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ABSTRACT: This work presents a constrained polynomial chaos expansion (PCE) as a
physics-informed machine learning (ML) technique to supplement data with physical constraints in the
regression framework. PCE is a popular metamodeling technique for uncertainty quantification of
expensive computational models. PCE metamodels can also be trained on data in classical ML
regression settings to yield pointwise predictions. However, standard PCE metamodel may yield
predictions that can violate the underlying physical constraints on the model. In this work, we propose a
constrained PCE approach that incorporates the constraints using virtual points in the input domain to
solve a constrained least square optimization problem for the PCE coefficients. The resulting
constrained PCE model provides an improved fit and leverage from the additional information on the
physics of the model. The proposed approach is applied to datasets from 1D analytical functions to
impose different types of physical constraints.

1. INTRODUCTION

In recent years, there has been a significant in-
crease in the development and application of ma-
chine learning models, mainly due to their robust-
ness in identifying trends in complex systems (Jor-
dan and Mitchell (2015)). It is now computationally
feasible to train ML models like a neural network
over datasets of millions of data points (Dean et al.
(2012)). However, in most scientific applications,
there is often a paucity of available training data for
ML models since performing physical experiments
or numerical simulations is typically quite expen-
sive. Furthermore, training a traditional ML model
on such datasets often produces predictions that do
not agree with the underlying physical constraints,

especially in the extrapolatory region. Hence, it is
imperative to develop models that can be trained on
relatively small datasets with a framework to ac-
count for the physics of the system. Such a frame-
work is known as physics-informed machine learn-
ing (Karniadakis et al. (2021)).

Researchers have developed frameworks for in-
corporating physical constraints in existing ML
models such as neural networks, Gaussian pro-
cesses, etc. (Jones et al. (2018); Ling et al. (2016);
Swiler et al. (2020)). Such constrained ML mod-
els leverage the additional information of physics
to supplement limited data and make realistic and
improved predictions.

Recently, Torre et al. (2019) presented polyno-
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mial chaos expansion (PCE) as a statistical ML re-
gression algorithm. PCE is a well-established meta-
modeling technique in the field of uncertainty quan-
tification (UQ) (Ghanem and Spanos (1990)). PCE
in the UQ setting characterizes the response of a
stochastic system as polynomial functions of ran-
dom inputs. The resulting metamodel is computa-
tionally cheaper but accurate in comparison to the
original model. Furthermore, the estimates of vari-
ous output statistics, such as mean, variance, proba-
bility density function, sensitivity indices, etc., can
be easily computed using the PCE metamodel. In
the context of ML, the task is to train the PCE meta-
model using available data points to make point-
wise predictions. The machine-learned PCE meta-
model is constructed by solving for the PCE coef-
ficients in a non-intrusive manner using regression.
The accuracy of the PCE metamodel is shown by
Torre et al. (2019) to be comparable to existing ML
regression models like a neural network, support
vector machines, etc.

In this work, we introduce PCE as a data-driven
physics-informed machine learning method that in-
corporates a wide variety of physical constraints.
The PCE coefficients are obtained using objec-
tive/loss functions, which penalize constraint vio-
lation. The constraints are integrated using vir-
tual points in the input domain. Virtual points
incorporate the information about the physics of
the computational model that the machine-learned
PCE metamodel should obey. We use a penalty
factor approach (Arora (2004)) to transform the
constrained optimization problem into an uncon-
strained one. A numerical solver based on the
quasi-Newton method is used to solve the op-
timization problem. Further, a heuristic algo-
rithm is proposed to identify the number of vir-
tual points required for a desired fit. Numerical
results are obtained using different 1D analytical
functions for various commonly encountered phys-
ical constraints such as non-negativity, bounded-
ness, monotonicity, convexity, and boundary con-
ditions.

To the best knowledge of the authors, employ-
ing PCE in a physics-constrained framework is pre-
sented for the first time in this article.

The article is organized as follows. Section 2
provides an overview of PCE in an ML regression
setup. In Section 3, the proposed constrained PCE
methodology is presented. Numerical results con-
sidering various types of physical constraints are
obtained using the proposed approach in Section 4.
Conclusions are made in the final section.

2. POLYNOMIAL CHAOS EXPANSION IN ML
REGRESSION SETTING

The task in an ML regression setting is to predict
a target variable Y for any d-dimensional predictor
variable X , given training set (X ,Y ). The ML al-
gorithm creates a mapping M : X 7→ Y based on
available training data X = x(1), . . . ,x(n) of input
observations and of the corresponding output val-
ues Y = y(1), . . . ,y(n), where y(i) = M

(
x(i)
)
+ ε

and ε is a noise term.
In this context, PCE can be employed to con-

struct an analytical model YPC = MPC(X), map-
ping a random input vector to a random output vari-
able Y . Under the assumption of finite variance for
Y (V(Y )< ∞), the polynomial chaos representation
of Y can be written as,

Y (X) = ∑
α∈Nd

yαΨα(X), (1)

where Ψα(.) are the orthonormal polynomials
(e.g., Hermite polynomials for Gaussian random
variables, Legendre polynomials for uniform ran-
dom variables, etc.) (Xiu and Karniadakis (2002))
and α ∈Nd is the multi-index set and each element
αi denotes the degree of Ψα(.) in the ith variable,
i = 1, ...,d. The degree of Ψα(.) is |α|= ∑i αi.

We use a standard truncation scheme (Xiu and
Karniadakis (2002)) to truncate the infinite series
in Eq. (1) as

A =
{

α ∈ Nd : ∥α∥1 ≤ p
}
, (2)

where p is the order of the PCE. The total number
of elements in A is given by (d+p)!

d!p! .
The objective of PCE regression is to determine

the coefficients yα of the expansion, truncated at
some polynomial order, given an initial set (X ,Y )
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of observations (the training set or experimental de-
sign). The benefit of using an orthonormal multi-
variate basis to represent the functional relationship
between the inputs and the output lies in its spec-
trum decay properties which guarantees a rapidly
decaying spectrum of the PCE coefficients. Hence,
fewer regression coefficients are required for the
PCE representation, which avoids overfitting is-
sues. In ML regression settings, the superior per-
formance of the orthonormal basis compared to the
non-orthogonal basis is demonstrated on simulated
data by Torre et al. (2019).

The PCE coefficients can be computed using re-
gression in a non-intrusive manner by solving the
ordinary least squares (OLS) problem. Consider-
ing that the cardinality of set A is smaller than
the number of observations n, the OLS problem is
given as

y = argmin
ỹ

n

∑
j=1

(
y( j)−YPC

(
x( j)
))2

= argmin
ỹ

n

∑
j=1

(
y( j)−

|A |

∑
k=1

ykΨαk

(
x( j)
))2

.

(3)

The closed-form solution of Eq. (3) is

y =
(
AT A

)−1
AT

 y(1)
...

y(n)

 , (4)

where A jk = Ψαk

(
x( j)
)

, j = 1, . . . ,n and k =

1, . . . , |A |. For n < |A |, the solution of Eq. (3) is
no longer unique.

There are also sparse techniques to obtain the
coefficients like LARS, Lasso, Ridge, etc., which
avoids overfitting (Torre et al. (2019); James et al.
(2013)). However, in this work, we have used OLS
for comparison with the constrained PCE.

3. CONSTRAINED POLYNOMIAL CHAOS EX-
PANSION

The objective of this section is to incorporate the
physical constraints information of model M in the
PCE regression framework described in Section 2.
The difficulty in applying constraints is that it typ-
ically calls for a condition to hold globally, which

Figure 1: Flowchart of the heuristic algorithm

is computationally infeasible. Hence, we approach
this problem by relaxing the global requirement and
enforcing the constraints only at discrete locations
in the input domain, referred to as virtual points.
Incorporating this in the OLS framework yields a
constrained optimization problem, given as

y = argmin
ỹ

n

∑
j=1

(
y( j)−

|A |

∑
k=1

ykΨαk

(
x( j)
))2

, (5)

subject to

Non-negativity : YPC(x
(i)
v )≥ 0 i = 1,2, . . . ,Nv

Boundedness : ai ≤ YPC(x
(i)
v )≤ bi i = 1,2, . . . ,Nv

Equality : YPC(x
(i)
v ) = ci i = 1,2, . . . ,Nv

Monotonocity : Y ′
PC(x

(i)
v )≥ 0 i = 1,2, . . . ,Nv

Convexity : Y ′′
PC(x

(i)
v )≥ 0 i = 1,2, . . . ,Nv

where Nv is the number of virtual points.
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To solve this constrained optimization problem,
we convert (5) into an unconstrained optimization
problem using the penalty factor approach, as

y =argmin
ỹ

n

∑
j=1

(
y( j)−

|A |

∑
k=1

ykΨαk

(
x( j)
))2

+
Nv

∑
i=1

λi

〈
C(i)
〉2

,

(6)

where〈
C(i)
〉
=

{
0 if constraint is satisfied at x(i)v

C(i) if constraint is violated at x(i)v

and λi is the user-defined penalty factor. The num-
ber of virtual points regulates the behavior of the
polynomials, and thus it is important to find the op-
timal number of virtual points for a desired fit. We
propose a heuristic algorithm to identify the optimal
number of virtual points. For a given PCE order
p, the algorithm works by incrementally increas-
ing the number of virtual points (nv) from a pre-
defined nvmin (e.g., 30) to nvmax (e.g., 60) and store
the respective mean square error by solving Eq. (6).
Then, it identifies nv’s for which MSEnv is less than
the allowable MSEallow. The nv that corresponds to
the best leave-one-out cross-validation (LOOCVnv)
is the optimal equidistant number of virtual points
in the input domain D. Another variant of this algo-
rithm based on bootstrapping (i.e., randomly pick-
ing a fixed number of virtual points in D) can also
be used with a similar approach. Fig. 1 shows the
computational flowchart of the heuristic algorithm.

4. NUMERICAL RESULTS

In this section, we present numerical exam-
ples to demonstrate the effectiveness of the pro-
posed constrained PCE in handling different types
of constraints. We use datasets from 1D analyti-
cal functions with known constraints such as non-
negativity, boundedness, monotonicity, convexity,
and boundary conditions to compare the perfor-
mance of the constrained PCE with unconstrained
PCE. The relative L2 norm error between the pre-
dicted values and true values over a set of test points
is used to compare the accuracy and fit of the two

approaches. For the examples below, we use N =
100 equidistant test points over the input domain
D. We solve the optimization problem (Eq. (6))
in Python using the SciPy package (Jones et al.
(2001)). For unconstrained PCE, we use the UQpy
python package (Olivier et al. (2020)). The opti-
mal number of virtual points is evaluated using the
heuristic algorithm shown in Figure 1. For the ex-
amples below, we consider the input x as a uniform
random variable x ∼ U ([0,1]), and therefore, Leg-
endre orthonormal polynomials are used as PCE ba-
sis functions (Xiu and Karniadakis (2002)).

4.1. Example 1
Consider the following non-negative function:

f (x)=
1

100
+

5
8
(2x−1)4 [(2x−1)2 +4sin(5πx)2] ,

(7)
where x ∈ [0,1]. We consider p = 12 and a dataset
with n = 13 training points. Figure 2(a) shows the
comparison of the relative fit of constrained and un-
constrained PCE with the original function. It can
be seen that the constrained PCE provides a better
fit while satisfying the underlying non-negativity
constraint. To demonstrate the robustness of the
proposed method, we train the model using 100
uniformly distributed datasets (simulations). Fig-
ure 2(b) shows the histogram of the relative L2 er-
ror for different datasets. As can be observed, the
histogram for the constrained PCE is more heav-
ily weighted towards the lower relative error than
its counterpart, demonstrating the superior perfor-
mance of the proposed method. Figure 2(c) shows
the histogram of the percentage of constraint viola-
tions at test points for different datasets considering
both constrained and unconstrained PCE. It is evi-
dent that the unconstrained PCE violates the non-
negativity constraints for many datasets, while the
constrained PCE satisfies the constraints very well.

4.2. Example 2
Consider the following monotonic function:

f (x) =
1
3
[
tan−1(20x−10)− tan−1(−10)

]
, (8)

where x ∈ [0,1]. We use p = 9 and n = 11 train-
ing points. Figure 3(a) shows the relative fit of
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(a) (b) (c)

Figure 2: Non-negativity constraint: (a) Comparison of constrained PCE and unconstrained PCE with the test
function. (b) Histogram of relative L2 error of 100 training sets for constrained and unconstrained PCE. (c)

Histogram of percent constraint violations for 100 training sets for constrained and unconstrained PCE.

(a) (b) (c)

Figure 3: Monotonicity constraint: (a) Comparison of constrained PCE and unconstrained PCE with the test
function. (b) Histogram of relative L2 error of 100 training sets for constrained and unconstrained PCE. (c)

Histogram of percent constraint violations for 100 training sets for constrained and unconstrained PCE.

the unconstrained and constrained PCE compared
to the given monotonic function. It can be ob-
served that the constrained PCE satisfies the mono-
tonicity constraint and provides a better fit com-
pared to the unconstrained PCE. Again, to show
the algorithm’s robustness in handling the mono-
tonicity constraint, we train the constrained PCE
model for different datasets uniformly distributed
and report the relative L2 error. Figure 3(b) com-
pares the relative error of the two methods, and it
can be observed that the constrained PCE results
in a smaller relative error compared to the uncon-
strained PCE, which demonstrates an improved fit.
Figure 3(c) shows a histogram of constraint viola-
tions at test points for different datasets, indicating

that constrained PCE preserves the monotonicity
constraints for most datasets compared to uncon-
strained PCE.

4.3. Example 3
Consider the following convex function:

f (x) = x2 −
√

x + 0.5, x ∈ [0,1]. (9)

For this example, we use p = 3 and n = 4 train-
ing points. Figure 4(a) shows the plot of the given
convex function, comparing it with the predicted
curves from the proposed constrained method and
its counterpart. Again, we can observe an im-
proved fit while maintaining the inherent constraint
for constrained PCE. The relative error and con-
straint violations for different datasets are shown in
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(a) (b) (c)

Figure 4: Convexity constraint: (a) Comparison of constrained PCE and unconstrained PCE with the test
function. (b) Histogram of relative L2 error of 100 training sets for constrained and unconstrained PCE. (c)

Histogram of percent constraint violations for 100 training sets for constrained and unconstrained PCE.

(a) (b) (c)

Figure 5: Boundedness and boundary conditions: (a) Comparison of constrained PCE and unconstrained PCE
with the test function. (b) Histogram of relative L2 error of 100 training sets for constrained and unconstrained

PCE. (c) Histogram of percent constraint violations for 100 training sets for constrained and unconstrained PCE.

Figure 4(b) and Figure 4(c), respectively. As ex-
pected, the relative error and constraint violations
are small for constrained PCE, demonstrating su-
perior performance.

4.4. Example 4

f (x) = sin2πx, x ∈ [0,1] (10)

For this example, we use p= 3 and n= 4. We im-
pose two types of constraints: Boundedness (−1 ≤
f (x)≤ 1) and boundary conditions ( f (x) = 0 @ x=
0, 1). Figure 5(a) shows the comparison of con-
strained and unconstrained PCE fit with the original
function. Again, we can observe an improved fit
for the proposed method while preserving the con-

straints. Figures 5(b) and 5(c) show the histogram
of relative error and constraint violations, respec-
tively, for different datasets. Again, we observed
that the performance of constrained PCE is supe-
rior to that of unconstrained PCE.

5. CONCLUSIONS
A new constrained polynomial chaos expansion

method incorporating physical constraints in the
PCE regression framework is presented. The con-
straints are integrated into the OLS regression us-
ing virtual points in the input domain, yielding a
constrained optimization problem. A heuristic al-
gorithm is proposed to find the optimal number
of virtual points required for a desired fit. The
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performance of the proposed method is compared
with unconstrained PCE using different 1D analyt-
ical functions with constraints like non-negativity,
boundedness, monotonicity, convexity, and bound-
ary conditions. Numerical results indicate that the
proposed method provides an improved fit to the
training data while preserving the underlying con-
straints, which makes it suitable for scientific ap-
plications. However, the curse of dimensionality
associated with PCE makes it imperative to de-
velop a sparse implementation using the proposed
approach, which will be the subject of further work.
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