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ABSTRACT: Byblos is a UNESCO World Heritage Site due to its resilience quality, as it is one of the 

oldest continuously inhabited cities in the world. It thrived for over 7000 years, mitigating shocks and 

stresses and still adapting and growing. Byblos is prone to seismic and tsunami risks. The latter can be 

generated by the Mount Lebanon Thrust fault about 18 km far in the Mediterranean Sea, facing the major 

Lebanese coastal cities. The 9 July 551 earthquake generated by this fault of 7.5 magnitude was followed 

by a tsunami which caused the coastal cities to lose their strategic, cultural, and commercial roles for 

centuries. This paper identifies the tsunami hazard and scenarios for Byblos, then studies and assesses 

the tsunami damage to Byblos buildings by means of likely tsunami scenarios. The article discusses the 

need to embed the uncertainties modeling in the hazard and damage analysis. Finally, results are 

presented, and recommendations are offered for future developments. 

The city of Byblos lies on the Lebanese coasts 

only 40 km north of the capital Beirut. The area of 

Byblos is 5 km2 extending to the metropolitan of 

17 km2, with a population of nearly 40,000. 

Byblos is 8000 years old, a UNESCO World 

Heritage Site, as one of the oldest continuously 

inhabited cities in the world. Thus, it was 

designated by the Rockefeller Foundation in 2014 

among the 100 Resilient Cities. The city of Byblos 

outlived and flourished, facing 6,000 years of 

shocks and stresses, offering a rich resilience 

study. Nowadays, the city combines traditional 

heritage and modern sophistication (N. Makhoul 

et al., 2016). 

Byblos chose for the 100 Resilient Cities Project 

in 2016. The pillars are: 1) a connected city, 2) a 

resource-efficient city, 3) a peaceful city, 4) a 

cultural city, and 5) a thriving city (Nisrine 

Makhoul et al., 2022). Those pillars mainly target 

daily stresses. However, among Byblos major 

threats is earthquakes and tsunami.  

Lebanon is a seismic region, and enhancing its 

earthquake resilience is crucial. The country is 

known for its complex weaved fault system, the 

Lebanese Restraining Bend (LRB) (Walley, 

1988). Among its major active faults, which 

generate earthquakes of magnitude larger than 7, 

Seghraya (SF), Yammouneh (YF), and the Mount 
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Lebanon Thrust (MLT), which is at sea, thus 

capable of generating tsunamis as well. The other 

relatively minor faults, Roum (RF) and Rachaya 

(RaF), can generate earthquakes of magnitude 

between 6 and 6.5. Lebanon seismicity is 

meticulously described in (Elnashai & El-Khoury, 

2004) and (N. Makhoul et al., 2016).  

Due to its history and diverse building typologies, 

the authors selected, in 2012, Byblos as a 

prototype for exploration. Numerous studies on 

Byblos earthquake loss estimations were 

accomplished ((N. Makhoul et al., 2016), (Nisrine 

Makhoul et al., 2020), (Nisrine Makhoul et al., 

2022), (Nisrine Makhoul et al., 2018), (Nisrine 

Makhoul & Mikhael, 2016), (Nisrine Makhoul, 

2018)). Afterward, a campaign for ambient noise 

measurement was achieved to study the dynamic 

characteristics Byblos building ((Nisrine 

Makhoul & Harb, 2017), (Nisrine Makhoul & 

Gueguen, 2022)), and the Fidar bridge was 

investigated ((Nisrine Makhoul, 2014), (Nisrine 

Makhoul, 2019), (Nisrine Makhoul, 2013), 

(Nisrine Makhoul & Gueguen, 2023)). Finally, 

geophysical experiments took place in the city to 

conduct seismic characterization of the Byblos 

site and assess site effects and microzonation 

(Abou-Jaoude et al., 2020).  

In this article, we aim to present a preliminary 

study of the tsunami damage to Byblos buildings 

and discuss the necessity to include uncertainty 

considerations in tsunami models and platforms.  

Section 1 presents the methodology for tsunami 

damage assessment. Section 2 the Byblos tsunami 

model and results. Section 3 discusses uncertainty 

considerations in tsunami models at the city level 

and future needs. Finally, Section 4 concludes. 

1. METHODOLOGY 

The tsunami damage assessment method 

comprises four main modules: 1) the tsunami 

hazard presented in the form of scenario herein the 

wave height; 2) the inventory which contains the 

topologies and characteristics of the elements at 

risk; 3) the vulnerability were fragility functions 

are utilized for typologies of the elements at risk 

and 4) the tsunami damage estimations obtained 

by simulating various hazard scenarios which 

incorporates the preceding modules. Those 

modules are presented in Table 1.  

In this paper, the tsunami building damage in 

Byblos is modeled using the INCORE platform 

(INCORE, 2020).  

It links the cause and effects of catastrophic events 

using consequence-based risk management 

(CRM). It helps, thus, suggesting several 

mitigation alternatives and permits the decision-

makers to advance risk reduction strategies and 

recovery plans. 

 
Table 1: Main modules of the tsunami damage 

estimation methodology 

Main 

Modules 
Methods and content 

Tsunami 

hazards 

Tsunami hazard scenarios, 

herein in terms of wave height 

Inventory 

Inventory/typology for the 

building attributes, occupant, 

and monetary 

Vulnerability 

Fragility curve dataset 

Fragility mapping dataset 

Match fragilities to different 

inventory types based on 

attributes 

Damage 

estimations 

Running several scenarios 

based on the steps above 

successively 

 

2. BYBLOS TSUNAMI MODEL AND 

RESULTS 

For the Byblos case study, the following steps 

methods were done to assess the preliminary 

tsunami damage: 

2.1.1. Tsunami hazards  

Several studies exist on tsunamis in the Eastern 

Mediterranean sea ((Meral Ozel et al., 2011), 

(Yolsal et al., 2007) and (Hamouda, 2010)). 

However, few detailed the Levantine Segment.  

(Meral Ozel et al., 2011)) studied the Tsunami 

hazard in the Eastern Mediterranean, its 

connected seas, and its influence.  
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(Yolsal et al., 2007) investigated potential 

tsunami source regions and tsunami-prone 

mechanisms in the Eastern Mediterranean. They 

considered the three possible tsunami source 

areas: 1) between Rhodes and SW of Turkey, 2) 

the Crete earthquake, 3) the Paphos earthquake of 

M= 7.5, and the tsunami of 11 May 1222.  

(Meral Ozel et al., 2011) explored the effects of 

tsunami scenarios along the Egypt Mediterranean 

coast. For the Levantine Segment scenario, the 

Egyptian coast's wave height varied between 0.4 

to 1.4. Thus, the wave height of the Lebanese 

coast must have been higher. Moreover, for this 

scenario of A.D. 551 earthquake of a moment 

magnitude, Mw of 7.5 (Elias et al., 2007), they 

considered that it was generated by Beirut thrust 

scenarios where only a small part of the fault 

stretched into the sea. This was common 

knowledge until, lately, the Mont Lebanon Trust 

fault was discovered at sea by SHALIMAR 

(Briais et al., 2004).  Due to her greater length 

along Lebanon, it might have generated higher 

waves.   

(Davies et al., 2018), developed based on 

earthquake sources, a global probabilistic tsunami 

hazard assessment, where the tsunami wave 

heights in Lebanon can reach 10 meters. This 

article considers two scenarios: 2.5m and 5m 

heights. Figure 1 shows the Byblos Tsunami 

hazard scenario for a 2.5 m wave height.   

2.1.2. Inventory  

The inventory for Byblos data was gathered 

through a field mission, and each building was 

surveyed to gather its typology, number of stories, 

occupancy, etc.   

2.1.3. Vulnerability  

The fragility functions offered by (Suppasri et al., 

2013) were used, and the structure types for 

Byblos buildings were mapped to the fragilities. 

Figure 2 shows Byblos buildings' typologies.  

2.1.4. Damage estimations  

The damage analysis was executed for the two 

chosen scenarios of wave heights of 2.5m and 5m.     

 

 
Figure 1: The Byblos Tsunami hazard scenario for 

2.5 m wave height.  

 

Figures 3 and 4 show the building damage for 

scenario 2.5 m and 5m wave height, respectively. 

The yellow color indicates the highest damage 

probability, and the blue is the lowest building 

damage probability.   

Figure 5 and 6 shows the buildings’ complete 

damage distribution for the 2.5 m and 5 m wave 

height scenario, respectively. For the 2.5 m wave 

height scenario, around 220 buildings have 0.13% 

damage probability, 420 buildings have 0.2% 

damage probability, and 150 buildings have 

0.48% damage probability.  For the 2.5 m wave 

height scenario, around 220 buildings have 0.42% 

damage probability, 420 buildings have 0.5% 

damage probability, and 150 buildings have 

0.88% damage probability.   
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Figure 2: The typologies of Byblos buildings 

 

 
Figure 3: The building damage for the 2.5 m wave 

height scenario.  

 
Figure 4: The buildings’ complete damage 

distribution for the 2.5 m wave height scenario.  

 

 
Figure 5: The building damage for the 5 m wave 

height scenario.  

 

 
Figure 6: The buildings’ complete damage 

distribution for the 5 m wave height scenario.  
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3. UNCERTAINTY CONSIDERATIONS IN 

TSUNAMI MODELS AT CITY LEVEL 

 

This article offers a preliminary study of 

Byblos tsunami building damage. However, a 

more detailed analysis needs to be done 

considering the momentum flux, wave height, and 

inundation depth. Then a study of earthquake and 

tsunami combined damage can be done.    

Moreover, uncertainty considerations need to be 

accounted for in the model.   

Tsunami loss assessment analysis has 

attracted attention lately, and a significant amount 

of studies have dealt recently with uncertainties 

related to tsunami hazards.  

(F. Løvholt et al., 2019) discussed global 

trends in understanding and advancing tsunami 

science, especially hazard, and risk. They noted 

that probabilistic tsunami hazard analysis (PTHA) 

methods have surfaced since 2004, such as 

(Burbidge et al., 2008) and (Horspool et al., 

2014).  

Most of the studies on tsunami uncertainties 

were related to tsunami hazards such as ((Guillas 

et al., 2018), (Davies et al., 2018), (Gibbons et al., 

2020), (Giles et al., 2021), (Basili et al., 2021), 

(Basili et al., 2021), (Selva et al., 2016), (Melgar 

et al., 2019), (Zengaffinen‐Morris et al., 2022), 

(Sarri et al., 2012), (Molinari et al., 2016), (Goda 

et al., 2020), (Behrens & Dias, 2015), (Annaka et 

al., 2007), (Parsons & Geist, 2008), (Power et al., 

2013), (Mueller et al., 2021) (Fukutani et al., 

2015), (Ohno et al., 2022)), and (Zhang et al., 

2020). Some used the Bayesian method for 

probabilistic tsunami hazard assessment (Grezio 

et al., 2010).  

Human immediate tsunami response 

capability was discussed by (Post et al., 2009). 

Probabilistic early warning tsunami forecasting 

was debated by (Selva et al., 2021), and urgent 

tsunami computing was offered by (Lovholt et al., 

2019). Tsunami evacuation approaches were 

proposed by (Muhammad et al., 2021), and 

landslide tsunami and hazard considering 

uncertainties were investigated by (Finn Løvholt 

et al., 2020).  

 

Fragilities functions were also offered, such 

as in (FEMA, 2020) and (Suppasri et al., 2013). 

And a complete modeling for tsunami risk 

mapping and damage analysis with consideration 

of uncertainties is offered by (Yamazaki et al., 

2011).  

Some interesting platforms for tsunami 

modeling and resilience considerations exist, such 

as Hazus, Ergo, and INCORE (Nisrine Makhoul 

& Argyroudis, 2019). However, until now, no 

unique platform is available to consider tsunami 

modeling with considerations for uncertainties in 

all its parts (i.e., tsunami hazards, inventory, 

vulnerability, damage estimations) as well as 

losses and community resilience and metrics. 

More effort, work, and considerations are 

recommended for involving further probabilistic 

modeling and uncertainties considerations in such 

promising platforms.    

4. CONCLUSIONS 

This article presents a preliminary study of the 

tsunami damage to Byblos buildings and 

discusses the necessity to include uncertainty 

considerations in tsunami models and platforms. 

This study showed that most Byblos buildings 

would suffer complete damage with different 

probabilities for 2.5 m and 5 m wave height 

scenarios. Finally, the article identified a 

significant amount of research work considering 

uncertainties in the tsunami hazard; however, 

lesser in the damage modeling. Thus, more effort 

is needed to include more probabilistic and 

uncertainties considerations in tsunami models 

and platforms.    
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