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ABSTRACT: Sharp changes in performance function values near regions of failure, the presence of 

multiple failure regions of importance, and disconnected failure regions separated can pose substantial 

difficulties in accurately estimating structural reliability. This study proposes an importance sampling 

(IS) scheme that utilizes the replica exchange strategy in Markov chain Monte Carlo sampling. This 

strategy improves the chances of detecting all significant failure regions even when the difficulties 

mentioned above are present. This study also uses the Russian Roulette technique to reduce sampling 

variance further. The methodology is applied to performance functions that exhibit the mentioned 

difficulties and is shown to identify all important failure regions and produce accurate estimates of failure 

probability. The results are compared with existing state-of-the-art IS schemes which are not guaranteed 

to provide acceptable estimates of failure probability when such complications arise in performance 

functions. 

1. INTRODUCTION 

The problem of computational reliability 

modeling involves the estimation of the 

probability of failure of a structure written as the 

multifold integral,     I 0
n

FP g p d  Xx x x

, where  I .  is the indicator function,  pX x  is 

the joint pdf of the 1n  vector of random 

variables associated with the structure ( X ), and 

 .g  is the performance function. The random 

vector X  is often transformed through 

Rosenblatt or Nataf’s transformation into the 

standard normal space, and the reliability integral 

is rewritten as     I 0
n

FP G p d  Uu u u , 

where  .G  is the transformed performance 

function and  pU u  is the -n dimensional 

standard normal pdf. The present study focuses on 

the estimation of FP  using the importance 

sampling (IS) technique, wherein FP  is expressed 

as, 
    

 
 

I 0

n

F

G p
P q d

q


 

Uu u
u u

u
, where 

 q u  the importance sampling pdf (ISpdf). The 

Monte Carlo estimator of this integral is,

    

 1

I 01ˆ
ISN

i iIS

F

iIS i

G p
P

N q


 

Uu u

u
, where 

, 1,2,...,i ISi Nu  are iid samples from  q u . 

Although numerous methods to choose suitable 

ISpdfs have been developed in the structural 

reliability literature (Au and Beck 1999; Cheng et 

al. 2023; Dubourg et al. 2013; Kurtz and Song 

2013; Papaioannou et al. 2016, 2019), accurate 

estimation of reliability still remains a challenge 

when the performance function exhibits one or 

more of the following features: (a) sharp changes 

in performance function values, (b) existence of 

disconnected regions of failure, (c) presence of 

multiple failure regions that contribute to the 

failure probability. If any reliability estimation 

algorithm fails to take these features into account, 

it leads to an omission of one or more important 
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failure regions, which, in turn, results in an 

underestimation of failure probability. Thus, the 

first objective of this study is to develop an 

algorithm that chooses an ISpdf capable of 

handling the difficulties mentioned above in 

performance functions. The proposed procedure 

for selecting the ISpdf closely follows the 

algorithm proposed by Au and Beck (1999), 

wherein a Markov Chain Monte Carlo (MCMC) 

sampler is initiated in the failure region with the 

target pdf  FpU u . The ISpdf is then selected by 

using the kernel density estimation method on the 

obtained samples. In this procedure, the 

difficulties mentioned above manifest as a 

difficulty in drawing samples from a multimodal 

pdf using MCMC samplers. This study introduces 

a replica exchange-based MCMC algorithm that 

enhances the capacity of the sampler to generate 

samples from possibly multimodal pdfs and hence 

deals with the difficulties as mentioned earlier 

more effectively. The second objective of this 

study is to use the Russian Roulette (RR) 

technique to probabilistically kill/disregard the 

summands in the estimator that contribute 

insignificantly to the estimator, thus avoiding the 

need to call the performance function for those 

samples. The preserved computational effort is 

used towards generating samples that contribute 

more substantially to the estimator. This strategy 

serves to further reduce the sampling variance. 

Although RR has previously been used for 

computation of time-variant reliability, it seems to 

have remained unexplored in the context of time-

invariant reliability estimation. The proposed 

method is applied to several numerical examples 

with performance functions containing the 

difficulties mentioned above to demonstrate the 

method’s ability to effectively deal with them. It 

is also demonstrated that these difficulties arise 

naturally in reliability estimation of vibrating 

structures and structures that are prone to loss of 

stability. Results obtained from the method are 

compared with current state-of-the-art IS 

algorithms. 

2. ANALYSIS 

2.1. MCMC using replica exchange and 

formulation of ISpdf 

Replica exchange-based MCMC sampling (Geyer 

1991) aims to alleviate the difficulty of drawing 

samples from a multidimensional and multimodal 

pdf. This sampler has been explored in the context 

of reliability estimation and details of its 

implementation can be found in (Sharma and 

Manohar 2023). Firstly, a separate “explorer pdf” 

is defined. Two chains are run in parallel: one that 

draws samples from the target pdf and another that 

draws samples from the explorer pdf. Each chain 

is propagated using any of the available MCMC 

samplers. After propagation of the chain at each 

time step (called “forward step”), an exchange of 

the states is attempted between these two chains 

(called “exchange step”). This mechanism of 

exchanging states assists the chain that samples 

from the target pdf to be transported to regions of 

the state space that it would not have been able to 

reach unassisted. If such regions contain 

important modes, then the chain must visit these 

regions of the state space. Therefore, the replica 

exchange strategy allows the sampler to draw 

samples more effectively from multimodal pdfs. 

Clearly, this algorithm’s success depends on the 

explorer pdf’s choice. The explorer pdf must 

adequately contain all regions of interest from 

which we wish to draw samples, and the chain 

should freely be able to traverse these regions.  

In this study, the explorer pdf is chosen as 

follows. Firstly, M  samples are simulated from 

 2; ,p U u μ = 0 I  (here we take 3  ), say 

, 1,2,...,i i Mu . The performance function 

values of these samples are computed, and the 

samples that lie in the failure region 

  F : 0n G  u u  are selected. Let the 

number of such samples be M . Then, the failure 

region F  is repopulated with additional samples 

using MCMC sampling to retain the total of 

samples in F  as M . These samples are now 

renamed as , 1,2,...,i i Mu .  Then, the orthants 

(a generalization of quadrants for higher 
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dimensions) in which these M  samples lie are 

recorded by taking the component-wise signum 

function of these vectors. Let the set of the 

recorded orthants be . For each i , the 

Euclidean distance from the origin, 

T

2

i i iu u u  is computed, and the sample with 

the minimum value of  
2iu  is recorded. Let the 

sample be denoted as minu . Let min min min

Tr  u u .  

The following set is now defined, 

 minC : T r  u u u . The explorer pdf is 

finally defined as  CpU u . Figure 1 shows 

region F for the performance function defined in 

Section 3.1 and region C obtained from this 

algorithm. The explorer pdf  CpU u  defined 

this way allows for drawing of iid samples from 

the pdf. Finally, having defined the explorer pdf, 

two chains can now be initiated, which draw 

samples from the target pdf and the explorer pdf, 

respectively. Propagation of the chain that draws 

from the target pdf here is done using the modified 

Metropolis algorithm (Au and Beck 2001). It is 

noted that propagating the chain that draws from 

the explorer pdf does not require performance 

function evaluation. Following this forward step, 

the exchange step of the replica exchange based 

MCMC algorithm is executed where the states of 

the two chains are exchanged probabilistically. 

Treatment of the burn-in phase for this MCMC 

sampler is done as follows. From the previously 

obtained samples , 1,2,...,i i Mu  and their 

computed performance function values, a 

quadratic response surface for the limit surface is 

obtained. Instead of the original performance 

function, this inexpensive function is called 

during the burn-in phase of the MCMC sampler. 

The end of burn-in phase can be detected using the 

Gelman-Rubin diagnostic test. After the end of 

burn-in has been detected, the replica exchange 

MCMC algorithm is run, and a total of M  

samples drawn according to  FpU u  are 

obtained. Finally, the adaptive kernel density 

estimation algorithm is used as proposed by Au 

and Beck (1999) to obtain the ISpdf. The 

complete procedure of obtaining the kernel 

density estimate and sampling from this pdf is 

outlined therein. 

 

 
Figure 1: (a) Failure region (F) shaded in red, (b) 

Region C shaded in green 

2.2. Russian Roulette technique 

Application of the Russian Roulette and splitting 

algorithm is well known in the computation of 

time-variant structural reliability (Melnik-

Melnikov et al. 1997; Pradlwarter and Schuëller 

1997). The idea is to probabilistically kill/stop 

simulating response trajectories which are less 

likely to reach the failure region. This helps 

conserve computational effort, which is instead 

employed in simulating response trajectories that 

are more likely to reach failure. However, in the 

context of time-invariant reliability estimation, 

the implementation of RR is somewhat different 

(Pegoraro 2016). Recall, the IS estimator given is 

by, 
    

 1

I 01ˆ
ISN

i iIS

F

iIS i

G p
P

N q


 

Uu u

u
. This 

estimator is modified as,

 
1

1ˆ  where,
ISN

IS

F i

iIS

P
N




  u

   

    

 

I 01
,  w.p. ( )

.

0, w.p. 1 ( )

i i

i

i i i

i

G p
s

s q

s



  
  

    




Uu u
u

u u u

u

 

Here , 1,2,...,i ISi Nu  are iid samples from 

 q u . The quantity  is u  is called the “survival 

probability” of the sample. Therefore, with 

probability  1 is u , the contribution of the 
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sample in the estimator is set to 0. This eliminates 

the need to call the performance function for that 

sample which saves computational effort. It is 

desirable to set the values of those terms to 0 

whose contribution to the estimator is negligible 

so that the preserved computational effort can be 

directed towards samples that contribute 

substantially to the estimator.  is u  should be 

small for samples that contribute minimally and 

large for samples that contribute significantly to 

the estimate. It is defined as follows. Firstly, a 

“reference contribution” is defined as 

 

 
min

min

*
p

c
q


U u

u
. Then, for a sample iu  simulated 

from the ISpdf  q u , the “sample contribution” 

is defined as  
 

 
i

i

i

p
c

q


U u
u

u
. The sample is 

likely to make an insignificant contribution to the 

estimator either if: (a)  ic u  is much smaller than 

*c , or if (b)  ic u  is much larger than *c . In 

case (a), the ratio  
 

 
i

i

i

p
c

q


U u
u

u
 would be very 

small and therefore contribute minimally to the 

estimator. In case (b), even though the ratio 

 
 

 
i

i

i

p
c

q


U u
u

u
 would be very large, the sample 

is much more likely to lie in the safe region, 

thereby not contributing to the estimator at all. 

The survival probability is therefore defined as 

 
 

 
*

min ,
*

i

i

i

c c
s

c c


  

    
   

u
u

u
 ( 2   was 

found to be a suitable value for a wide range of 

numerical examples). Then, with probability 

 is u , the term 

 
 

    

 

I 01 i i

i

i i

G p

s q


 
  

  

Uu u
u

u u
 is 

computed and with probability  1 is u , 

  0i u . If a sample survives for which 

  *ic cu  and   0iG u  hold, then the 

reference contribution *c  is updated to the new 

value  ic u . Samples are continued to be 

generated until the performance function has been 

called callsN  times, which needs to be specified 

beforehand (here, we use 500callsN   ). Let 
ISN  

be the number of samples generated. The failure 

probability estimate is then computed as, 

 
1

1ˆ
ISN

IS

F i

iIS

P
N




  u . 

3. NUMERICAL ILLUSTRATIONS 

Four illustrative examples with performance 

function containing the aforementioned 

difficulties are considered. Results of the 

following IS schemes are compared:  

(a) M1: Proposed algorithm. Here, the 

number of samples for constructing ISpdf 

is taken as 500M   and 500callsN  . 

(b) M2: Sequential directional importance 

sampling. This is implemented via the 

MATLAB package available at 

https://github.com/KaiChengDM/SDIS. 

Number of importance directions per level 

= 500, length of Markov chains = 5, and 

initial 3   (Cheng et al. 2023). 

(c) M3: Improved cross entropy method – von 

Mises-Fisher-Nakagami mixture. This is 

implemented via MATLAB package 

available at 

https://www.cee.ed.tum.de/en/era/softwar

e/reliability/cross-entropy-method-and-

improved-cross-entropy-method. Number 

of samples per level = 500, the initial 

number of distributions in the mixture = 5 

and maximum number of iterations = 20 

(Papaioannou et al. 2019). 

Results from these algorithms are compared 

with the direct Monte Carlo method. The 

following quantities are reported for each 

illustrative example: (a) number of samples drawn 

from the ISpdf ( ISN ) (in case of method M1, ISN  

is the number of survived samples), (b) mean 

probability of failure from 100 independent runs 

https://github.com/KaiChengDM/SDIS
https://www.cee.ed.tum.de/en/era/software/reliability/cross-entropy-method-and-improved-cross-entropy-method
https://www.cee.ed.tum.de/en/era/software/reliability/cross-entropy-method-and-improved-cross-entropy-method
https://www.cee.ed.tum.de/en/era/software/reliability/cross-entropy-method-and-improved-cross-entropy-method
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of the reliability algorithm ( ˆ mean

FP ), (c) coefficient 

of variation ( ̂ ) obtained from 100 independent 

runs of the algorithm, (d) the total number of 

performance function calls for each run ( FCN  ). 

Before executing the reliability estimation 

algorithms, all performance functions have been 

transformed into the standard normal space.  

3.1. Example 1 

Consider the following performance function in 

the standard normal space (Breitung 2019): 

  1

2

1
( ) min 5 , 0.5 .

1 exp 2 6
G U

U

 
   

    

U  (1) 

Here, the performance function value 

displays a sharp change near the most important 

failure region. Figure 2(a) shows the failure 

region shaded in orange. As seen from samples in 

Figure 2(b) and 2(c), the proposed method M1 and 

M2 succeed in sampling from the important 

failure regions. However, method M3 fails to 

detect any failure region in this case (Figure 2(d) 

shows the failure samples drawn using this 

method). Table 1 shows details of the numerical 

results obtained using these algorithms. 

 
Table 1: Numerical results of example 1 

Method M1 M2 M3 

ISN   500   500  500  

ˆ
FP   

72.89 10  72.88 10  Failed 

   0.05   0.08   - 

FCN   2394   9688   - 

Direct Monte Carlo estimate with 910  samples 

= 73.05 10 . 

3.2. Example 2 

Consider in the standard normal space the 

following performance function: 

 

  

  

2 2 2 2

1 2 1 2

2 2 2 2

1 2 1 2

( ) 4.00 4.25

4.50 4.75 .

G U U U U

U U U U

    

   

U
 (2) 

 

 

Figure 2: Example 1: (a) Shaded failure region; 

Samples generated in a run of (b) M1, (c) M2, and 

(d)M3 

In this case, the failure region comprises two 

disconnected failure regions separated by a region 

of safety (see Figure 3(a)). Since the failure  

regions are in the form of two annuli, multiple 

directions contribute equally to the failure 

probability. The IS scheme must be able to 

adequately sample from all directions. Here as 

well, the proposed method M1 successfully 

samples from both failure regions. The replica 

exchange algorithm allows the MCMC sampler to 

adequately explore both important failure regions 

in all directions (shown in Figure 3(b)). Method 

M3 can also capture the failure region adequately, 

as seen by the failure samples in Figure 3(d). 

Method M2 requires very high computational 

effort (the samples drawn are shown in Figure 

3(c)). Table 2 contains the numerical results 

obtained for this example. This problem has an 

exact solution which can be written in terms of the 

chi CDF with 2 degrees of freedom,  2 .  as 

follows:  

       2 2 2 2

4

4.25 4 4.75 4.5

2.43 10 .

FP    



   

 
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Table 2: Numerical results of example 2 

Method M1 M2 M3 

ISN   500  500   500  

ˆ
FP   

42.43 10  42.70 10   42.47 10  

   0.06   0.06   0.18  

FCN   2392  31284   10000  

Direct Monte Carlo estimate with 
610  samples 

= 
42.55 10 .  

 

 
Figure 3: Example 2: (a) Shaded failure region; 

Samples generated in a run of (b) M1, (c) M2, and 

(d)M3 

3.3. Example 3 

This example pertains to a structural system 

whose failure occurs through loss of stability. 

Consider a rigid bar of length 1 mL   with a 

torsional spring at its base subject to a vertical 

downward load (see Figure 4). The random 

variables considered are the torsional spring 

constant 

 9~ Lognormal 2.5 10  Nm/rad,  CoV 0.1TK      

and the vertical load 

 9~ Lognormal 1.0 10  N,  CoV 0.1P      , 

which are assumed to be independent.  

 
Figure 4: Example 3: Rigid bar with torsional spring 

 

Here, failure is defined as the vertical 

downward displacement exceeding 
31 10  m . 

Thus, the performance function is written as 

  3, 1 10Tg K P    , where   is the 

downward displacement. The details of 

computation of   can be found in (Thompson 

and Hunt 1973). The failure region has been 

indicated in Figure 5(a). The difficulty in the 

performance function lies in the fact that if the 

structure is in the safe zone, the performance 

function value is a positive constant, 
31 10  m , 

and when it fails, the performance function value 

suddenly starts declining. Hence, reliability 

estimation methods that rely on an adaptive search 

of failure regions would fail to identify any such 

regions. The intermediate samples would give no 

indication of the location of the failure zone due 

to the constant nature of the performance 

function. Indeed, it is seen that method M3, due to 

its adaptive nature, fails to detect the failure 

region for the majority of the runs (see Figure 

5(d)). This leads to an underestimation of the 

failure probability in Table 3. It is also observed 

that method M2 could detect the failure region 

(see Figure 5(c)). Again, the proposed 

methodology, detects the failure region and 

correctly computes the probability of failure (see 

Figure 5(b)). 

 
Table 3: Numerical results of example 3 

Method M1 M2 M3 

ISN   500  500   500  

ˆ
FP   

53.62 10   
53.65 10   51.28 10   
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   0.05   0.06   1.36   

FCN   2376   11370   8690   

Direct Monte Carlo estimate with 
710  samples 

= 
53.62 10 . 

3.4. Example 4 

This example considers reliability computation of 

reliability of a vibrating two-degree-of-freedom 

mass-spring-dashpot as seen in Figure 6. The 

random variables considered here are the stiffness 

parameters of the springs, 

 5

1 2, ~ Lognormal 2.5 10  N/m,  CoV 0.2K K      

which are assumed to be independent. Values of 

the masses are 1 2 2000 kgM M  , and that of 

the modal damping ratios are 1 2 0.02   . The 

mass 2M  is subjected to an excitation 

   2000sin 11P t t . The performance function 

is defined as follows: 

   1 2 1
0 20

, 0.024 max
t

g K K x t
 

    (3) 

Here, it is seen that the region of failure 

comprises of two disconnected regions which 

contribute significantly to the failure probability. 

Hence, for accurate estimation of failure 

probability, IS schemes must be able to correctly 

sample from both regions. From the numerical 

details presented in Table 4, it is seen that the 

proposed method M1 can accurately report the 

failure probability with much less computational 

effort than methods M2 and M3. Figure 7(a) 

shows the failure region, and Figure 7(b), 7(c), 

and 7(d) show the failure samples obtained from 

methods M1, M2 and M3, respectively. 

 
Figure 6: Example 4: A two-degree-of-freedom mass-

spring-dashpot system 

 
Table 4: Numerical results of example 4 

Method M1 M2 M3 

ISN   500  500   500  

ˆ
FP   

52.34 10  52.10 10   51.30 10  

   0.05   0.09   0.57  

FCN   2368  9528   8200  

Direct Monte Carlo estimate with 
710  samples 

= 
52.28 10 .  

4. DISCUSSION AND CLOSURE 

The difficulties in performance functions 

described in previous sections are manifested in 

reliability estimation methods as challenges in 

sufficiently exploring the parameter space and 

detecting important regions of failure. The present 

study contributes to solving this problem by 

proposing a replica exchange-based MCMC 

sampler. This algorithm proves to be a powerful 

tool in effectively dealing with performance 

functions that exhibit difficulties that traditional 

reliability estimation methods cannot contend 

with. The numerical illustrations in the previous 

section show that the proposed methodology 

achieves enhanced parameter space exploration 

Figure 5: Example 3: (a) Shaded failure region; 

Samples generated in a run of (b) M1, (c) M2, and 

(d)M3 
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and accurately estimates failure probability. It 

achieves this exploration and accuracy while 

spending much less computational effort than 

other methods. A limitation of the proposed 

methodology arises in dealing with high-

dimensional problems. It is known that kernel 

density estimation requires a large number of 

samples to construct an estimate of the pdf in high 

dimensions accurately. In addition, the replica 

exchange method also faces difficulty in high 

dimensions since the number of orthants in n -

dimensional space is 2n . When n  is large and the 

difficulties of the kind mentioned earlier emerge, 

important orthants are likely to remain 

unexplored. A possible solution to this is the 

utilization of machine learning techniques which 

would be feasible in high dimensions to 

characterize the failure region in conjunction with 

the replica exchange strategy. This approach is 

currently being explored by the authors. 
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