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ABSTRACT: A scheme is presented with the goal to enable near-real time reliable and robust process
control for fast and complex processes. For that, a grey-box modelling approach is employed, making
use of adaptive Kriging surrogate modelling. A learning function that is able to refine the Kriging model
locally is proposed and its stopping criterion is discussed.

How can one provide not only reliable process
monitoring but also control for very fast processes
near-real time? That is the question we would like
to address in this paper and provide an insight to
necessary considerations. Near-real time process
control can prove to be very beneficial in manufac-
turing as diminishing quality can be detected and
counter-steered early on. This can not only improve
the overall product quality and reliability of the pro-
cess, but possibly also extend the overall lifetime of
the product, increasing the safety and reliability and
reducing maintenance or production costs (Moya
et al. (2020)). Fast, cost-efficient and most im-
portantly, reliable machine-based process control is
therefore of great value in industrial applications.

Detecting a control need, the input can be used to
steer the process in the desired direction. The pa-
rameter needs to be chosen according to the current
state of the physical system, which can be assessed
through measuring devices (Nise (2011)). Those
sensors however, are inevitably subjected to noise
and measurement errors, which display themselves

as aleatory and epistemic uncertainties. The ex-
act effect the input parameter has on the system in
a closed-loop control system is affected by uncer-
tainty as well (Heirung et al. (2018)). Achieving a
reliable control means considering these uncertain-
ties.

Furthermore, in order to define the optimal con-
trol strategy, predictions of the process’ reaction to
the input parameter need to be evaluated. This re-
quires the use of a digital model. A (numerical)
model of the physical process, also called white-
box model (Pitchforth et al. (2021)), has good ac-
curacy but is expensive to evaluate and too slow to
be usable alone in a near-real time context for fast,
dynamic processes. Not only are these processes
fast but oftentimes also physically complex, so that
one model evaluation takes a significant amount of
time. The discrepancy between the evaluation and
the process time is therefore not negligible.

Apart from the white-box model, there is also
a different group of models, the so-called black-
box models (Pitchforth et al. (2021)). They are
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not physics- but data-based and often build a re-
gression model (e.g. Neural Networks (Bishop
(1994)), surface response models (Box and Wilson
(1951)), support vector machines (Cortes and Vap-
nik (1995)), polynomial chaos expansion (Mai and
Sudret (2017)), Gaussian process regression (Sant-
ner et al. (2003); Rasmussen and Williams (2006)))
from a limited amount of calibration samples, the
design of experiments (DoEs). After calibration the
black-box model can be used in place of the nu-
merical model at very limited computational cost.
However, the physical model needs to be evalu-
ated at every sample of the DoE, which can be
computationally expensive. Furthermore, it intro-
duces an additional modelling error to the system,
which presents itself as an additional epistemic un-
certainty.

Subsequently, neither the black-box, nor the
white-box model are able to fulfill the modelling
requirements on their own. In this paper, a solu-
tion is explored using the framework of grey-box
models (Pitchforth et al. (2021)), which combine
both types of models in one, to make use of their
respective advantages. It is of great benefit to have
a process model that can continuously evaluate and
update itself against the measured process state and
predict future instances reliably, as this allows for
robust and reliable control, even if the process de-
viates from the expectations.

A modelling technique, whose aim is creating
such a process model, is the self-improving digital
twin (Kritzinger et al. (2018); Moya et al. (2020)).
The digital twin mirrors the physical process from
measurements of it while considering uncertainties.
It then performs analyses based on the current pro-
cess state. Based on the analysis the optimal input
can be chosen, leading to the best possible process
results. However, the process is affected by unpre-
dictable and uncontrollable process drift, which can
be caused by e.g. wear and tear of material or accu-
mulation of dirt, which effects the process itself but
also its measurements. It is clear, that proper con-
sideration of the process drift is of great importance
but not trivial to do.

In summary, a scheme is necessary, that can ac-
count for the process drift as well as for the uncer-
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tainty of the process and measurements while max-
imising computational speed by minimising the
number of necessary white-box evaluations. In this
paper, a simple grey-box model is proposed con-
sisting of a numerical model and an adaptive Krig-
ing surrogate model, the physics-informed white-
box model and the data-driven black box model re-
spectively. In order to take advantage of the positive
aspects of both models, they are used in combina-
tion with each other. The grey-box model tries to
find the optimal compromise between the amount
of calibration points, which are expensive to evalu-
ate, and the modelling error.

This paper introduces a general and simple
scheme to perform process control for dynamic pro-
cesses. It is proposed to achieve the objective de-
tailed above to find a near-optimal DoE through
an adaptive Kriging scheme (Jones et al. (1998);
Echard et al. (2011)). At first, the methodology of
the digital twin is introduced. Herein the adaptive
Kriging scheme and its principal components: the
learning function and stopping criterion are intro-
duced in more detail. An application on a bench-
mark problem and its results is presented after-
wards. Finally, the paper closes with the conclu-
sion.

1. METHODOLOGY

Let there be a process affected by two types of
parameters. The first are state variables x, that are
uncontrollably effected by process drift. The sec-
ond one are input or control variables v, which are
used to counter the process drift. The performance
y(x,v) is given as a function of both. It is further
assumed, that the process drift and its development
is not known beforehand but past instances can be
gained from measurements. The goal at the current
control step i is to find the input v, that maximises
the reliability. Considering a process that is sig-
nificantly faster than its numerical simulation, pro-
cess control is performed over multiple processes at
once. The goal is then to find a unique input v that
guarantees the reliability over the next 7, steps. Al-
gorithm 1 gives an overview over the optimisation
scheme.

The already often mentioned Kriging
model (Matheron (1973)) is used to emulate
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the performance function g(X), which is a func-
tion based on failure criteria of the system, in
a way, that g(X) < 0 correspond to system fail-
ure. The boundary, g(X) =0, is called the limit
state function and g(X) > O indicates the safe
domain. Considering the sign of the function,
the input space can be divided into safe (positive
performance) and failure (negative performance)
domains. The Kriging model is initially calibrated
using n;,; Latin Hypercube (or other) samples
evaluated using the white-box model. An adaptive
Kriging meta model (Bichon et al. (2008); Echard
et al. (2011)) was chosen due to its ability to
give an estimation of its own localised accuracy.
Kriging models are based on Gaussian processes,
thus their localised variance can be seen as an
indicator of the confidence of the model regarding
the local predicted value (Echard et al. (2011)).

In the second step, the effect of the process drift
needs to be assessed. For that, the evolution of the
state variable x for the next #, processes is extrap-
olated and its confidence bounds are determined.
The choice of the extrapolation scheme is problem
dependent and needs to be chosen appropriately. As
this is not the core focus of this work, a Gaussian
process model is used arbitrarily for the sake of il-
lustration. The confidence bounds of the extrapola-
tion result define the interval I’ the state variable x
lies most probably in during the next ¢, processes.
Within this interval, no probability distribution is
assumed.

In the next step it is estimated, if adjustment of
the input is necessary. This is done by calculating
the estimated reliability R

Rzl_q,(—a(m)

5(X) M

with @ the standard Gaussian cumulative distribu-
tion function. This quantity can be interpreted as
the probability, according to the Kriging model,
that the sample lies in the safe domain, as it corre-
sponds to the probability that §(X) is positive. The
reliability is evaluated for X = [xyorst,vi—1] at v of
the previous control step i — 1 and its correspond-
ing worst-case estimate x,,,;; based on the Kriging
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model. Equation 1 can then be written as

R\i = mlAn (R\(y(xworsl‘? Vi—l)))
xelt

)

Algorithm 1 Pseudocode of the process control
scheme
1. Initialise Kriging model, xg
Fori=1:n
2. Estimate I¢
3. Compute R;

If R; < R
Xi = X1
Else

4. Find v, for x,,or and compute R, ot
It I/éopt < Rerit
Xi = Xi—1
Else
While CoV (Xyorst; Vopr) > CoOVinin
Refine Kriging model
End
Step3 -4
If Ropt < Rerit
Xi = Xi—1
Else
Warning: Process is expected to fail.
End
End
End
End

If R; < Ryin, the previous v can be used for the
next processes as well. R, is a operator-chosen
parameter determining the minimal required relia-
bility to not change the input parameters. Through
that it is verified, if the current vector of control
variables already satisfies the safety criterion. The
optimisation of v is then only performed if neces-
sary, thus avoiding unnecessary calibration of the
process.

If R; > Rypjn, an optimisation scheme is run, to
find the value of the control variable v, that max-
imises the estimated reliability. The reliability is
computed for the worst-case state variable within I
the interval of possible state variables of the next
t, processes. Figure 1 visualises this step with an
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Figure 1: Reliability indicator

example. On the left hand side, the Kriging model
is visible. The Latin Hypercube samples marked
in red symbolise the failure domain, the blue ones
show the safe domain. I. for the next processes
is displayed as the grey-shaded area. On the left
hand side, the worst-case reliability R, () is dis-
played over the full domain of v. During the opti-
misation process, the maximum of this curve needs
to be found. It is further visible, that the result is
not necessarily unique. If the optimised reliability

Ropt = maxmiﬁ (R(y<x7 V))) (3)
vely xell

does not agree with the user-defined reliability
threshold R, it needs to be assessed, whether this
is due to a badly trained Kriging meta-model or due
to actual failure. In the former case, the Kriging
model is refined, until the stopping criterion is sat-
isfied. If the optimisation yielded positive results,
the optimised control variable can be used as input
for the next processes. Otherwise, a warning can be
given and/or the process halted, until the operator
restarts it.

2. THE KRIGING MODEL

The Kriging model, which uses the assumption
of an underlying Gaussian process, is used as the
black-box model. Kriging is a well established
surrogate method, that was initially introduced for
global optimisation by Jones et al. (1998) and popu-
larised through adaptive Kriging Monte Carlo Sim-
ulation (AK-MCS) by Echard et al. (2011).

The model is used here to emulate the perfor-
mance function of the process y. A Gaussian ran-
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dom variable, defined by its mean {1 and standard
deviation &, is associated for each input vector
X = [x,v]. The hat symbolises that it is an estimated
performance. The mean is considered as the Krig-
ing estimated performance and the standard devia-
tion as its indicator of precision. Further informa-
tion can be found in the detailed overview provided
by Moustapha et al. (2022).

The assessment of the own accuracy has al-
lowed the development of adaptive sampling ap-
proaches (Jones et al. (1998); Echard et al. (2011)),
to minimise the influence of the modeling error over
the quantity of interest. The adaptive calibration
scheme aims at building a near optimal design of
experiment using a so called learning function iden-
tifying the samples that have the highest expected
influence on the reduction of the error. The opti-
mal sample is then evaluated using the white-box
model and added to the DoE. This is of great im-
portance for on-line monitoring and control, as the
process drift may push the process into an area of
the state variable, for which the calibration of the
Kriging model is not sufficiently accurate. Three
aspects that are key to the adaptive refinement of the
Kriging model are when to refine, where to refine
and when to stop. The strategy used to determine
whether refinement is necessary was discussed pre-
viously. In the next sections the learning function
that decides where to refine the surrogate and the
stopping criterion are discussed in further detail.

2.1. Learning function

The true limit-state function is usually unavail-
able, finding a satisfying input value for the next
processes is therefore solely dependent on the Krig-
ing model of the limit state. As such, having a reli-
able and sufficiently accurate surrogate is of utmost
importance. The refinement of the Kriging model
is the crux to achieve this. Evaluating the Kriging
model is computational inexpensive, however, dur-
ing refinement new samples are added to the DoE.
For that it is necessary to call the expensive full
model. Therefore, the refinement process should
be optimised to effectively add the least amount
of samples necessary. To achieve that, a so-called
learning function is used to weight all possible new
samples and to add the sample, that gives the most
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information.

Usually, learning functions are used in a struc-
tural engineering context, where the global prob-
ability of failure for all possible failure modes is
of interest. In the case of the optimisation scheme
however, the goal is to find an input that is locally
in the safe domain for all possible state parame-
ters within the interval Ii. Therefore, also a local
scheme is necessary, that finds a good trade-off be-
tween exploration and exploitation. As a reminder,
the refinement step is performed, when no input
was found guaranteeing the entire interval lies in
the safe domain. The goal of this step is then to
improve the calibration of the surrogate so that it
represents the process better hopefully allowing to
find such an input value.

This can be achieved by expanding the known
safe domain, which can be done by adding new safe
samples. On the one hand, when adding a sample
close to the safe domain it is very likely to expand
it but the expansion will be limited. On the other
hand, a point far away from the known safe domain
would expand it significantly but the point is far less
likely to be safe.

The proposed learning function

L = max <c1> (%)LE> el v @

is a trade-off of these two competing cases and can
be seen as the expected Euclidean distance of ex-
pansion of the safe domain.

&)

Lf =min|(x1,v;) — (x2,v2)|
forx; € ii and vi =

is the Euclidean distance between a sample j within
[x,v]Vx € I, Vv and its closest neighbour in the save
domain at the same v-value. Only the distance con-
sidering the state variables (horizontal axis in fig-
ure 2) is of interest, as the control value needs to be
found, which has the highest reliability. Since the
only goal is to expand the safe domain to the whole
interval I/, the state variable area considered to add
a new sample is limited to this interval.

2.2.  Stopping criterion
As previously mentioned, the Kriging model is

able to assess its own estimated accuracy. This
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can be utilised for adaptive refinement and also for
the stopping criterion. Through this criterion, the
amount of added samples to the DoE is determined.
If the refinement stops too early, convergence might
not have been reached yet. If it stops too late how-
ever, it is computationally more expensive. The re-
finement should stop, when a sufficient local accu-
racy has been reached. This can be checked through
the coefficient of variation.

A convergence study on the stopping criterion
CoVmax was performed for

o
|

The study and the results are discussed in sec-
tion 3.1.

3. CASE STUDY

In the following section, the optimisation scheme
and especially the proposed learning function is
tested on the well-known four-branch limit state
function

g(xv V) = min[gl (X, v)ng(x7 v),gg(x, V)7g4(xa V)]
(7)
with

()c—v)2 x—v

gl(X,V) :k1+

10 V2
(x,v) =k +(x—v)2+x—v

k
23(x,v) :x~|—v+—2

V2
() = —x v 2
g3(x,v xX—v A
with k& = 3 and k» = 7 (Echard et al. (2011);
Schueremans and Van Gemert (2005); Schobi et al.
(2017)). The system considered is discrete; one
process equals one time step and x,v € R! € [—6,6)].
Within the total time of 7 = 100 processes, the con-
trol variable v can be adjusted every f, = 4 pro-
cesses, with a starting value of v = 0 for the first
four processes. The evolution of the uncontrol-
lable parameter x was estimated through Gaussian
process regression with a Matern 5/2 kernel, the
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Figure 2: Initial Kriging model, nj,; = 10.

boundaries of the interval were chosen as the 1 — o-
Interval. The measurements of x were taken for ev-
ery process and a Gaussian white noise was added
onto them to mirror noisy measurements. It should
be noted that this example is a toy example used
as a first illustration of the approach and is not rep-
resentative of the expected process drift of actual
physical processes. It is furthermore recommended
to use a higher-confidence interval than done in this
example. R, and R..; were chosen with 0.1 and
0.2 respectively.

As the white-box model, the analytical perfor-
mance function is used. The black-box model is
a Kriging model initially trained on 10 Latin hy-
percube (LH) samples (figure 2). New samples are
added according to the proposed learning function,
if no input was found that would result in a suffi-
cient performance, until the stopping criterion has
been reached. The Kriging function was evaluated
on a set of 2,000,000 Latin Hypercube samples.
Both LH designs used the same seed, which was
varied during the experiment.

3.1.

In order to have good control results, it is nec-
essary to properly estimate the time evolution of
x. Figure 3 shows, that this is the case, with the
blue points denoting the noise-free value of x and
the grey-shaded area marking the estimated inter-
val I% at t = #; : t; + t,. The control results with
the proposed learning function and CoVpax = 0.2
are shown in figure 4 with regards to the true limit

Results
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Figure 3: Extrapolation of x for t, =4, T = 100.
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Figure 4: Results of the optimised input parameter with
noise-free x compared to the true limit-state function.

state function and in figure 5 with regards to the
Kriging model the input was optimised for. The
control scheme performs mostly satisfying, in only
one control step are the results not in the safe do-
main, which is also correctly identified. The Krig-
ing model was refined during three control steps at
t =5 (3 samples added), t = 53 (3 samples added)
and t = 57 (8 samples added). The resulting model
can be seen in figure 6. By adding 14 new sam-
ples to the DoE, sufficient accuracy for the control
process has been reached. It can be expected, that
the Kriging model does not require any further re-
finement even for future control steps. The learning
function performed well and informative samples
were added within the area of interest.

While the stopping criterion CoVpax = 0.2 was
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Figure 5: Optimisation results in their respective Krig-
ing model. Top: t, = 5 to 52, centre: t, = 53 to 56,
bottom: t, = 57 to 100

chosen, different optimal values between 0.1 and
0.5 were observed for other realisations. A conver-
gence study for the optimal CoV ax 1s difficult to
perform, as the CoV at the optimisation result is of
interest and this point changes after each refinement
step.
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Figure 6: From top to bottom: Kriging model att =5,
t =53 andt = 57 (final Kriging model). The shaded
area displays 1. of the respective time step.

4. CONCLUSION

In this paper a grey-box modelling scheme for
on-line process control was presented. The grey-
box approach is advantageous over the pure white-
box or black-box approaches, as it can find a good
trade-off between both models limits and possibili-
ties. The ability to adapt to parameter deviation in
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unexpected areas of the problem space is of great
importance to perform reliable and computational
efficient process control. The proposed scheme per-
forms satisfactory for a simple example with the
additional constraint of performing process control
over multiple processes at once. For the black-
box model within this scheme — an adaptive Krig-
ing surrogate — a learning function was proposed,
that is well suited to perform localised refinement.
While the learning function performs well and in-
formative samples were added, its stopping crite-
rion needs further consideration. Future research
will also focus on a continuous formulation of the
learning function to make it more robust in higher
dimension and for larger problem spaces. All in
all, the proposed scheme performs process control
satisfactory for a simple example, highlighting the
advantages of its simplicity and the locality of the
learning function.
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