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ABSTRACT: Buried steel pipeline corrosion management strategies need time-dependent reliability 

evaluation of pipelines subjected to corrosion. Therefore, developing a reliable probabilistic predictive 

corrosion growth model is a necessity. This paper presents a novel framework for developing corrosion 

depth and length growth models. More specifically, a power-law function of time model formulation is 

adopted herein, which considers nonconstant damage growth rate over time. Besides, the soil properties 

are explicitly incorporated in the model formulation and the correlation between defect depth and length 

growth models is also considered. Bayesian updating framework is employed to evaluate the statistics of 

the unknown model parameters. As the prediction response in the model is defect dimension itself at a 

given time not on the corrosion rate, the model can be applied when either matched or nonmatched 

defects data are identified in the sequent inspections. In addition, the proposed framework considers a 

Poisson process for the occurrence of defects, and thus it does not assume uniform corrosion initiation 

time for all the defects, which can also predict the number of newly generated defects since last 

inspection. Most importantly, the proposed framework incorporates the influential physicochemical 

properties of the soil without assuming homogeneous growth for defects; and therefore, the developed 

growth models can be used to evaluate the performance of non-piggable buried pipelines over time. In 

the case study, corrosion defect models are developed based on the inspection data of a 112 km pipeline, 

and then are used for time-dependent reliability of the studied pipeline considering two different failure 

modes: small leak and burst. Finally, importance analysis is conducted to determine most influential 

model parameters to the probability of failure.  

1. INTRODUCTION 

Buried steel pipelines are subjected to many 

possible threats during their service lives, and one 

of the dynamic threats to the integrity of such 

pipelines is external corrosion. In order to develop 

pipeline integrity corrosion management 

strategies, time-dependent performance 

evaluation of buried pipelines considering 

corrosion needs to be conducted. In this regard, 

the corrosion damage evolution needs to be 

modeled to reflect the influence of the potential 

factors such as the physical and mechanical 

properties of the pipeline and its surrounding 

environment (Ahammed and Melchers 1997). 

 

To develop predictive corrosion defect 

growth models, field inspection data can be used. 

Such data are usually gathered by in-line 

inspection (ILI) tools (such as “pigging” 

technologies), which utilizes ultrasound devices 

to detect depth and axial length of the defects. 

Generally speaking, to describe the corrosion 

damage growth, two different damage quantities 

have been used in the modeling: one is defect 

dimension at a time instant and the other is 

corrosion rate. To evaluate the corrosion rate, two 

damage dimensions for the same defect are 

needed over at least two-time instants. That is, it 

is required that the same defect is detected in two 
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consecutive inspections and its dimensions are 

recorded. However, due to detection technology 

limitations/errors, matched defects from two 

inspections are quite rarely found in the field 

inspection data; thus, such data is often not 

suitable to model corrosion rate. 

To date, different formulations of defect 

growth models have been proposed in the 

literature. One of the most commonly used ones is 

the linear function of time for defect dimensions 

(i.e., depth and length) growth models, in which 

the rate of evolution is considered to be constant 

over time (e.g., Alamilla & Sosa 2008; Li et al. 

2009; Salama & Maes 2014; Zhang & Zhou 

2014). However, only when the corrosion is in the 

stable stage this assumption is valid, and it also 

oversimplifies the corrosion growth process. 

Meanwhile, some researchers considered a 

power-law function of time as defect growth 

models, which can capture non-constant damage 

growth rate over time (e.g., Caleyo et al. 2009; 

Velazquez et al. 2009; Alamilla et al. 2009; Nahal 

& Khelif 2014; Miran et al. 2016).  

Since a pipeline is typically very long and the 

soil properties along the pipeline could vary 

significantly along the pipe length, external 

corrosion evolution should be location dependent. 

Thus, some researchers assumed homogenous 

corrosion growth along multiple short-length 

segments of the pipeline (e.g., Miran et al. 2016; 

Wang et al. 2015). On the other hand, some 

researchers incorporated the spatial variability of 

the soil properties in the corrosion growth model 

formulation. For example, Velazquez et al. (2009) 

used the power-law formulation and related the 

model parameters to the soil and pipe 

characteristics through a multivariate regression 

analysis. Similarly, to estimate the model 

parameters in the power-law formulation, 

Alamilla et al. (2009) considered various 

environmental factors such as pH, resistivity, 

redox potential, and pipe–soil potential as the 

independent variables; however, they assumed a 

specific initiation time for all defects in each soil 

category. Moreover, Nahal & Khelif (2014) 

utilized the power-law formulation of pitting 

growth models with consideration of a number of 

variables related to space random fields to 

consider the corrosion distribution in a pipeline. 

In this study, a novel methodology is put 

forward to develop the corrosion damage 

evolution model, which has some distinguishing 

features compared to those models available in the 

past studies: 

I) it employs a Poisson process for corrosion 

initiation, so it does not assume uniform pitting 

initiation time for all detected defects; 

II) it uses the corrosion defect dimension 

directly not damage rate, therefore such 

methodology is applicable whether matched or 

nonmatched defects data are available; and 

III) it incorporates the soil properties at the 

location of each defect in the growth model, 

therefore no segmentation or homogeneous 

assumption is needed. 

As a case study, available ILI data for an in-

service pipeline is used to develop the corrosion 

growth model using the proposed methodology 

and the prediction performance is then evaluated. 

The resulted model is then used to estimate the 

probability of failure of the studied pipeline over 

time, which is followed by sensitivity analysis of 

the model parameters. 

2. PROBABILISTIC CORROSION DAMAGE 

EVOLUTION MODELING 

METHODOLOGY 

This section describes how the soil properties are 

incorporated in the damage evolution, initiation 

time for each defect is modeled, and unknown 

model parameters are estimated.  

2.1. General formulation 

In this study, for both corrosion maximum depth 

and length, a power-law function of time model 

formulation is adopted, as it considers 

nonconstant damage growth rate over time. To 

incorporate the environmental impact, the model 

parameters will be considered as linear functions 

of the field measured physicochemical variables 

of the soil along the pipeline. The model 

formulation is expressed as: 
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𝑧𝑘(𝑡,𝚯) = 𝐶1,𝑘  (𝑡 − 𝑡0,𝑘)
𝐶2,𝑘

+ 𝜎𝑘 𝜀𝑘 (1) 

𝐶1,𝑘(𝛉1, 𝐱) = 𝜃1,0 +∑𝜃1,𝑖  𝑥𝑖

𝑛

𝑖=1

 (1a) 

𝐶2,𝑘(𝛉2, 𝐲) =
(𝜃2,0 + ∑ 𝜃2,𝑗  𝑦𝑗

𝑚
𝑗=1 )

2

1 + (𝜃2,0 + ∑ 𝜃2,𝑗  𝑦𝑗
𝑚
𝑗=1 )

2 (1b) 

 

where k = types of defect quantity (e.g., k = D for 

the maximum defect depth and k = L for the 

maximum defect length), zk(t) = defect dimension 

(e.g., maximum defect depth or defect length) at a 

time instant t, t0 = corrosion initiation time, Θ = 

unknown model parameters including θ = {θ1, 

θ2}, xi and yj influencing environmental variables, 

t0,m = initiation time of each defect, εk = a standard 

normal random variable, and σk = standard 

deviation of the model error. 

Note that to ensure the growth model reflects 

a descending growth rate over time, the power 

term of the growth model, i.e. C2,k, needs to be 

bounded between zero and one. Thus, a 

transformation as shown in Eq. (1b) is adopted to 

meet such requirement. 

To model corrosion initiation, a Poisson 

process is considered for the occurrence of 

defects. Therefore, the proposed methodology 

does not assume uniform (constant) corrosion 

initiation time for all the defects, which can, as a 

result, predict the number of newly generated 

defects since the last inspection. To evaluate t0,k in 

Eq. (1), we assume the number of defects that 

occurs follows the same homogeneous Poisson 

process characterized by a rate parameter λ. 

Additionally, it is assumed that a defect with a 

larger detected dimensions occurs earlier than 

other ones with less dimensions; accordingly, the 

defects are sorted based on their detected 

dimension values and the initiation time of each 

defect follows a Gamma distribution, where the 

Gamma distribution scale parameter, βk, is treated 

as an unknown model parameter to be estimated 

and the shape parameter, αk, is assumed to be the 

ranking of each defect. 

All the unknown parameters, Θ, including θ, 

βk, and σk, are estimated by Bayesian Statistics 

through a Markov Chain Monte Carlo (MCMC) 

process that will be described in the next 

Subsection. In the MCMC sampling process, the 

defect initiation time, t0, is randomly generated 

from the associated Gamma distribution. 

However, for some cases, the generated Gamma 

random number is greater than the time of 

inspection, t, meaning that the defect is initiated 

after the inspection time, which is unreasonable. 

To overcome this issue, truncated Gamma 

distributions were employed so that upper bound 

of the distributions was considered equal to the 

time of inspection t.  

In addition, it is found that when using 

MCMC to search the posterior distribution of 

unknown parameters, the convergence is 

extremely slow or not achievable due to the large 

variability in randomly generated t0; even for the 

same β, t0 could change dramatically since it is 

randomly generated for each MCMC sampling. 

To overcome this issue, at each iteration of the 

MCMC process, the mean value of the 

corresponding truncated Gamma distribution is 

used as the defect initiation time, t0 which can be 

calculated using the probability theory by: 

in which Γ(. ) is the Gamma function, and t is the 

inspection time. Note that for non-truncated 

Gamma distribution, the mean value is α·β, while 

for truncated Gamma distribution, integration as 

shown in Eq. (2) is needed. 

Since a unique initiation time for each defect 

and also soil properties at the location of each 

defect are considered in the proposed 

methodology, a unique corrosion growth model is 

obtained for every single defect. 

2.2. Bayesian statistics 

Bayesian statistics (Box and Tiao 1992) is used 

here to assess the joint probability density 

function (PDF) of the unknown model 

parameters, Θ, used in the damage evolution 

model. If X denotes the vector of data used to 

𝑡0 = ∫ 𝑥  
1

𝛽𝛼 Γ(𝛼)
  𝑥𝛼−1 𝑒

−
𝑥
𝛽

𝑡

0

 𝑑𝑥 (2) 
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update the model parameters, the posterior joint 

PDF of Θ, p′′(Θ), can be written as 

𝑝′′(𝚯) = 𝜅  𝐿(𝐗|𝚯)  𝑝′(𝚯) (3) 

where 𝜅 = [∫ 𝐿(𝐗|𝚯)𝑝′(𝚯)𝑑𝚯]−1 , 𝐿(𝐗|𝚯) = 

likelihood function, p′(Θ) = prior joint PDF of Θ. 

As the model error in Eq. (1) is assumed to follow 

a Normal distribution, the likelihood function can 

be written as a bi-variant Normal distribution 

considering the correlation between depth and 

length model error standard deviations (Miran et 

al. 2016). To effectively compute the posterior 

statistics, one can use a sampling-based technique 

like the MCMC simulations (Gilks et al. 1996). 

For the convergence criteria, the Geweke method 

(Geweke 1992) is used in this study.  

2.3. Selection of soil properties in model 

development 

To account for the spatial variability of soil 

property along the length of the pipeline, soil 

parameters will be incorporated into the growth 

models, as shown in Eq. (1). To determine which 

soil property should be employed in the model, 

the whole length of the pipeline can be divided 

into short-length segments of equal length (say, 

resulting in q segments). This segment length is 

assumed to be short enough so that one can 

assume the variation of the soil properties is small 

and the defects on the segment follows the same 

corrosion growth model. For each segment, one 

growth model is developed without using soil 

property in Eq. (1) with q sets of C1,k and C2,k.  

Next, one could examine if the values of C1,k 

and C2,k. can be modeled by any soil properties. If 

a soil property is found to have a linear correlation 

with C1,k or C2,k (which can be checked use p-

testing), this soil property will be selected and 

used in Eqs. (1a) or (1b). 

3. MCMC RESULTS  

The proposed methodology is applied to develop 

corrosion depth and length growth models using a 

set of field data. The studied onshore pipeline with 

a total length of 112 km has been in service since 

1969 near the Gulf of Mexico and has the outside 

diameter of 18 in. and nominal wall thickness of 

0.252 in. The pigging technology has been applied 

to detect the pipeline wall thickness loss (i.e., 

corrosion defects) at six different times where 

2,583 defects were detected totally. However, the 

data analysis showed that no matched defects are 

available in the ILI database for this pipeline. Soil 

properties including soil moisture, pH, SO4, 

resistivity, redox potential, CO3, etc are also 

available at the location of each detected defect. 

First, following the procedure described in 

Section 2.3, the 112 km pipeline is divided into 56 

segments with 2 km length for each segment. 

Then, 56 sets of C1,k and C2,k values are obtained 

by considering them to be constants in Eq. (1).  

Then linear regression is conducted by 

treating the resulted C1,k or C2,k as the response 

and the mean values of the soil parameters for 

each segment as the predictors. The results 

indicate that the soil moisture, M, and soil sulfate 

level, SO4, have the least p-value in the developed 

linear models for C1,k and C2,k, respectively. Thus, 

Eqs. (1a) and (1b) become as follows: 

𝐶1,𝑘(𝛉1, 𝑀) = 𝜃1,0 + 𝜃1,1  𝑀 (4a) 

𝐶2,𝑘(𝛉2, 𝑆𝑂4) =
(𝜃2,0 + 𝜃2,1 𝑆𝑂4)

2

1 + (𝜃2,0 + 𝜃2,1 𝑆𝑂4)
2 (4b) 

With incorporating the soil properties at the 

location of each defect, the unknown model 

parameters are assessed based on all the defect 

data of the whole pipeline using MCMC. Table 1 

summarizes the obtained statistics of the model 

parameters’ posterior distribution in Eqs. (1), (4a), 

and (4b) with assuming no prior for the unknown 

model parameters. Also, the correlation between 

depth and length model errors is computed to be 

around 5%. 

The predicted corrosion depth and length and 

the associated actual measured quantities obtained 

through ILI are compared in Figure 1. For a 

perfect prediction model, the predicted data 

should line up along the 1:1 line. For both defect 

depth and length, Figure 1 shows that most of the 

predicted data are located around the 1:1 line 

within the ± 1 standard deviation band (i.e., 

dashed lines). This indicates that the proposed 

defect growth models provide unbiased prediction 
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Table 1: Posterior distribution statistics of model 

parameters 

 Model 

parameter 
Mean 

Standard 

deviation 
Median geweke 

d
ep

th
 

θ1,0 -0.531 0.005 -0.531 0.975 

θ1,1 3.366 0.139 3.348 0.922 

θ2,0 0.942 0.059 0.944 0.904 

θ2,1 -0.551 0.004 -0.552 0.986 

βD 0.816 0.014 0.817 0.981 

σD 0.283 0.004 0.283 0.999 

le
n
g

th
 

θ1,0 0.497 0.092 0.497 0.613 

θ1,1 -0.813 0.386 -0.823 0.218 

θ2,0 5.674 1.156 5.711 0.491 

θ2,1 0.344 0.027 0.342 0.933 

βL 0.148 0.001 0.148 0.993 

σL 2.961 0.044 2.960 0.994 

with sufficient accuracy despite only one single 

growth model formulation is used for the whole 

length of the pipeline, while the localized soil 

properties and unique corrosion initiation time are 

able to differentiate each defect growth. The 

accuracy of the model, however, decreases for 

larger values of depth and length for which less 

data is available compared to the smaller defects. 

Figure 2 also shows the predicted corrosion 

damage evolution over time compared with the 

inspected defects. As shown in Figure 2, the 

initiation time and growth trend for each defect is 

unique for itself, as the proposed method does not 

assume constant initiation time and incorporates 

local effect by using soil properties in the model. 

In addition, the corrosion rate tends to decrease 

over time, as expected: while the evolution of 

maximum depth of defects follows a nonlinear 

behavior, the maximum defect length develops in 

a rather linear manner. 

4. RELIABILITY ANALYSIS 

4.1. Failure modes 

In this section, the developed growth model is 

used to assess the performance of an aged pipeline 

system by assessing probability of failure over 

time. A pressurized pipeline with different 

corrosion defect may fail by two distinctive 

failure modes, namely small leak and burst. The 

  

 
Figure 1: Comparison between predicted v. 

measured defect dimension: (top) depth and (bottom) 

length. 

small leak failure mode refers to when a corrosion 

defect reaches 0.8 times the pipe wall thickness, 

and the probability of which is 

𝑃𝑓,leak(𝑡) = 𝑃(0.8 𝑑w − 𝑑(𝑡) ≤ 0) (5) 

where dw = pipeline wall thickness and d(t) = 

maximum depth of a corrosion defect at time t, 

which can be predicted from Eq. (1). 

The burst failure mode refers to a plastic 

collapse under the internal pressure, which 

happens when the working pressure exceeds the 

pressure capacity of the pipeline that decays with 

the presence of corrosion defects. The probability 

of burst failure mode can be calculated as: 
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Figure 2: Predictive corrosion evolution over time: 

(top) depth, and (bottom) length. 

𝑃𝑓,burst(𝑡) = 𝑃(𝐶p(𝑡) − 𝐷p ≤ 0) (6) 

where Cp = burst pressure capacity that is a 

function of the defect quantity and can be 

evaluated based on ASME B31G modified 

(Kiefner and Vieth 1989) as 

𝐶p(𝑡) =
2(𝜎min, y + 68.95)𝑑w

𝑑O
[

1 − 0.85
𝑑(𝑡)
𝑑w

1 − 0.85
𝑑(𝑡)
𝑑w

𝐹−1
] (7) 

where σmin,y = specified minimum yielding stress 

(MPa) and dO = outer diameter of the pipeline, F 

= Folias factor, which can be determined by: 

𝐹 =

{
 
 

 
 
√1 + 0.6275

𝑙2(𝑡)

𝑑O𝑑w
− 0.003375

𝑙4(𝑡)

𝑑0
2𝑑𝑤

2
         

𝑙2(𝑡)

𝑑O𝑑w
≤ 50

3.3 + 0.032
𝑙2(𝑡)

𝑑O𝑑w
                                              

𝑙2(𝑡)

𝑑O𝑑w
> 50

 (8) 

4.2. System reliability 

To consider the reliability of the pipeline system, 

each kilometer is treated as a sub-system and the 

probability of failure per kilometer is assessed. 

Each sub-system is considered as a series system 

where the failure of any defect within that sub-

system indicates the failure of the whole sub-

system. Thus, the probability of failure of a sub-

system can be computed using: 

𝑃𝑓(𝑡) = 1 −∏[1 − 𝑃f,𝑗(𝑡)]

𝑁d

𝑗=1

 (9) 

where Pf,j = failure probability of the jth detected 

defect, and Nd = number of detected defects in the 

sub-system. 

4.3. Probability of failure of a pipeline 

Based on the damage quantities calculated from 

the proposed prediction model, the probability of 

failure of the first kilometer of the pipeline is 

computed for the two failure modes using FORM 

(first-order reliability method) within FERUM 

application (Bourinet 2010) in MATLAB. 

Generally, the computed probability of failure 

should be less than a target value. When it 

exceeds, it indicates that at that point of time an 

appropriate action (such as repair or replacement) 

is needed for that part of the pipeline. 

In this study, the uncertainties considered in 

the reliability analysis include the model errors in 

the prediction models, statistical uncertainties in 

the model parameters, mechanical and 

geometrical properties of the pipeline and 

working pressure of the pipeline.  

Figure 3 shows the probabilities of failure of 

the small leak and burst failure modes for this 

pipeline segment based on Eq. (9). As expected, 

the calculated probability of failure shown is 

monotonically increasing due to the corrosion 

evolution. To understand if such probability of 

failure is acceptable, one can compare them with 

specific target values. For example, Det Norske  
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Figure 3: Time-dependent failure probability of 

studied subsystem for two failure modes. 

Veritas standard (DNV 2012) states the three 

ultimate limit state target failure probabilities 

corresponding to three safety classes are 10−3, 

10−4, and 10−5, respectively. As shown in Figure 

3, by 2070, the estimated probability of failure in 

neither of the failure mode exceeds the target 

levels; thus, this 1-km pipeline segment does not 

require further actions.  

Last, importance analysis is performed for 

the studied subsystem to determine to which 

parameter(s) the reliability of pipeline is most 

sensitive. Figure 4 shows the time-dependent 

importance measures of model parameters 

incorporated in the two failure modes considered. 

A negative value of importance measure indicates 

that increasing in a model parameter, will 

decrease the probability of failure; and the 

opposite can be concluded for the positive values. 

As shown in Figure 4, for both failure modes, dw 

is the most important parameter. Moreover, while 

model error, ε, is the second most important factor 

for small leak failure mode, Pd and DO are the 

second most important parameters for burst 

failure mode. 

5. CONCLUSIONS 

Time-variant reliability analysis of pipelines is 

necessary for developing cost-effective 

management strategies for pipeline inspection, 

maintenance, and rehabilitation. In this process, 

developing a reliable corrosion defects evolution 

 
 

 
Figure 4: Time-dependent importance measures for 

(top) small leak mode and (bottom) burst failure 

mode. 

is of crucial importance. In this study, a new 

methodology is proposed to model steel pipelines 

external corrosion defect evolution of maximum 

depth and length. The main merits of this 

methodology are: the methodology is suitable for 

matched or nonmatch defects detected in a 

sequential inspections, and the prediction model 

is defect-specific without using homogenous 

assumption. This is achieved by modeling the 

corrosion defect size at instantaneous time instead 

of modeling corrosion rate, by considering the 

corrosion occurrence to follow a Poisson process, 

and by explicitly incorporating soil properties in 

the model formulation. Thus, the growth model is 

believed to be more reliable. 
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A dataset of field ILI of an existing pipeline 

was used to develop growth models which later 

were used to evaluate the time-dependent system 

failure probabilities. The comparison between 

predicted and measured defect dimensions 

signified the acceptable accuracy of the developed 

growth models based on the methodology 

proposed. This accuracy leads to a more reliable 

estimation of the system probability failure, which 

can provide useful information for pipeline 

corrosion management actions. 

In future work, this methodology is applied 

to develop growth models based on different 

datasets of detected defects of steel pipelines to 

assess its suitability for other datasets. 
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