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ABSTRACT: Community recovery from a disaster is a complex process, in which the importance of
different types of infrastructure functionality can change over time. For instance, sheltering facilities can
be critical in the immediate post-disaster phase, but play a declining role over the longer-term recovery
period. On the other hand, the successful functionality of educational institutions may become
important only at the end of any emergency response period. Most of the myriad of metrics available for
measuring disaster resilience do not capture the dynamic importance of functionality explicitly,
however. This means that very different recovery trajectories of a given infrastructure can correspond to
the same resilience value, regardless of variations in its utility over time. While some efforts have been
made to integrate features of time dependency into individual facility (i.e., component-level) resilience
quantification, the resulting metrics either capture only a limited set of temporal instances throughout
the post-disaster response and recovery process or do not offer a way to prioritize time steps in line with
variations in the importance of facility functionality. This study proposes a novel yet straightforward
metric for component-level post-disaster resilience quantification that overcomes the aforementioned
limitations. The metric involves a dynamic weighting component that allows stakeholders to place
varying emphasis on different temporal points throughout the recovery process. The end-user-centered
approach to resilience quantification facilitated by the metric allows for flexible, context-specific
interpretations of infrastructure functionality importance that may vary across different communities.
After presenting the metric, we demonstrate it through a hypothetical case study of infrastructure
facilities with varying degrees of importance across the post-disaster recovery period, and showcase its
versatility relative to a previously well-established measurement of component-level resilience. As the
case-study demonstration underlines, the proposed metric has significant potential for use in
stakeholder-driven approaches to decision making on critical infrastructure (as well as other types of
built environment) recovery and resilience.

1. INTRODUCTION

The need for effective disaster resilience is well
established in the literature (Tiernan et al., 2019)
and promoted widely across leading international
agencies, such as the World Bank and the United
Nations (Mochizuki et al., 2018). There is no ex-
plicit consensus on the definition of the concept of
resilience (Cai et al., 2018), which features across
a range of different disciplines including ecology
and child psychology (Ayyub, 2014). However, in

the context of disasters and communities, the term
is broadly captured by the following United Nations
Office for Disaster Risk Reduction (UNISDR) ex-
planation: “ A resilient city is characterized by its
capacity to withstand or absorb the impact of a haz-
ard through resistance or adaptation, which enable
it to maintain certain basic functions and structures
during a crisis, and bounce back or recover from an
event ” (Johnson and Blackburn, 2012).

Implicit in this interpretation of disaster re-
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silience (particularly through the word “certain”) is
the idea that the importance of post-disaster func-
tionality in a given infrastructure (facility) may
change over time. Some facilities, like shelters and
hospitals, are critical to the emergency response
phase and should be immediately functional for
maintaining basic needs (e.g., Hassan and Mah-
moud, 2018; Cimellaro et al., 2010; Vecere et al.,
2017). On the other hand, other services, such as
those related to education, are not required to oper-
ate so soon after a disaster; in fact, the re-opening
of schools often marks the transition from response
to recovery efforts (Scott et al., 2023). In addition,
the importance of functionality in different facili-
ties at a certain point in time can vary across neigh-
borhoods (Dong et al., 2021). For instance, imme-
diate operation of food assistance services may be
critical for low-income communities, but not nec-
essary for high-income groups that have sufficient
pre-existing resources to cope without these facili-
ties for a certain period of time.

Yet, the vast majority of existing metrics for indi-
vidual facility (i.e., component-level) resilience do
not (at least completely) capture the dynamic na-
ture of post-disaster functionality importance (Hos-
seini et al., 2016). For instance, the resilience
triangle measurement proposed by Bruneau et al.
(2003), which is perhaps the most well-known and
widely used metric in this context, can produce the
same resilience result for very different functional-
ity trajectories because each time instant is treated
equally. Thus, a hospital that has minimal function-
ality in the critical emergency phase but recovers
quickly thereafter could have identical resilience to
a similar facility that has significantly more capac-
ity to deal with emergency casualties but recovers to
a fully operational status more slowly. This limita-
tion of the Bruneau et al. (2003) metric was iden-
tified and addressed by Zobel (2011); Zobel and
Khansa (2014); Chang and Shinozuka (2004), but
the resulting approaches only focus on functional-
ity at a finite number of temporal instances (i.e., the
beginning and end of recovery processes), such that
the importance of performance in intervening peri-
ods cannot be accounted for.

While the literature does contain time-dependent

component-level metrics that enable disaster-
related resilience to be examined and/or distin-
guished for any temporal instance of interest (e.g.,
Henry and Ramirez-Marquez, 2012; Rose, 2007),
there has been no attempt to explicitly prioritize
(weight) time steps in line with the dynamic im-
portance of facility functionality. Time-dependent
weighting functions have been introduced in the
system resilience domain, reflecting the relative im-
portance of functionality in one type of facility over
another (Ghorbani-Renani et al., 2020; Zhang et al.,
2021). However, these types of metrics still treat
all time steps with equal importance at the compo-
nent level, and reduce to measurements analogous
to that proposed by Bruneau et al. (2003) for a sys-
tem composed of only one facility.

This study addresses the crucial gap identi-
fied in the state-of-the-art, by proposing a novel
component-level resilience metric that enables
varying emphasis to be placed on different tem-
poral points throughout the recovery process. The
dynamic nature of infrastructure functionality im-
portance is specifically captured through a time-
dependent weighting component that should be cal-
ibrated in consultation with relevant end users. This
end-user-oriented feature of the proposed metric
has a number of advantages. First, it allows for
flexible, context-specific interpretations of recov-
ery importance for different infrastructure, address-
ing possible inter-community disparities in post-
disaster needs. Second, stakeholder participation
in the post-disaster planning process can lead to
greater awareness of related challenges and higher
confidence of being able to address them (Chan-
drasekhar, 2012) . Ultimately, end-user involve-
ment results in better-informed decision making
(e.g., Komendantova et al., 2014), which is the fi-
nal goal of any resilience assessment.

The rest of the paper is organized as follows.
Section 2 introduces the proposed resilience met-
ric, which is then demonstrated for a set of hypo-
thetical infrastructure facilities and stakeholders in
Section 3. The paper ends with a discussion on the
utility of the metric and its potential application to
infrastructure recovery decision making in Section
4.
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2. PROPOSED METRIC
The proposed resilience metric provides a

weighted average value of normalized functional-
ity Q(t) for an individual facility between two time
instances of interest, t0 (typically the time at which
the disaster occurs) and TRE (corresponding to some
subsequent point in the post-disaster phase, which
may or may not align with the restoration of full
operational capacity in the facility and could be
disaster-specific). It can be expressed as:

R =

∫ TRE
t0 Q(t)w(t)dt∫ TRE

t0 w(t)dt
(1)

where w(t) is a time-dependent weighting, rang-
ing in value from 0 to 1. w(t) is obtained from
discussions with relevant facility stakeholders and
may be derived directly from recovery goals set in
community resilience plans (e.g., Scott et al., 2023;
Poland, 2009) . It is a measurement of the rela-
tive importance of complete functionality at time t,
where w(t) = 1 indicates that complete functional-
ity is critical and w(t) = 0 is used when functional-
ity is not necessary.

w(t) for a given facility may depend on the sever-
ity of a disaster. For instance, the critically impor-
tant functionality of an emergency shelter may last
longer for events that cause substantial residential
damage than those that have minimal effect on a re-
gion’s housing stock. On the other hand, the time
at which educational facilities should reach full ca-
pacity may be later for high-impact events that re-
quire a protracted post-disaster emergency phase.
w(t) should also account for any resilience tactics
(e.g., Rose and Huyck, 2016) associated with the
facility of interest that can be used to supplement or
as a substitute for its functionality over a prescribed
period of time. For example, w(t) may be zero for
an industrial premises during the time period that
the associated business can operate with employees
working from home (e.g., Cremen et al., 2020).

2.1. Alignment with existing metrics
2.1.1. Component-level metrics

R is a modified version of the straightforward
well-known resilience triangle concept (herein re-
ferred to as R∗) proposed by Bruneau et al. (2003)

and subsequently updated by Cimellaro et al.
(2005). The inclusion of the integral on the de-
nominator of R normalizes the metric, analogous
to the 1

TLC
component of the formulation proposed

by Cimellaro et al. (2005), where TLC refers to a
specific time period of interest (equivalent to TRE in
Eq. 1). R reduces to R∗ for w(t) = C, where C is
some constant between 0 and 1, i.e., the two metrics
are equivalent when an equal amount of importance
is placed on the full functionality of the facility of
interest across the time {t0,TRE}. This may arise in
the case of some facility that operates at or near full
capacity even in “normal” conditions (i.e., when it
is not dealing with the aftermath of a disaster), such
as a critical bridge in a road network.

2.1.2. System-level metrics
The proposed metric assumes a similar func-

tional form to the system-level resilience measure-
ments provided in Eq. (1) of Ghorbani-Renani et al.
(2020) and Eq. (8) of Zhang et al. (2021), which
also incorporate a dynamic weighting component
that accounts for the time-dependent importance of
infrastructure functionality. However, a crucial dif-
ference between these measurements and the metric
proposed in this study is the manner in which rela-
tive importance is quantified. The Ghorbani-Renani
et al. (2020) and Zhang et al. (2021) approaches
measure the importance of functionality in a given
infrastructure facility at t relative to that of all
other infrastructure facilities within the system or
network of interest at the same time (i.e., “inter-
infrastructure” or “facility-to-facility” functionality
importance; Almoghathawi and Barker, 2019; He
and Cha, 2021). These approaches therefore reduce
to a time-independent measurement analogous to
R∗ , if only one individual facility is considered.
On the other hand, R measures relative function-
ality importance in an “intra-infrastructure” sense,
i.e., the importance of functionality in a given in-
frastructure facility at t is measured relative to the
importance of the same facility at different times.
In other words, the Ghorbani-Renani et al. (2020)
and Ghorbani-Renani et al. (2020) approaches are
top-down in nature- where the sets of weightings
used across different infrastructure reflect the per-
spectives or rules of one high-level (or generic) de-
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cision maker in an autocratic process - whereas the
R metric is inherently bottom-up, facilitating be-
spoke stakeholder priorities for each unique piece
of infrastructure it is applied to.

If necessary, R could be integrated explicitly into
a system resilience quantification Rsys, combining
the top-down and bottom-up approaches through a
formulation such as (Cimellaro et al., 2014):

Rsys =
∑Rn

N
(2)

where N is the number of infrastructure (facilities)
within the system of interest. Rn is the resilience of
the nth facility in the system that could be expressed
as an adapted version of R according to:

Rn =

∫ TRE
t0 Q(t)wn(t)wsys,n(t)dt∫ TRE

t0 wn(t)wsys,n(t)dt
(3)

where wsys,n(t) quantifies the nth facility’s inter-
infrastructure importance (0 ≤ wsys,n(t)< 1), wn(t)
is equivalent to w(t) in Eq. (1), and all other vari-
ables are as previously defined. To avoid double
counting in this case, it is important that wn(t) is
defined independent of the facility’s functional in-
terdependencies across the considered system.

3. CASE STUDY DEMONSTRATION
We provide a simple hypothetical case-study

demonstration of R for three independent infras-
tructure facilities of interest: a water supply service,
an emergency shelter, and a school. We assume that
the time of interest is between t0 = 0 and TRE = 15
days after an “expected” disaster (i.e., a disaster that
is reasonably expected to occur once during the life
of an urban system, which is typically set as a 50-
year period; Poland, 2009). Hypothetical w(t) val-
ues for the three infrastructure, which are plotted
in Figure 1 and provided in Table 1, are quantified
assuming that stakeholders and their associated dis-
aster resilience plans would: (1) consider full func-
tionality of the emergency shelter to be critical at
first, but this importance to decrease significantly
over time to almost nothing at t = TRE ; (2) deem
full functionality of the school to be insignificant
at t0, but increase slowly over time to reach maxi-
mum importance at approximately t = 40 days; and

(3) assign little importance to full functionality of
the water supply until t = 10 days, which approx-
imately corresponds to the duration of capacity in
the backup water system.

We specifically compare the value of R for three
contrasting functionality trajectories (see Figure 2)
that provide the same value of R∗, i.e.,

R∗=
∫ 15

0 Q(t)dt
15

= 0.82 (4)

Trajectory #1 linearly increases from 60% function-
ality at t = t0 to 100% functionality at t = 13.6 days.
Trajectory #3 involves a steeper functionality in-
crease from a lower initial functionality level than
trajectory #1 (5% ), but reaches a plateau at only
90% functionality (from t = 2.8 days). Trajectory
#2 remains constant at 82% functionality, indepen-
dent of time. The R values for each recovery trajec-
tory (R#1 to R#3) and each facility are included in
Table 1.

Functionality trajectory #1 produces the highest
R value for the water supply service. This result is
explained by the fact that the trajectory provides the
largest functionality (across the three examined tra-
jectories) at the most important time for the water
supply service to be operational (i.e., t ≥ 10 days).

Functionality trajectory #2 produces identical
values of R = R∗ for each infrastructure facility,
since it does not change dynamically. It leads to the
highest R value for the emergency shelter and the
lowest R value for the water supply service. This
is because it provides adequate functionality in the
period immediately after the disaster when the shel-
ter is most required, but its functionality is outper-
formed by that of #1 and #3 when a fully functional
water supply service is critical at a later stage.

Functionality trajectory #3 provides the highest
value of R for the school, since the trajectory aligns
well with the increasing importance of school func-
tionality over time. However, the trajectory pro-
duces the lowest R value for the emergency shel-
ter, since it provides very little functionality in the
immediate post-disaster period. Trajectory #3 re-
sults in identical R∗ values for both the water supply
service and the school, which both have increasing
functionality requirements over time. Finally, it is
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interesting to note that the value of R can change
considerably between trajectories for the same in-
frastructure facility. For instance in the case of the
emergency shelter, the R value for trajectory #2 is
26% larger than that for trajectory #3.

In summary, the results indicate that the proposed
resilience metric R can distinguish the best func-
tionality trajectory for bespoke infrastructure stake-
holder needs, among a set that produces the same
level of resilience according to traditional measure-
ments. It is important to note that the results are
specific to the considered time period. For exam-
ple, functionality trajectory #1 provides a higher
R value for the school (=0.94) than trajectory #3
(R#3 = 0.89) if TRE = 30 days, given the superior
functionality performance of trajectory #1 across
the extended time period considered.

Table 1: w(t) and resulting R values associated with
the hypothetical case-study water supply service, emer-
gency shelter, and school, computed for the three hy-
pothetical Q(t).The best R value for each facility is
denoted in bold.

facility w(t) R#1 R#2 R#3

water

{
0.1, if t ≤ 10
1, otherwise

0.93 0.82 0.88

shelter e−t/4 0.71 0.82 0.65
school 1− e−t/4 0.86 0.82 0.88

4. CONCLUSIONS
This study has proposed a new metric for mea-

suring post-disaster resilience that explicitly ac-
counts for dynamic fluctuations in the criticality of
infrastructure functionality across the post-disaster
period. The time-dependency of functionality im-
portance is reflected in a dynamic weighting func-
tion that can be calibrated through relevant stake-
holder feedback, facilitating an end-user oriented
approach to flexible, context-specific resilience as-
sessment. The metric is specifically designed for
component-level applications, but could be easily
extended to a system-level context using some sort
of weighted aggregation approach, as discussed in
the text.

Figure 1: Hypothetical w(t) for a water supply service,
an emergency shelter, and a school.

Figure 2: Three hypothetical functionality trajectories
Q(t) with identical R∗ values .

We have demonstrated the metric using three
hypothetical infrastructure components and associ-
ated stakeholder input on functionality importance,
to identify the best (most resilient) functionality tra-
jectory for each case, among a synthetic set of three.
Each of the investigated functionality trajectories
yield the same resilience value computed accord-
ing to the traditional trianglular-based metric first
introduced by Bruneau et al. (2003), despite hav-
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ing significantly different shapes. On the contrary,
the proposed metric provides reasonably different
values for the trajectories, in line with stakeholder
functionality requirements. For instance, the high-
est resilience value is assigned to the trajectory with
the most initial post-disaster capacity if stakehold-
ers prioritize emergency-phase functionality (i.e.,
in the case of an emergency shelter), whereas tra-
jectories with maximum functionality later on in
the recovery process produce the highest resilience
values if stakeholders do not perceive immediate
functionality to be essential (i.e., in the case of a
school or a water supply for which there are tempo-
rary backup resources).

The case study demonstration clearly indicates
the ability of the metric to naturally distinguish
diverse optimum recovery trajectories for differ-
ent infrastructure, based on bottom-up underly-
ing stakeholder needs rather than (at least exclu-
sively) relying on top-down autocratic comparisons
of functionality importance across different types
of infrastructure. This is a useful feature of the pro-
posed metric that could be leveraged to effectively
coordinate the post-disaster recovery process across
different types of infrastructure and various relevant
stakeholders (e.g., civic agencies, utility infrastruc-
ture operators, and nongovernmental organizations)
in a given urban system, in the face of limited re-
covery resources, investment, and time (e.g., Ol-
shansky et al., 2012; Choi et al., 2019; Pant et al.,
2014). This type of coordination process would first
involve designing a series of bespoke recovery tra-
jectories that account for unavoidable constraints
(e.g., construction worker shortages) across time.
The proposed metric could then be used to appro-
priately assign each trajectory to a corresponding
infrastructure facility, in accordance with the dy-
namic importance of its functionality.

To conclude, the proposed metric for post-
disaster resilience quantification across individual
facilities possesses promising potential as an ef-
fective tool for facilitating informed stakeholder-
oriented decision making on post-disaster infras-
tructure recovery. Future work will focus on ap-
plying the metric to more realistic case studies and
exploring its expansion to a more explicit consider-

ation of system-level resilience.

5. REFERENCES
Almoghathawi, Y. and Barker, K. (2019). “Compo-

nent importance measures for interdependent infras-
tructure network resilience.” Computers & Industrial
Engineering, 133, 153–164.

Ayyub, B. M. (2014). “Systems resilience for multihaz-
ard environments: Definition, metrics, and valuation
for decision making.” Risk Analysis, 34(2), 340–355.

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C.,
O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M.,
Tierney, K., Wallace, W. A., and Von Winterfeldt, D.
(2003). “A framework to quantitatively assess and en-
hance the seismic resilience of communities.” Earth-
quake Spectra, 19(4), 733–752.

Cai, H., Lam, N. S., Qiang, Y., Zou, L., Correll, R. M.,
and Mihunov, V. (2018). “A synthesis of disaster re-
silience measurement methods and indices.” Interna-
tional Journal of Disaster Risk Reduction, 31, 844–
855.

Chandrasekhar, D. (2012). “Digging deeper: participa-
tion and non-participation in post-disaster community
recovery.” Community Development, 43(5), 614–629.

Chang, S. E. and Shinozuka, M. (2004). “Measuring im-
provements in the disaster resilience of communities.”
Earthquake Spectra, 20(3), 739–755.

Choi, J., Deshmukh, A., and Hastak, M. (2019). “Seven-
layer classification of infrastructure to improve com-
munity resilience to disasters.” Journal of Infrastruc-
ture Systems, 25(2), 04019012.

Cimellaro, G. P., Reinhorn, A., and Bruneau, M. (2005).
“Seismic resilience of a health care facility.” Proceed-
ings of the 2005 ANCER Annual Meeting, Session III,
November, 10–13.

Cimellaro, G. P., Reinhorn, A. M., and Bruneau,
M. (2010). “Seismic resilience of a hospital sys-
tem.” Structure and Infrastructure Engineering, 6(1-
2), 127–144.

Cimellaro, G. P., Solari, D., and Bruneau, M. (2014).
“Physical infrastructure interdependency and regional
resilience index after the 2011 tohoku earthquake
in japan.” Earthquake Engineering & Structural Dy-
namics, 43(12), 1763–1784.

Cremen, G., Seville, E., and Baker, J. W. (2020). “Mod-
eling post-earthquake business recovery time: An an-
alytical framework.” International Journal of Disas-
ter Risk Reduction, 42, 101328.

Dong, S., Malecha, M., Farahmand, H., Mostafavi, A.,
Berke, P. R., and Woodruff, S. C. (2021). “Inte-

6



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

grated infrastructure-plan analysis for resilience en-
hancement of post-hazards access to critical facili-
ties.” Cities, 117, 103318.

Ghorbani-Renani, N., González, A. D., Barker, K.,
and Morshedlou, N. (2020). “Protection-interdiction-
restoration: Tri-level optimization for enhancing in-
terdependent network resilience.” Reliability Engi-
neering & System Safety, 199, 106907.

Hassan, E. M. and Mahmoud, H. (2018). “A framework
for estimating immediate interdependent functional-
ity reduction of a steel hospital following a seismic
event.” Engineering Structures, 168, 669–683.

He, X. and Cha, E. J. (2021). “Din ii: incorporation
of multi-level interdependencies and uncertainties for
infrastructure system recovery modeling.” Structure
and Infrastructure Engineering, 17(11), 1566–1581.

Henry, D. and Ramirez-Marquez, J. E. (2012). “Generic
metrics and quantitative approaches for system re-
silience as a function of time.” Reliability Engineer-
ing & System Safety, 99, 114–122.

Hosseini, S., Barker, K., and Ramirez-Marquez, J. E.
(2016). “A review of definitions and measures of
system resilience.” Reliability Engineering & System
Safety, 145, 47–61.

Johnson, C. and Blackburn, S. (2012). “Making cities re-
silient report 2012. my city is getting ready! a global
snapshot of how local governments reduce disaster
risk.” United Nation Office for Risk Reduction.

Komendantova, N., Mrzyglocki, R., Mignan, A.,
Khazai, B., Wenzel, F., Patt, A., and Fleming,
K. (2014). “Multi-hazard and multi-risk decision-
support tools as a part of participatory risk gover-
nance: Feedback from civil protection stakeholders.”
International Journal of Disaster Risk Reduction, 8,
50–67.

Mochizuki, J., Keating, A., Liu, W., Hochrainer-Stigler,
S., and Mechler, R. (2018). “An overdue alignment
of risk and resilience? a conceptual contribution to
community resilience.” Disasters, 42(2), 361–391.

Olshansky, R. B., Hopkins, L. D., and Johnson, L. A.
(2012). “Disaster and recovery: Processes com-
pressed in time.” Natural Hazards Review, 13(3),
173–178.

Pant, R., Barker, K., and Zobel, C. W. (2014). “Static
and dynamic metrics of economic resilience for inter-
dependent infrastructure and industry sectors.” Relia-
bility Engineering & System Safety, 125, 92–102.

Poland, C. (2009). “The resilient city: Defining what san
francisco needs from its seismic mitigation polices.”

San Francisco Planning and Urban Research Associ-
ation report, San Francisco, CA, USA.

Rose, A. (2007). “Economic resilience to natural
and man-made disasters: Multidisciplinary origins
and contextual dimensions.” Environmental Hazards,
7(4), 383–398.

Rose, A. and Huyck, C. K. (2016). “Improving catas-
trophe modeling for business interruption insurance
needs.” Risk Analysis, 36(10), 1896–1915.

Scott, D. R., Cerino, A. C., Pekelnicky, R. G., and Yu,
K. (2023). “Resilience for critical facilities.” NIST.
National Institute for Standards and Technology.

Tiernan, A., Drennan, L., Nalau, J., Onyango, E., Mor-
rissey, L., and Mackey, B. (2019). “A review of
themes in disaster resilience literature and interna-
tional practice since 2012.” Policy Design and Prac-
tice, 2(1), 53–74.

Vecere, A., Monteiro, R., Ammann, W. J., Giovinazzi,
S., and Santos, R. H. M. (2017). “Predictive models
for post disaster shelter needs assessment.” Interna-
tional Journal of Disaster Risk Reduction, 21, 44–62.

Zhang, J., Zhang, M., and Li, G. (2021). “Multi-stage
composition of urban resilience and the influence of
pre-disaster urban functionality on urban resilience.”
Natural Hazards, 107, 447–473.

Zobel, C. W. (2011). “Representing perceived tradeoffs
in defining disaster resilience.” Decision Support Sys-
tems, 50(2), 394–403.

Zobel, C. W. and Khansa, L. (2014). “Characterizing
multi-event disaster resilience.” Computers & Opera-
tions Research, 42, 83–94.

7


	INTRODUCTION
	PROPOSED METRIC
	Alignment with existing metrics
	Component-level metrics
	System-level metrics


	CASE STUDY DEMONSTRATION
	CONCLUSIONS
	REFERENCES

