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ABSTRACT: The Wiener path integral technique for determining the stochastic response of diverse
nonlinear dynamical systems relies on a variational formulation that leads to a functional minimization
problem. This takes the form of a deterministic boundary value problem (BVP) to be solved for the most
probable path, which is used for determining approximately the system response joint transition
probability density function (PDF). The BVP corresponds to a specific grid point of the response PDF
effective domain. Remarkably, the BVPs corresponding to two neighboring grid points not only share
the same equations but, also, the boundary conditions differ only slightly. In this paper, the above unique
aspect of the technique is explored further, and it is shown that solution of a BVP and estimation of the
response PDF value at a specific grid point can be used for extrapolating and estimating efficiently the
PDF values at neighboring points without the need for solving additional BVPs. Notably, the developed
approach enhances significantly the computational efficiency of the WPI technique without affecting
considerably the exhibited accuracy. An indicative numerical example relating to a Duffing nonlinear
oscillator is considered for demonstrating the reliability of the technique. Comparisons with pertinent
Monte Carlo simulation data are included as well.

1. INTRODUCTION

The Wiener path integral (WPI) technique, pi-
oneered in the field of stochastic engineering me-
chanics by Kougioumtzoglou and co-workers (e.g.,
Kougioumtzoglou and Spanos 2012; Kougioumt-
zoglou 2017), has exhibited both high accuracy and
low computational cost in determining the stochas-
tic response of diverse dynamical systems (e.g.,
Petromichelakis et al. 2018; Petromichelakis and
Kougioumtzoglou 2020; Psaros and Kougioumt-
zoglou 2020). Further, the WPI technique has
proven to be versatile in handling complex non-
white/non-Gaussian stochastic excitation modeling
(e.g., Psaros et al. 2018), and in treating a wide
range of nonlinear/hysteretic systems, even when
endowed with fractional derivative elements (e.g.,

Mavromatis et al. 2023).
The fundamental concept of the WPI technique

relates to treating the system response joint transi-
tion probability density function (PDF) as a func-
tional integral over the space of all possible paths
connecting the initial and the final states of the re-
sponse vector. Further, the functional integral is
evaluated, ordinarily, by resorting to an approxi-
mate approach that considers the contribution only
of the most probable path. This corresponds to an
extremum of the functional integrand and is deter-
mined by solving a functional minimization prob-
lem that takes the form of a deterministic bound-
ary value problem (BVP). This BVP corresponds to
a specific grid point of the response PDF effective
domain. Note, however, that for a specific nonlin-

1



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

ear system under consideration, the equations of the
BVP are independent of the grid point. In fact, only
the boundary conditions change with different grid
points, whereas the equations of the BVP remain
unaltered. Remarkably, the BVPs corresponding to
two neighboring grid points not only share the same
equations but, also, the boundary conditions differ
only slightly. Thus, it is expected that the BVP so-
lutions, i.e., the most probable paths, referring to
the two grid points are highly correlated.

In this paper, the above unique aspect of the tech-
nique is explored further, and it is shown that solu-
tion of a BVP and estimation of the response PDF
value at a specific grid point can be used for ex-
trapolating and estimating efficiently the PDF val-
ues at neighboring points without the need for solv-
ing additional BVPs. Notably, the herein developed
approach enhances significantly the computational
efficiency of the WPI technique, while exhibiting a
satisfactory accuracy degree. An indicative numer-
ical example relating to a Duffing nonlinear oscilla-
tor is considered for demonstrating the reliability of
the technique. Comparisons with pertinent Monte
Carlo simulation (MCS) data are included as well.

2. PRELIMINARIES

2.1. Stochastic differential equations of motion
In the field of stochastic engineering dynam-

ics (e.g., Li and Chen 2009), the equations of
motion pertaining to diverse m−degree-of-freedom
(m−DOF) structural and mechanical systems take
the form of second-order stochastic differential
equations (SDEs) given by

MMMẍxx+CCCẋxx+KKKxxx+ggg(xxx, ẋxx, t) = www(t), (1)

where xxx denotes the displacement vector process(
xxx = [x1, . . . ,xm]

T); MMM, CCC, KKK are the m×m mass,
damping and stiffness matrices, respectively; and
ggg(·) represents a nonlinear vector function of arbi-
trary form that can also account for possible depen-
dence of the state of the system on its history. Fur-
ther, www(t) is a white noise stochastic vector process
with E[www(t)] = 0 and E[www(t)wwwT (t + τ)] = SSSwwwδ (τ),
where SSSwww ∈ Rm×m is a non-singular diagonal ma-
trix. Regarding the relation between the Wiener
and the white noise processes, a unit intensity white

noise process www(t), (i.e., SSSwww = I, where I is the iden-
tity matrix) can be defined as an infinitesimal jump
of the Wiener process, i.e., www(t)dt = dWWW . Thus, it
is often, informally, written as the time derivative of
the Wiener process in the form www(t) = dWWW

dt ; see also
Gardiner (1985) and Øksendal (2003) for a more
detailed discussion on the topic.

2.2. Wiener path integral formalism
In comparison to alternative derivations in the lit-

erature, which resort to the Chapman-Kolmogorov
equation as the starting point, a novel WPI formu-
lation was developed by Mavromatis et al. (2023)
that circumvents the Markovian assumption for the
system response process. In this regard, nonlinear
systems with a history-dependent state, such as hys-
teretic structures or oscillators endowed with frac-
tional derivative elements, can be treated in a direct
manner; that is, without resorting to ad hoc modifi-
cations of the WPI technique pertaining, typically,
to employing additional auxiliary filter equations
and state variables (e.g., Zhang et al. 2023).

Specifically, it has been shown (e.g., Chaichian
and Demichev 2001) that the probability of a path
corresponding to an n−dimensional Wiener vector
process with WWW (t0) =WWW 0, WWW (t f ) =WWW f and ∆WWW l =
WWW l+1 −WWW l is given by

P[WWW (t)] = lim
ε−→0

{
exp

(
− 1

2ε

L

∑
l=0

∆WWW T
l ∆WWW l

)

×
L

∏
l=0

[√
(2πε)n

]−1 n

∏
j=1

[
L+1

∏
l=1

dWj,l

]}
,

(2)

where the time domain is discretized into L + 2
points ε apart (with L −→ ∞ as ε −→ 0), i.e., ti =
t0 < · · · < tL+1 = t f . Further, considering Eq. (2)
and accounting for the probabilities of all possible
paths that the Wiener process WWW can follow, the cor-
responding transition PDF is given as the limit of an
L−dimensional integral in the form

p
(
WWW f , t f |WWW i, ti

)
=

lim
ε−→0

∞∫
−∞

· · ·
∞∫

−∞

exp

(
− 1
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L
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∆WWW T
l ∆WWW l

)

×
L

∏
l=0

[√
(2πε)n

]−1 n

∏
j=1

[
L+1

∏
l=1

dWj,l

]
.

(3)
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Next, taking into account the relationship between
the system response process xxx and the white noise
process www described by Eq. (1), the transition PDF
p(xxx f , ẋxx f , t f |xxxi, ẋxxi, ti) is obtained by applying a func-
tional change of variables to Eq. (3); see Mavroma-
tis et al. (2023) for more details.

In this regard, denoting the set of all paths with
initial state xxxi at time ti and final state xxx f at time
t f by C {xxx f , ẋxx f , t f ;xxxi, ẋxxi, ti}, the joint transition PDF
p(xxx f , ẋxx f , t f |xxxi, ẋxxi, ti) takes the form of a functional
integral over C {xxx f , ẋxx f , t f ;xxxi, ẋxxi, ti}, i.e.,

p(xxx f , ẋxx f , t f |xxxi, ẋxxi, ti) =∫
C {xxx f ,ẋxx f ,t f ;xxxi,ẋxxi,ti}

exp(−S[xxx, ẋxx, ẍxx])D [xxx(t)], (4)

where

S[xxx, ẋxx, ẍxx] =

t f∫
ti

L [xxx, ẋxx, ẍxx]dt (5)

denotes the stochastic action. The Lagrangian func-
tional L [xxx, ẋxx, ẍxx] in Eq. (5) takes the form

L [xxx, ẋxx, ẍxx] =
1
2
[MMMẍxx+CCCẋxx+KKKxxx+ggg(xxx, ẋxx, t)]T

×SSS−1
www [MMMẍxx+CCCẋxx+KKKxxx+ggg(xxx, ẋxx, t)]

(6)

and the functional measure D [xxx(t)] is given by

D [xxx(t)] =
m

∏
j=1

D [xxx j(t)]

=
m

∏
j=1

t f

∏
t=ti

dx j(t)√
2π

(
det
[
MMM−1SSSwww

(
MMM−1)T

])1/m
dt

.

(7)

2.3. Most probable path approximation
It is remarked that the analytical evaluation of the

WPI of Eq. (4) is, in general, an impossible task.
Thus, alternative approaches are typically pursued
in the literature for evaluating approximately Eq.
(4), such as the most probable path approach (e.g.,
Chaichian and Demichev 2001). Note that the most
probable path approximation has exhibited a quite
high degree of accuracy in various diverse engineer-
ing mechanics applications (e.g., Kougioumtzoglou
2017; Petromichelakis et al. 2018).

Specifically, the largest contribution to the func-
tional integral of Eq. (4) relates to the trajectory
xxxc(t) for which the stochastic action of Eq. (5) be-
comes as small as possible. This leads to the varia-
tional (functional minimization) problem

minimize
C {xxxi,ẋxxi,ti;xxx f ,ẋxx f ,t f }

S[xxx, ẋxx, ẍxx]. (8)

Following the solution of Eq. (8) and determina-
tion of xxxc(t), the functional integral of Eq. (4) is
evaluated approximately as

p(xxx f , ẋxx f , t f |xxxi, ẋxxi, ti) =C exp(−S[xxxc, ẋxxc, ẍxxc]), (9)

where C is a constant to be determined by the nor-
malization condition

∞∫
−∞

∞∫
−∞

p(xxx f , ẋxx f , t f |xxxi, ẋxxi, ti)dxxx f dẋxx f = 1. (10)

Various methodologies can be employed for
treating the optimization problem of Eq. (8)
and for determining xxxc(t). These range from
standard Rayleigh-Ritz type numerical solution
schemes (e.g., Kougioumtzoglou 2017; Petro-
michelakis et al. 2020) to more recently developed
techniques relying on computational algebraic ge-
ometry tools (Petromichelakis et al. 2021).

Alternatively, the most probable path xxxc(t), being
an extremal of S[xxxc, ẋxxc, ẍxxc], can be determined by
resorting to calculus of variations (e.g. Gelfand and
Fomin 1963) and enforcing the necessary condition
that the first variation vanishes, i.e., δS[xxxc, ẋxxc, ẍxxc] =
0. This yields the corresponding system of Euler-
Lagrange equations for j = 1, . . . ,m

∂L

∂x j
− d

dt
∂L

∂ ẋ j
+

d2

dt2
∂L

∂ ẍ j
= 0, (11)

in conjunction with the boundary conditions

x j(ti) = x j,i,

ẋ j(ti) = ẋ j,i,

x j(t f ) = x j, f ,

ẋ j(t f ) = ẋ j, f .

(12)
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3. MATHEMATICAL FORMULATION

As discussed in section 2.3, the most probable
path xxxc(t), which is used for determining approx-
imately the system response joint transition PDF
via Eq. (9), is computed by solving a functional
minimization problem that takes the form of a de-
terministic BVP described by Eqs. (11-12). This
BVP corresponds to a specific grid point of the re-
sponse PDF effective domain. In fact, for a given
time instant t f , a standard brute-force numerical im-
plementation of the technique entails the discretiza-
tion of the PDF effective domain into N2m points,
where N is the number of points in each dimension.
Next, the evaluation of the PDF is performed point-
wise on the discretized lattice. In other words, N2m

BVPs in the form of Eqs. (11-12) need to be solved
numerically, yielding an exponential increase of the
computational cost with the dimension m of the sys-
tem.

To circumvent the aforementioned challenge, at-
tention is directed in the following to the fact that,
for a specific nonlinear system under consideration,
the equations of the BVP are independent of the
grid point. In fact, only the boundary conditions
change with different grid points, whereas the equa-
tions of the BVP remain unaltered. Remarkably,
the BVPs corresponding to two neighboring grid
points not only share the same equations but, also,
the boundary conditions differ only slightly. Thus,
it is expected that the BVP solutions, i.e., the most
probable paths referring to the two grid points, are
highly correlated. This unique aspect of the tech-
nique is explored further in the ensuing analysis,
and the BVP solution at a given point is determined
by extrapolating the BVP solution at a neighboring
point.

Specifically, consider a point (xxx′f , ẋxx
′
f ) in the re-

sponse PDF domain expressed as (xxx′f , ẋxx
′
f ) = (xxx f +

∆xxx f , ẋxx f + ∆ẋxx f ), where (xxx f , ẋxx f ) denotes the point
corresponding to the final conditions used in the
BVP of Eqs. (11-12). Accordingly, the most prob-
able path corresponding to initial conditions (xxxi, ẋxxi)
and final conditions (xxx′f , ẋxx

′
f ) is expressed as xxx′c =

xxxc +∆xxx, where ∆xxx denotes a path to be determined.
Next, substituting xxx′c = xxxc+∆xxx into the Lagrangian

functional of Eq. (6) yields

L [xxx′c, ẋxx
′
c, ẍxx

′
c] =

1
2
[MMM(ẍxxc +∆ẍxx)+CCC(ẋxxc +∆ẋxx)

+ KKK(xxxc +∆xxx)+ggg(xxxc +∆xxx, ẋxxc +∆ẋxx, t)]T

×SSS−1
www [MMM(ẍxxc +∆ẍxx)+CCC(ẋxxc +∆ẋxx)

+KKK(xxxc +∆xxx)+ggg(xxxc +∆xxx, ẋxxc +∆ẋxx, t)] .

(13)

Eq. (13) is cast, equivalently, in the form

L [xxx′c, ẋxx
′
c, ẍxx

′
c] =

1
2

[
(AAA(xxxc,∆xxx)+BBBlin(∆xxx))T

×SSS−1
www (AAA(xxxc,∆xxx)+BBBlin(∆xxx))

]
,

(14)

where

AAA(xxxc,∆xxx) =
MMMẍxxc +CCCẋxxc +KKKxxxc +ggg(xxxc +∆xxx, ẋxxc +∆ẋxx, t) ,

(15)

and
BBBlin(∆xxx) = MMM∆ẍxx+CCC∆ẋxx+KKK∆xxx. (16)

In the following, it is assumed that the two points,
(xxx′f , ẋxx

′
f ) and (xxx f , ẋxx f ), are sufficiently close in the

PDF domain, and thus their difference (∆xxx f ,∆ẋxx f )
is relatively small. Also, note that the two BVPs
corresponding to (xxx′f , ẋxx

′
f ) and (xxx f , ẋxx f ) and governed

by Eqs. (11-12) have identical equations with only
slightly different boundary conditions. Thus, it is
reasonable to assume that the term ∆xxx is also rela-
tively small. In other words, the BVP solutions, i.e.,
the two most probable paths xxx′c and xxxc, correspond-
ing to (xxx′f , ẋxx

′
f ) and (xxx f , ẋxx f ) respectively, are ex-

pected to differ only slightly. In this regard, adopt-
ing next the approximation ggg(xxxc +∆xxx, ẋxxc +∆ẋxx, t) =
ggg(xxxc, ẋxxc, t) and employing the Cauchy-Schwarz in-
equality (e.g., Steele 2004), Eq. (14) is approxi-
mated by

Lapprox[xxx′c, ẋxx
′
c, ẍxx

′
c] =

1
2

AAAT (xxxc)SSS−1
www AAA(xxxc)+

+
1
2

BBBT
lin(∆xxx)SSS−1

www BBBlin(∆xxx).
(17)

Further, considering the form of the Lagrangian of
Eq. (6), Eq. (17) can be written, equivalently, as

Lapprox[xxx′c, ẋxx
′
c, ẍxx

′
c] =

L [xxxc, ẋxxc, ẍxxc]+Llin(∆xxx,∆ẋxx,∆ẍxx),
(18)
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where

Llin(∆xxx,∆ẋxx,∆ẍxx) =
1
2

BBBT
lin(∆xxx)SSS−1

www BBBlin(∆xxx). (19)

Next, substituting Eq. (18) into Eq. (5) yields

Sapprox[xxx′c, ẋxx
′
c, ẍxx

′
c] =

S[xxxc, ẋxxc, ẍxxc]+Slin[∆xxx,∆ẋxx,∆ẍxx],
(20)

where Slin[∆xxx,∆ẋxx,∆ẍxx] is the stochastic action corre-
sponding to the Lagrangian of Eq. (19). Further,
following section 2.3, xxx′c is determined by solving
the functional minimization problem

minimize
C {xxx′i,ẋxx

′
i,ti;xxx

′
f ,ẋxx

′
f ,t f }

Sapprox[xxx′c, ẋxx
′
c, ẍxx

′
c]. (21)

Note, however, that in Eq. (20), the first term de-
pends only on xxxc, which is considered to be a known
function obtained by solving the BVP of Eqs. (11-
12) corresponding to point (xxx f , ẋxx f ). In this regard,
S[xxxc, ẋxxc, ẍxxc] is treated as a constant in the functional
minimization problem of Eq. (21), and thus, Eq.
(21) degenerates to

minimize
C {0,0,ti;∆xxx f ,∆ẋxx f ,t f }

Slin[∆xxx,∆ẋxx,∆ẍxx]. (22)

Further, the Euler-Lagrange Eqs. (11-12) corre-
sponding to Eq. (22) take the form

∂Llin

∂∆x j
− d

dt
∂Llin

∂∆ẋ j
+

d2

dt2
∂Llin

∂∆ẍ j
= 0, (23)

with the boundary conditions

∆x j(ti) = 0,
∆ẋ j(ti) = 0,
∆x j(t f ) = ∆x j, f ,

∆ẋ j(t f ) = ∆ẋ j, f .

(24)

Remarkably, the form of the optimization problem
of Eq. (22), or of the associated Euler-Lagrange
Eqs. (23-24), is identical to that corresponding to a
linear oscillator under Gaussian white noise (Psaros
et al. 2020). In fact, as shown in Psaros et al.
(2020), Eqs.(23-24) are amenable to analytical so-
lution treatment yielding

∆xxx =C1vvv1eλ1t +C2vvv2eλ2t + · · ·+C4mvvv4meλ4mt ,
(25)

where [C1,C2, . . . ,C4m]
T is a vector containing

4m coefficients to be determined by enforc-
ing the boundary conditions of Eq. (24) and
{vvv1,vvv2, . . . ,vvv4m}, {λ1,λ2, . . . ,λ4m} are the eigen-
vectors and eigenvalues, respectively, to be deter-
mined by solving the eigenvalue problem

(MMMλ
2 −CCCλ +KKK)T SSS−1

www (MMMλ
2 +CCCλ +KKK)vvv = 0.

(26)
For more details on the derivation and the ex-
act analytical expressions of the coefficients and
of the eigenvalues and eigenvectors in Eq. (25),
the interested reader is referred to Psaros et al.
(2020). Further, Eq. (25) is substituted into the La-
grangian of Eq. (13) and the joint response PDF
p(xxx′f , ẋxx

′
f , t f |xxxi, ẋxxi, ti) given by Eq. (9) becomes

p(xxx′f , ẋxx
′
f , t f |xxxi, ẋxxi, ti) =C′ exp

(
−S[xxx′c, ẋxx

′
c, ẍxx

′
c]
)
,
(27)

where C′ is a normalization constant given by Eq.
(10).

Overall, it is readily seen that the PDF value at
a point (xxx′f , ẋxx

′
f ) sufficiently close to point (xxx f , ẋxx f )

can be approximated by Eq. (27). From a com-
putational cost perspective, it is highlighted that
once the most probable path xxxc(t) corresponding to
the original point (xxx f , ẋxx f ) has been determined, the
herein developed extrapolation technique requires
zero additional computational effort for obtaining
the PDF values at neighboring points (xxx′f , ẋxx

′
f ). In-

deed, Eq. (27) depends on xxx′c = xxxc +∆xxx, where ∆xxx
is calculated analytically and is given by Eq. (25)
in closed-form.

4. NUMERICAL EXAMPLE

Consider a single-DOF Duffing nonlinear os-
cillator governed by Eq. (1) with ggg(x, ẋ, t) =
εx3 and parameter values m = 1,c = 0.25,k =
1,ε = 0.3,S0 = 0.0637. For an arbitrarily se-
lected time instant t f = 4s, the joint response PDF
p(x f , ẋ f , t f |0,0,0) is evaluated at N2 = 112 points
based on the WPI technique. Next, the herein de-
veloped extrapolation approach is employed for es-
timating the PDF values at a grid of N2 = 2012

points spanning the entire PDF effective domain.
The results are plotted in Figure 1 and compared
with a brute-force implementation of the WPI tech-
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Figure 1: Joint response PDF at an indicative time
instant t f = 4s corresponding to a single-DOF Duffing
nonlinear oscillator: WPI technique - Original grid of
N = 112 points (red dots) and extrapolation to 2012

points over the PDF domain.

nique in Figure 2, where the PDF values are de-
termined, directly, by solving N2 = 2012 func-
tional minimization problems of the form Eq. (8).
It is seen that the proposed extrapolation tech-
nique reduces, drastically, the associated compu-
tational cost without compromising considerably
the overall accuracy. Further, MCS-based esti-
mates (100,000 realizations) are shown in Figure
3, demonstrating the high degree of accuracy ex-
hibited by the WPI technique.

Furthermore, in Figure 4 the y-axis shows the
mean square error of the PDF estimates compared
with an MCS-based solution employing 100,000
realizations. The x-axis shows the computation
time required for obtaining the PDF estimates.
Clearly, for a given degree of accuracy, the pro-
posed extrapolation approach is several orders of
magnitude more efficient than both a brute-force
implementation of the WPI technique and a stan-
dard MCS solution scheme.

Figure 2: Joint response PDF at an indicative time
instant t f = 4s corresponding to a single-DOF Duffing
nonlinear oscillator: WPI technique - Original grid of
N = 2012 points over the PDF domain.

5. CONCLUDING REMARKS

A novel extrapolation approach has been devel-
oped in this paper that drastically reduces the com-
putational cost associated with the WPI technique
without considerably affecting the exhibited accu-
racy. Specifically, the WPI technique for deter-
mining the stochastic response of diverse nonlinear
dynamical systems relies on a variational formula-
tion that leads to a functional minimization prob-
lem. This takes the form of a deterministic BVP
to be solved for the most probable path, which is
used for determining approximately the system re-
sponse joint transition PDF. The BVP corresponds
to a specific grid point of the response PDF effec-
tive domain. Remarkably, the BVPs correspond-
ing to two neighboring grid points not only share
the same equations but, also, the boundary condi-
tions differ only slightly. In this paper, the above
unique aspect of the technique has been exploited,
and it has been shown that solution of a BVP and
estimation of the response PDF value at a specific
grid point can be used for extrapolating and estimat-
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Figure 3: Joint response PDF at an indicative time
instant t f = 4s corresponding to a single-DOF Duffing
nonlinear oscillator: MCS data (100,000 realizations).

0 200 400 600 800 1000 1200

10
-4

Figure 4: Comparisons between standard MCS, brute-
force implementation of the WPI technique, and effi-
cient WPI technique based on extrapolation in terms
of accuracy and computational cost: mean square er-
ror and associated computation time for estimating the
joint response PDF at an indicative time instant t f = 4s
corresponding to a single-DOF Duffing nonlinear os-
cillator.

ing efficiently the PDF values at neighboring points
without the need for solving additional BVPs. No-
tably, the developed approach enhances consider-
ably the computational efficiency of the WPI tech-
nique without compromising significantly the ex-
hibited accuracy. A Duffing nonlinear oscillator has
been considered as an indicative example, whereas
comparisons with pertinent MCS data have demon-
strated the reliability of the technique.
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