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ABSTRACT: Failures in water distribution networks (WDNs) can not only lead to water and financial 

losses, but also affect the normal operation of the city. To assess the reliability of WDNs, this paper first 

uses an artificial neural network to predict pipe failure probability and input features’ impact on pipe 

failure is calculated. In addition, the failure simulation models consider leak and burst scenarios. Then, 

Monte Carlo simulation is employed to calculate nodal reliabilities of a real-world WDN and factors 

influencing reliability are analyzed. Results show that physical and socioeconomic factors can affect pipe 

failure probability. Moreover, operation time, pipe roughness, the distance from source to the node and 

the loop configuration can all have impact on the reliability. 

A reliable water distribution network (WDN) is 

the foundation of industrial activities and 

residential life (Li and Liu 2020). However, due 

to various unexpected events, including pipe 

aging, overuse and disrepair, WDNs are prone to 

failures such as leaks and bursts (Liu et al. 2020). 

These failures can not only lead to resources and 

financial losses, but also affect normal operation 

of the city. Therefore, it is of great significance to 

assess the reliability of WDNs in order to 

determine vulnerable components of WDNs and 

facilitate management practice for decision-

makers. The reliability of a WDN can be defined 

as the probability of satisfying consumers’ 

demands under normal and failure circumstances 

of pipes throughout a lifecycle (Shinstine et al. 

2002). 

To estimate the pipe failure probability, there 

are three types of methods in general, namely, 

physical models (Rajani and Kleiner 2001), 

statistical models(Yamijala et al. 2009), and 

machine learning (ML) models (Fan et al. 2022). 

Physical models are of clear physical sense 

(Rajani and Kleiner 2001) but require intensive 

computation efforts (Fan et al. 2022). Statistical 

models are cost-effective (Yamijala et al. 2009). 

However, few physical factors, such as pipe age 

and length, are considered for simplification (Liu 

et al. 2020). Recently, with the advancement of 

artificial intelligence technology and the 

increasing amount of WDNs data available, data-

driven ML models, including but not limited to 

artificial neural networks (ANNs) (Fan et al. 

2022), tree-based models (Liu et al. 2022), and 

support vector classifications (Robles-Velasco et 

al. 2020), have been widely used to predict pipe 

failure. Compared to the other two models, ML 

models not only achieve better prediction 

accuracy cost-effectively from an objective 

perspective, but also can reveal the complex 

relationship between factors and failure 

probability (Almheiri et al. 2021).  

Methods of computing the reliability of 

WNDs include analytic, surrogate-measure, 

moment and simulation approaches (Gheisi et al. 

2016). Analytic approach assumes a node is 

reliable if it is connected to a source (Wagner et 

al. 1988). However, this condition is only a 

necessary but not sufficient condition (Ostfeld 

2004). Surrogate-measure approach alleviates 
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computation labors but is experience-based 

methods with highly subjectivity (Gheisi et al. 

2016) and disregards the randomness in WDNs to 

a certain degree (Liu et al. 2020). Moment 

approach, such as first-order and second-moment 

(FOSM) method, can only obtain the moments of 

target responses of a system and leads to serious 

reduction in accuracy (Liu and Li 2010). 

Apparently, the complexity and nonlinearity of 

WDNs pose difficulties in quantifying reliability 

within an acceptable error. Simulation approach 

measures the probability that a partly or 

completely failed WDN can meet consumers’ 

demands through simulation techniques, 

including Monte Carlo simulation (MCS) (Ostfeld 

2004). Compared to other methods, MCS can 

assess reliability accurately and take randomness 

in WDNs into consideration. 

In this paper, since ANN can achieve better 

accuracy than other ML algorithms, an ANN is 

used to predict failure probability of pipes, which 

are major components of WDNs. However, ANN 

is too complexed to be as explainable as others. 

To address this issue, Shapley Additive 

exPlanations (SHAP) (Lundberg and Lee 2017) 

method is employed to calculate each feature’s 

contribution to pipe failure. In addition, to our best 

knowledge, few studies on pipe failure prediction 

consider socioeconomic factors, which are proved 

to have an important impact on the pipe conditions 

(Fan et al. 2022). Therefore, the dataset for ANN 

in this study includes socioeconomic factors to 

improve the predictive performance. Moreover, 

failure simulation models are used to simulate the 

performance of WDNs in the case of leaks or 

bursts occurring to partial pipes. Then, MCS is 

employed to assess lifecycle operational 

reliability of a real-world WDN. 

1. PIPE FAILURE PREDICTION MODEL 

1.1. Structure of ANN 

An ANN is made of an input layer, several hidden 

layers, and an output layer. Hidden layers serve as 

a sequence of operators extracting feature 

information in input vector x0. The output of the 

ith hidden layer xi is calculated by 

 ( )( )1i i i i
f BN

−
= +x W x b  (1) 

where Wi and bi denote the weight matrix and bias 

vector of the ith hidden layer; i = 1, 2, …, L, 

respectively; L is the number of hidden layers; BN 

represents batch normalization that speeds up 

convergence (Ioffe and Szegedy 2015); f(·) is 

rectified linear unit (ReLU) activation function , 

namely, f(·) = max(0, ·) (Goodfellow et al. 2016). 

Output layer uses a softmax classifier to generate 

the probability distribution for the predicted 

classes in the range [0, 1] according to 
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where K is the number of classes; p(y = k) 

indicates the probability that a given sample x 

belongs to the kth class (k =1, 2, ···, K); WL+1 is 

the connecting weight matrix between the last 

hidden layer and the output layer; WL+1 xL[k] 

represents the kth element of the resultant vector 

of multiplying WL+1 and xL. In this study, pipe 

failures include leak and burst. Hence the 

probability that a given pipe sample x belongs to 

the state of normal, leak and burst, can be 

expressed as pN, pL, and pB, respectively. Finally, 

the state of pipe x, (i.e., y) is predicted as the class 

corresponding to the maximal probability. 

1.2. Dataset for ANN 

The maintenance dataset provided by the water 

administration sector is used to train and test the 

ANN. The dataset includes physical properties 

and socioeconomic characteristics. Physical 

properties include length (LEN), material (MAT), 

diameter (DIA) and service age (AGE). 

Socioeconomic features include area of the 

district (AD), population density of the district 

(PD), housing area constructed (HAC), and gross 

domestic product per capita (GDPC) of the district. 

In addition, the supervisory variable is the failure 

record (FR) of each individual pipe. Only MAT is 

category feature and MATs include ductile cast 

iron pipes (DIPs), steel pipes (SPs), cast iron pipes 

(CIPs), polyethylene pipes (PEEPs), polyvinyl 

chloride pipes (PVCs), and concrete pipes (CPs). 
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After cleaning abnormal and missing data, 

there are 54,400 pipe samples available, including 

6,369 leakage samples and 620 burst samples. In 

order to estimate the generalized predictive 

performance of ANN on unseen pipes, the dataset 

is divided into training set and test set by the ratio 

of 9:1 and the ratios of the three types of 

supervisory labels in both two sets are kept the 

same. The ratio of the number of normal samples, 

leak samples and burst samples is about 77:10:1, 

which exhibits the imbalanced nature. This can 

lead to a decline in the prediction performance for 

the samples with minority class (Liu et al. 2022). 

Therefore, to improve the prediction ability, an 

improved oversampling technique, namely, 

synthetic minority oversampling techniques 

(SMOTE) (Chawla et al. 2002) is adopted to 

balance the training set. 

Note that the supervisory label FR records 

whether leak or burst occurred in a year, not the 

number of occurrences. Therefore, the output of 

ANN (i.e., pL and pB), indeed, are the probabilities 

that one pipe leaks or bursts at least once a year, 

which are represented by p
Y 

L  and p
Y 

B , respectively. 

In this study, it is assumed that failures of different 

pipes threaten the operation reliability at the same 

time only if their failures occur on the same day. 

Hence, the daily failure probability is considered 

in the following assessment of reliability. Based 

on the assumption that the number of occurring 

failures obeys Poisson distribution and the failure 

rate at each day in one year keeps constant (Liu et 

al. 2020), daily failure probability p
D 

F  is obtained 

by 
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where λ
Y 

F  (/km/year) and λ
Y 

F  (/km/day) are yearly 

and daily failure rate, respectively; L (km) is the 

pipe length. Then, the daily leak probability p
D 

L  

and burst probability p
D 

B  are assumed to be 

proportional to p
Y 

L  and p
Y 

B , respectively as follows: 
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1.3. Performance of ANN 

The predictive performance of ANN is evaluated 

by a normalized confusion matrix C = [cij]. cij, in 

which i, j ∈ {Normal, Leak, Burst}, represents 

the ratio between the number of class i samples 

predicted to be class j samples and the number of 

class i samples. Clearly, larger cii (i = j) and 

smaller cij (i ≠  j) indicate better prediction 

capacity of ANN for it can predict more pipes’ 

states accurately. Figure 1 shows the normalized 

confusion matrix of the ANN. All normal pipes, 

99% of leak pipes and 86% of burst pipes are 

predicted correctly, while only 1.4% of leak pipes 

are predicted as burst pipes. Thus, ANN can 

identify normal and failure pipes nearly perfectly 

since neither leak pipes nor burst pipes are 

classified as normal, which is safe for design of 

maintenance strategy. Nevertheless, 14% of burst 

pipes are predicted to leak, which indicates a 

relatively poor ability for ANN to distinguish 

between leak and burst, but it is still acceptable 

considering the complexity and difficulty of 

predicting pipe failure. In general, the ANN 

performs well. 

 

 
Figure 1 Normalized confusion matrix of ANN (No 

denotes the normal state) 

 

In this study, SHAP (Lundberg and Lee 2017) 

method is employed to calculate each feature’s 
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impact on pipe failure probability. A higher 

magnitude of SHAP value of a feature indicates 

the feature has a larger impact on the pipe failure 

probability. If a higher feature value corresponds 

to a higher SHAP value, the feature has a positive 

impact on the failure probability and vice versa. 

Figure 2 shows SHAP values of continuous 

variables, which is colorized for their magnitudes 

and top to bottom represents the highest to lowest 

level of feature’s influence. Figure 3 shows SHAP 

values of MAT. For physical features, AGE and 

LEN both have a positive effect on failure 

probability, while DIA has a negative one. In 

terms of MAT, CIPs and PVCs have the positive 

SHAP values while SPs, DIPs and PEEPs have 

the negative ones. Regarding socioeconomic 

factors, PD has a positive impact on failure 

probability while the AD’s effect on failure is 

negative. Additionally, GDPC does not show an 

evident correlation with the failure probability. 

HAC is ranked the last and has a positive 

influence on failure. 

 

 
Figure 2 SHAP values plots 

 

 
Figure 3 SHAP values of MAT 

2. FAILURE SIMULATION MODELS OF 

WDNS 

For each pipe in the WDN assessed, three 

intervals, i.e., [0, p
D 

L ), [p
D 

L , p
D 

L + p
D 

B ), and [p
D 

L + p
D 

B , 

1), can be obtained. For each simulation, a random 

number kF is generated and the state of the pipe is 

determined by which interval kF lies in. Leak and 

burst scenarios are simulated in two different 

ways as follows. 

2.1. Leak 

A general hydraulic equilibrium equation 

considering the transportation ability 

deterioration resulted from leaks is expressed as 

(Liu et al. 2020) 

 P N L+ + =AQ Q Q 0  (6) 

where A=[aij] is the matrix indicating the 

connection relationship between nodes and pipes, 

which equals to 1 if water in pipe j flows out of 

node i; −1 if water in pipe j flows into node i and 

0 if pipe j is not connected to node i; QP represents 

the pipe flow vector; QN denotes the nodal flow 

vector; and QL indicates the leak flow vector. For 

a given pipe, the leak flow is calculated by (Liu et 

al. 2020) 

 L L0.6 2Lq A gH=  (7) 

where qL indicates the leak flow; φ denotes the 

leak coefficient; g is the gravity acceleration; HL 

represents the head of the leak point; and AL is the 

leak area. Herein, AL is considered to be a random 

variable that satisfies the uniform distribution in 

[0.1%S, 20%S] in which S is the pipe section area. 

QP is calculated by 

 2.63 0.54 0.54

P HW
0.278q C D H L

−
=   (8) 

where qP denotes the pipe flow; D is the pipe 

diameter; ΔH represents the head difference 

between two leak nodes; L is the pipe length; and 

CHW indicates the Hazen-Williams coefficient 

relevant to roughness and is calculated by (Sharp 

and Walski 1988) 

 0
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where T (year) is the operation time and other 

variables can refer to (Liu et al. 2020). 

2.2. Burst 

A burst occurring to a pipe will lead to serious 

consequences such as considerable waste of water 

and head loss if the burst pipe is not isolated by 

closing relevant valves timely. Thus, valves in 

adjacent pipes are supposed to be closed. In this 

study, an algorithm based on depth-first search 

(DFS) (Liu et al. 2020) is used to isolate burst 

pipes with least pipes impacted. After closing 

valves in influenced pipes and isolating all burst 

pipes, the topology of a WDN can change. Flow 

analysis (i.e., solving Eq. (6)) should be 

performed on the new WDN to calculate nodal 

heads. 

3. DEFINITION OF RELIABILITY 

The lifecycle operational reliability of a WDN is 

defined as the probability of satisfying consumers’ 

demands under normal and failure circumstances 

of pipes throughout a lifecycle. For a consumer 

node, if the nodal head exceeds the demand head, 

the node is assumed to be able to offer consumers 

sufficient water and thus we consider the node 

reliable and vice versa (Liu et al. 2020). Therefore, 

the reliability can be calculated by MCS as 

follows: 

   ( )0 0

1

1
Pr

N

i i i ik i

k

R H H I H H
N =

=  =   (10) 

where Ri is the reliability of node i; Hik denotes the 

head of node i at the kth simulation; H
0 

i  indicates 

the demand head of node i, which takes 20 m in 

this paper; N is the number of simulations, which 

takes 5000 in this paper; I(·) is indicator function, 

and I(Q) = 1 only if event Q holds true, otherwise 

I(Q) = 0. 

4.  CASE STUDY 

4.1. Introduction to case WDN assessed 

The lifecycle operational reliability of a real 

WDN in Mianzhu City, China is assessed in this 

paper. The total length of the main pipes is about 

44 km. The simplified topology configuration 

includes 82 nodes, 107 pipes and 92 valves as 

shown in Figure 5. 

4.2. Results and discussion 

Nodal reliabilities in the 5th, 20th, 35th, 50th year 

are shown in Figure 4. Computation costs 2.5h 

totally. As can be seen, the reliability of each node 

in the 5th year almost equals to 1, which means 

the WDN can provide consumers with sufficient 

water. The reliability in the 20th year decreases, 

but the decreasing magnitude is small, indicating 

that the WDN can basically meet consumers’ 

requirements with the minimal reliability of 0.993. 

By the 35th year, the decline in reliability is 

greater and the difference between nodes becomes 

relatively apparent. Additionally, the reliability 

decreases more in the 50th year and the decreasing 

magnitude the differ evidently between nodes. For 

example, the decreasing magnitudes of nodes 71 

~ 76 are evidently larger than those of other nodes. 

To sum up, the reliability decreases with time and 

increasing magnitude. This deterioration with 

time can result from three main aspects: (1) the 

growth of failure probability with time since AGE 

has the largest positive impact; (2) the increase of 

PD and HAC by year; and (3) the increase of pipe 

roughness that further reduces the nodal heads. 

 

 
Figure 4 Nodal reliabilities in the 5th, 20th, 35th, 

50th year 

 

Figure 5 shows the variance of nodal 

reliabilities in the 50th year with respect of space, 

in which nodes are colored with their reliability 

values. In addition, Figure 6 describes the 

relationship between the nodal reliability in the 

50th year and the length of the shortest path that 

connects the node and its nearest source. The cor- 
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Figure 5 The variance of nodal reliabilities in the 50th year with respect of space 

 

 
Figure 6 The relationship between nodal reliability in 

the 50th year and the length of minimum path (the 

correlation coefficient R2 is −0.869) 

 

 
Figure 7 Nodal reliabilities of the WDN in the 50th 

year in case of S0 and S1 
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relation coefficient R2 is −0.869. The shortest path 

is searched by a modified Dijkstra Algorithm (Liu 

and Wu 2009). Some conclusions can be drawn 

based on observations. First, the reliability 

decreases with the distance from the source due to 

more serious on-way head loss and higher failure 

probability occurring to upstream pipes on the 

path. Second, nodal reliability differs per the pipe 

loop configuration. In general, a well-looped 

configuration ensures that a node, such as node 22 

and 39, can be sufficiently supplied by multiple 

pipes, especially when one of adjacent pipes is 

isolated owing to burst. This thus enhances the 

reliability. For nodes in the tree-like areas such as 

node 76, once a leak or burst occurs to the pipe 

connected to the node, the node cannot receive 

water from other pipes. 

The number of valves has a serious impact on 

the reliability as well. To demonstrate the 

influence of the valve condition, we simulate one 

case for comparison, namely, S1: set the number 

of valves in each pipe to two. Let case S0 

correspond to the valve configuration showed in 

Figure 5. The nodal reliabilities in the 50th year in 

two cases are depicted in Figure 7. As can be seen, 

with two valves located in each pipe, the nodal 

reliabilities increase. For example, in case of S0, 

node 35 cannot be supplied when a burst occurs to 

one of pipes 69, 74, 75, 76 and 84. However, in 

case of S1, node 35 is isolated only if its four 

adjacent pipes burst at the same time, which is 

almost impossible to occur during daily operation. 

In addition, in case of S1, the reliabilities of partial 

nodes, such as node 75, are almost the same as 

those in case of S0. One possible reason is that 

these nodes are connected to pipes with two 

valves in case of S0 and hence there is no 

difference between S1 and S0 for these nodes. 

5. CONCLUSIONS 

In this paper, an ANN is used to predict pipe 

failure probability and the SHAP method is 

employed to compute features’ impact on failure  

The failure simulation model considers leaks and 

bursts. Then, MCS is employed to calculate nodal 

reliabilities of a real-world WDN. The results 

show that (1) service age, pipe length, population 

density and housing area constructed have a 

positive effect on failure while area of district and 

pipe diameter have a negative one; (2) nodal 

reliability decreases as failure probability and 

pipe roughness increasing with time; (3) the 

distance from source to the node and the loop 

configuration both have influence on nodal 

reliability; (4) the more pipes with two valves in 

the WDN, the less nodes influenced by a burst 

occurring to a distant pipe.  

Note that although MCS can give the precise 

results, computation costs a lot of time especially 

for large-scale WDNs. Future work can focus on 

cost-effective methods such as probability density 

evolution method to compute reliability to 

alleviate computation costs. 
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