Clay 

(Jaksa 1995; Jaksa et al. 1999) to the depth of 

about 5 m. Among the soundings, 51 soundings 

were conducted along a line on the ground surface 

with a horizontal interval of 0.5 m. The 51 

soundings spanning a horizontal extent (x 

direction) of 25 m. The problem is 2D because the 

y coordinate is fixed. The cone tip resistance data 

between z = 1.5 m and z = 5 m (sampling depth 

interval = 0.02 m) for the 51 soundings are 

analyzed. Figure 2 shows the actual cone tip 

resistance data on the (x,z) plane. The grey lines 

in the figure are the actual data. The surface plot 

in the figure is obtained by interpolation in the x 

direction. All data of the 51 soundings are 

analyzed together as a 2D problem. Uniform prior 

PDFs are adopted for the logarithms of (t,  ) 

[e.g., ln() is uniform over ln(0.01 m) to ln(1 m), 

ln(t,z) is uniform over ln(0.1 m) to ln(10 m), and 

ln(t,h) is uniform over ln(0.1 m) to ln(100 m)]. 

Figure 3 shows a posterior sample of the trend, 

and Figure 4 shows the posterior samples of t and 

. 

 

 
Figure 1: TMCMC results for the 1D simulated 

example: (a) posterior median and 95% CI of the 

trend; (b) posterior samples of t; (c,d) posterior 

samples of .  
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Figure 2: Actual cone tip resistance data shown on 

the (x,z) plane (South Parklands) (Ching et al. 2020).  

 

 
Figure 3: Posterior sample (grey surface) of the 

trend.  

3.2. 3D example – Hollywood, South Carolina 

(United States) 

This case study is a test site in Hollywood, South 

Carolina (Stuedlein et al. 2016) with multiple 

cone penetration test (CPT) soundings conducted 

in an area of 26 m  3 m = 78 m2. The top view of 

the test site is shown in Figure 5. There are in total 

five CPT clusters, and each cluster contains 5 

CPTs (triangles in the figure indicates the 

horizontal locations of the CPTs). The CPT data 

are shown in Figure 6. The sampling depth 

interval is dz = 0.02 m. The qt data of the 25 

soundings in the 6 m thick layer (from 5 m to 11 

m; dark lines in Figure 6) of loose to medium 

dense sand are analyzed. Uniform prior PDFs are 

adopted for the logarithms of (t,  ). Figure 7 

shows the 95% CI for the posterior samples of the 

trend for sounding P1-1 (the results for other 

soundings are not shown for brevity). Figure 8 

shows the posterior samples of t and . 

 

 
Figure 4: Posterior samples of t and  (South 

Parklands): (a,b) posterior samples of t; (c,d) 

posterior samples of .  

 

 
Figure 5: Top view of the Hollywood site (Bong and Stuedlein 2018). The open triangles denote CPTs, whereas 
the solid circles are boreholes (borehole data not used in analysis).  
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Figure 6: CPT data for the 25 soundings 
(Hollywood).  

 

 
Figure 7: Posterior median and 95% CI of the trend 

(P1-1; Hollywood).  

4. CONCLUSIONS 

This paper proposes a probabilistic trend model 

that is based on the Gaussian process regression 

(GPR), where the spatial trend is represented as a 

stationary normal random field with an auto-

correlation function modeled by the squared 

exponential (QExp) model in its prior. Note that 

the (updated) conditional trend is no longer 

stationary. The spatial variability is modeled as a 

stationary normal random field modeled by the 

Whittle-Matern (WM) model. Numerical and real 

examples are adopted to illustrate the 

effectiveness of this GPR method. The numerical 

example shows that the GPR method can obtain 

consistent auto-covariance parameter () 

estimates without the need to prescribe the 

functional form of the trend. The real examples 

show that the posterior samples of trend are 

sensible, following the general trend of the data.  

The proposed GPR method can provide a flexible 

model for the trend of geotechnical data.  

 

 
Figure 8: Posterior samples of t and  (Hollywood): 

(a,b) posterior samples of t; (c,d) posterior samples 

of .  
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