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ABSTRACT: Structural integrity management of wind turbine structures is typically based on
equi-temporal inspection plans that do not account for the information that is or can be collected during
their operation. This concerns the outcome of future inspections but also and very importantly the
outcome of Structural Health Monitoring (SHM). Such information can be used within the framework
of risk-based inspection (RBI) planning of structures to provide an information consistent basis for
integrity management. In the present contribution we investigate how the concept of digital twins (DT)
in conjunction with modern techniques of big data analysis may support this. The approach is
demonstrated by a numerical example considering integrity management of a fatigue-sensitive detail of
a 5MW reference offshore wind turbine support structure. The example results demonstrate the potential
benefits of RBI planning and the value of taking into account the information from continuously
collected SHM data.

1. INTRODUCTION

Fatigue-induced cracks in welded details of off-
shore wind turbines (OWTs) develop due to time
variant operational and environmental loads act-
ing on the structures throughout their service lives.

Structural integrity management (SIM) procedures
are extremely useful to ensure that the resulting fa-
tigue crack growth is kept within acceptable safety
and reliability limits. A typical SIM procedure for
OWTs is to inspect potentially critical details at
equi-distant times; however without quantifying the
value added through the possibility to implement
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risk reducing measures on the basis of future in-
spection outcomes. This approach which is com-
mon under most certification regimes can be im-
proved substantially by utilizing experience from
the oil and gas industry, where so-called risk-based
inspection (RBI) procedures for SIM have success-
fully been implemented for most of the fixed steel
oil and gas production facilities in the Danish part
of the North-Sea, more than 100 fixed steel struc-
tures in the Mexican part of the Gulf of Mexico, and
for several FPSO and FSO facilities (Faber et al.,
2005; Goyet et al., 2004).

RBI procedures have evolved from their first
industrial applications (Kirkemo, 1990; Sørensen
et al., 1991) to more generic RBI approaches
(Straub, 2004) to facilitate use by engineers with-
out expertise in probabilistic modelling and fatigue
crack growth. Among the various uncertainties
that affect the RBI inspection plans, the uncertain-
ties associated with the fatigue stresses acting on
the critical locations of the welded details (the hot
spots) play a key role. In presently applied RBI the
stresses are modelled probabilistically, based en-
tirely on design information regarding service life
structural responses which in turn are derived from
the nominal structural design. However, when the
structures have been constructed and are in oper-
ation these probabilistic models may be updated
through interpretation of observations from struc-
tural health monitoring (SHM). The potential of
SHM as a means for SIM and the value of informa-
tion (VoI) has been demonstrated on a broad range
of structural systems, including wind turbine struc-
tures (Faber, 2017; Weijtjens et al., 2016; Maes
et al., 2016; Nabuco et al., 2019).

Based on collected SHM information from struc-
tures in operation, it is also possible to gain an im-
proved understanding of structural system charac-
teristics and to update structural analysis models,
e.g., finite element (FE) or RBI models, applied in
the support of SIM. A calibrated, i.e., tuned to fit
observations, FE model is often referred to as a dig-
ital twin (DT) of the physical system (Hofmeister
et al. (2019)). The present paper investigates how
a DT of the OWT can be constructed and, based
on the information obtained from SHM, be updated

such as to model structural responses that are prob-
abilistically consistent with the SHM information.
The DT is then used to model the probabilistic char-
acteristics of the fatigue stresses in a hot spot and
this model is in turn utilized as basis for develop-
ing an RBI plan. Finally the RBI plan is com-
pared to a traditional RBI plan, based on design-
phase stress estimates. The results are produced in
a resilience-informed integrity management study
on a monopile foundation of a 5MW generic OWT.

This paper is organized as follows: In Section 2,
the DT-informed RBI planning framework is pre-
sented, Section 3 describes the numerical wind tur-
bine setup and Section 4 presents the numerical ex-
ample results. The paper is closed in Section 5 with
the conclusions and an outlook to further develop-
ments of the proposed approach.

2. DIGITAL TWIN-INFORMED RISK-BASED IN-
SPECTION PLANNING

An illustration of the DT-informed framework,
and how it compares to conventional RBI proce-
dures based on conservative design model assump-
tions, is provided in Fig. 1. The prior model, al-
ready serving as basis for the design model as-
sumptions in RBI schemes, is adapted to create
a model database of realizations describing the
possible OWT system characteristics. The model
database is compared to the system characteris-
tics estimated from the SHM measurements, hence
identifying the models best describing what is ob-
served. In the present paper, the DT corresponds to
the model best describing observations and is used
for the virtual sensing to achieve the stresses at hot
spot locations. The full details of the SHM, DT and
virtual sensing procedures for stress estimations are
described in Section 2.1. The fatigue stress spec-
trum is finally utilized to develop an RBI plan as
described in Section 2.2.

2.1. Digital twin-informed stress estimation
The SHM system collects nk observations, where

each observation Ok =
{

Û10,k, ük(t)
}

comprises
the 10-minute mean wind speed Û10,k ∈ R and
the 10-minute time series of acceleration measure-
ments in nm degrees of freedom (DOFs) ük(t) ∈
Rnm .
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Figure 1: DT-informed and traditional RBI framework comparison.

These observations are then mapped to modal
properties using a system identification procedure
Z (see Section 2.1.1).

With a DT F (θ̂k) of the OWT, where F is an FE
model and θ̂k are the parameters that best explain
the observations (see Section 2.1.2), the framework
produces stress spectra sk for each k = 1, . . . ,nk:

sk = V
(
ük(t),F

(
θ̂k
)

(1)

where, V maps the accelerations ük(t) and the DT
F (θ̂k) to a stress spectrum using virtual sensing
(see Section 2.1.3). These nk spectra may then be
combined to a combined spectrum s representing
the stresses of the OWT during the observation pe-
riod.

The three pillars of the stress-estimation ap-
proach (system identification, DT parameter esti-
mation, and virtual sensing) are elaborated in the
following.

2.1.1. System identification
System identification refers to the task of ex-

tracting system-related information, such as modal
properties in the context of vibrating systems, based
on an observed system response and, if possible,
the excitation. In settings where ambient excitation
sources govern the response, as is the case for OWT

structures, only the response of the system is di-
rectly observable. In this case, assumptions regard-
ing the nature of the excitation are imposed. Ex-
traction of modal information from vibrating struc-
tures based solely on observed structural response
is called operational modal analysis (OMA).

In the context of this paper, an automated opera-
tional modal analysis (AOMA) scheme is adopted:

(Φ̂k, λ̂k) = Z(ük(t)) (2)

yielding nj mode shapes ϕ̂k,j ∈ Cnm and eigen-
values λ̂k,j ∈ C stored in Φ̂k ∈ Cnm×nj and λ̂k ∈
Cnj , respectively. Here, system identification is
achieved through a data-driven subspace-based sys-
tem identification (SSID) algorithm as described by
van Overschee and Moor (1996). Subsequently,
the identified poles (eigenvalues of estimated state
matrices) are classified as either physical (kept) or
spurious (discarded) based on an automated multi-
stage clustering approach inspired by Reynders
et al. (2012); Neu et al. (2017).

While the SSID algorithm provides numerical
robustness, it also imposes the following assump-
tions: (1) the system behaves linearly and is time-
invariant (LTI) and (2) the excitation resembles
white noise.
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Assumption (1) is violated when considering
the operational changes (such as yaw and pitch)
induced by changes in environmental conditions.
However, for short time intervals (e.g., ten minutes)
it is reasonable to assume that the processes de-
scribing the environmental conditions are station-
ary leading to approximately LTI system behavior.

Assumption (2) is violated by the wind and wave
processes exciting the system (as well as rotor dy-
namics when the turbine is producing electricity).
Consequently, modes not related to the structural
modes of the wind turbine structure can be identi-
fied by the algorithm. However, as the dominating
frequencies associated with wind, waves, and ro-
tor dynamics are well known, from SCADA (super-
visory control and data acquisition) and metocean
data, these modes are readily identified and can be
discarded if desired.

2.1.2. Digital twin parameter estimation
In practice, a DT is modelled to represent impor-

tant aspects of the physical asset. In the context of
stress estimation, the most important aspect is an
accurate description of the structural response. To
this end, the DT is formulated such that features
that are known with high certainty, like the struc-
tural geometry, are fixed while more uncertain fea-
tures that are also important for the structural re-
sponse, such as soil conditions, are updated based
on continuous monitoring. This ensures efficiency
while retaining an accurate model for the purpose.

In this paper, parameter estimation is achieved by
first populating a database B = {(θb,F (θb))|b =
1, . . . ,nB} with numerical representations of the
OWT for different sets of parameter realizations.
Efficient population of the database can be achieved
through well-known space filling design schemes.
The parameters θ̂k and corresponding FE model
that best explain the observation Ok are then esti-
mated by

(θ̂k,F (θ̂k)) = argmin
b∈B

ε(Ok,b) (3)

where b = (θb,F (θb)) are the elements of the
database and ε represents an appropriate distance
metric. The approach for computing this metric is
outlined in the following two steps. As we estimate

optimal parameters based on a single set of obser-
vations, the subscript k is omitted for brevity.

Step 1 For each model F (θb) in B, a modal sub-
set (Φb,λb) comprising ni = 6 modes ϕb,i ∈
Cnm and λb,i ∈ C, corresponding to the first
three fore-aft (FA) and side-side (SS) modes,
is considered. The contribution of each mode
to the observed response ü(t) is assessed
through integration of the power spectral den-
sity. Weights w(b)

i are subsequently assigned
to each mode based on their modal contribu-
tion.

Step 2 Following this, the nj observed modal
property-pairs (ϕ̂j, λ̂j) from Eq. (2), as well as
the 10-minute mean wind speed Û10 are com-
pared to the models in the database.

To this end, each mode i associated with the b-
th database model is compared to a measured
mode j using the following metric:

δ
(b)
i,j = δ

(b)
λ,i,j + δ

(b)
U10

/10 + 1 − MAC(b)
i,j (4)

The terms in the metric correspond to rela-
tive distances between eigenvalues δλ,i,j, 10-
minute mean wind speeds δU10 , and, finally,
the modal assurance criterion (MAC) between
mode shapes:

δ
(b)
λ,i,j =

∣∣λb,i − λ̂j
∣∣

max
{
|λb,i| ,

∣∣λ̂j
∣∣} (5)

δ
(b)
U10

=

∣∣U10,b − Û10
∣∣

max
{

U10,b,Û10
} (6)

MAC(b)
i,j =

∣∣∣ϕH
b,iϕ̂j

∣∣∣2
ϕH

b,iϕb,iϕ̂
H
j ϕ̂j

(7)

where (·)H denotes the Hermitian transpose.

Mode i is compared to all nj measured modes
through Eq. (4) and the smallest distance from
mode i to the observations is computed as

δ
(b)
i = min

{
δ
(b)
i,j

∣∣j = 1, . . . ,nj

}
(8)
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Finally, the distance metric, including all six
modes, is computed as

ε(Ok,b) =
6

∑
i=1

δ
(b)
i w(b)

i (9)

where w(b)
i are the weights computed in

Step 1.

2.1.3. Virtual sensing
It is typically not feasible to instrument, and

thereby directly monitor, all details of a physical
system. Therefore, virtual sensing schemes are of-
ten adopted to estimate non-measured quantities
based on a limited set of observations.

In the context of this paper, it is of interest
to estimate stress spectra sk = (∆σk, Nk) in the
support structure using accelerations measured in
the tower. The k-th spectrum comprises ns stress
ranges ∆σk ∈ R

ns
+ and associated numbers of cy-

cles Nk ∈ R
ns
+ .

The modal expansion virtual sensing scheme is
employed to estimate displacement response in the
support structure by decomposition and subsequent
extrapolation of the response using mode shapes.
Using np modes for expansion and denoting the
mode shape matrices from F

(
θ̂k
)

by Φe ∈ Rne×np

and Φm ∈ Rnm×np , the estimated displacement re-
sponse ûk(t) ∈ Rne in ne DOFs is given by

ûk(t) = ΦeΦ
†
muk(t) (10)

where (·)† denotes a pseudo-inverse. Note that
measured accelerations are converted to displace-
ments uk(t) ∈ Rnm through integration

uk(t) = F−1
(

1
−ω2F (ük(t))

)
(11)

where ω, F and F−1 denote the angular frequency,
the Fourier transform and its inverse, respectively.

The estimated displacements are subsequently
converted to stress estimates using stiffness prop-
erties of the DT F (θ̂k).

It is evident that the LTI assumption is also im-
plied when using modal expansion. As was argued
in Section 2.1.1, violation of this assumption in the

present application is limited because we consider
short time intervals, where processes governing the
non-linear and time variant behavior can be consid-
ered stationary.

2.2. Risk-based inspection
Risk-based inspection is a special application

of Bayesian decision theory (Raiffa and Schlaifer,
1961) to determine the optimal strategy to inspect
deteriorating structures (Straub and Faber, 2005).
The RBI plans considered in this paper may also
be called adaptive, because the RBI plan is updated
during the lifetime of the structure by considering
measurements of the structural performance (Bis-
mut and Straub, 2021; Zhang et al., 2022).

RBI methods combine reliability assessment
with probabilistic updating to establish a time-
history of the reliability of hot spots, i.e., specific
locations in the structure that are expected to have
a high probability of failure. To this end, they rely
on crack growth models to predict the crack evolu-
tion and detectable crack size models (probability
of detection, PoD) to incorporate information ob-
tained by inspection campaigns.

2.2.1. Crack-growth model
Steel structures can fail due to cyclic loading be-

low their non-cyclic material strength. This failure
mode is generally known as fatigue failure. There
exist a variety of crack growth models (Richard and
Sander, 2016; Rege and Lemu, 2017), but for this
study the normalized crack growth model (NCGM)
by Tychsen and Smedemark (2017) is used. It is a
stochastic model that was fit to a large database of
crack developments and was purpose-built for ap-
plications in inspection planning.

Given a stress spectrum and corresponding num-
ber of occurrences collected in a stress spectrum
s the damage D of a hot spot is computed us-
ing a suitable S-N curve (e.g., from DNV-RP-C203
(2021)):

D(s, xs) (12)

where xs is an uncertain parameter random vec-
tor specifying the S-N curve and its uncertainties.
Given the damage, the NCGM can be used to com-
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pute the crack length with

a(D,α) = dcrit10

log10

(
D− ı

α
1− ı

α

)
α(1+sD) fplate (13)

where dcrit is the critical crack depth at which fail-
ure occurs, fplate is the plate-thickness factor that
depends on the thickness of the hot spot plate, ı
and s are fitting parameters. The stochasticity of
the NCGM is induced by the uncertain α random
variable that was fitted to observations in Tychsen
and Smedemark (2017). Consequently, the model
returns a random variable a for a given damage D.

2.2.2. Detectable crack size model
The quality of an inspection technique can be

characterized through its PoD function. For a given
crack length a, it returns the probability of detecting
that crack with said inspection technique. The PoD
used in this study is given by (Faber and Sørensen,
2002)

PoD(a) = 1 − 1

1 +
(

a
x0

)b (14)

where x0 and b are parameters of the inspection
method. This function can be inverted to obtain a
probabilistic model of the detectable crack size with
c(u) = PoD−1(u), where u is a standard uniformly
distributed random variable.

2.2.3. Probability of failure
For a single hot spot and time t, we distinguish

two types of events: failure Ft and inspection It.
We further introduce the set of inspection times
T = {τ1, . . . ,τn·}, that are prescribed or iteratively
determined, and the set of inspections up until t as
It = {Iτ|τ ∈ T ,τ ≤ t}. The hot spot probability
of failure at a certain time t given inspections until
t may then be written as (after Straub (2011)):

Pr
(

Ft
∣∣It

)
=

Pr (Ft ∩ It)

Pr (It)
(15)

from which the annual failure probability can be de-
rived as the time derivative.

These events are modeled here using a crack-
growth model (see Section 2.2.1) and a detectable

crack size model (see Section 2.2.2) that are param-
eterized with a random vector X : Ω →DX , where
Ω denotes the probability sample space, with real-
izations x = (xs,α,u), and joint probability distri-
bution fX(x). This random vector encodes the state
of uncertainty related to the system.

The probabilities in Eq. (15) can be explicitly
written as Pr(E) =

∫
x∈DE

fX(x)d x, by denoting
the domain associated with an event E with DE ⊂
DX . Estimating this probability integral is gen-
erally not possible in closed form. Instead, nu-
merical methods of structural reliability may be
used for maximum flexibility in terms of the event
parametrization. Reviews of available methods in
this field can be found in Rackwitz (2001); Jiang
et al. (2017); Afshari et al. (2022).

With the S-N curve from Eq. (12) and a stress
spectrum st at time t, the failure domain is

DFt = {D(st, xs) > 1|(xs,α,u) ∈ DX} (16)

For a given inspection result r ∈
{detection,no detection}, the damage Dt at
time t combined with the crack growth model
from Eq. (13), the inspection event domain for no
detection is

DIt,∼detect = {a(Dt,α) < c(u)|(xs,α,u) ∈ DX}
(17)

and analogously for the detection case.

3. NUMERICAL EXAMPLE SETUP

The case study is a comparison between tradi-
tional RBI based on design model stress simula-
tions and DT-informed RBI based on SHM mea-
surements. Both stress estimates are obtained from
simulations using a generic 5MW reference wind
turbine installed on a fixed bottom monopile foun-
dation and exposed to a typical fatigue limit state
(FLS) load case. Variation of the soil strength as
well as operational variability (induced by chang-
ing wind) is considered in the measurement simula-
tions; the wind and wave loading follow the design
assumptions. The depth-dependent soil strength is
scaled by a multiplier following a log-normal dis-
tribution with a mean of 1 and a coefficient of vari-
ation (COV) of 0.33, Jones et al. (2002), while
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the design estimate uses a deterministic soil cor-
responding to the 5% quantile of the distribution
(which is considered conservative).

The simulations are computed with the open-
source software package OpenFAST (NREL,
2022), a simulation tool for dynamic responses of
wind turbines. The wind turbine is the 5MW NREL
wind turbine with a rotor radius of 63 m and a hub
height of 90 m. The monopile has diameter of 6 m,
wall thickness of 50 mm and a total height of 60 m
with a 30 m soil penetration. The soil-structure
interaction is modelled by linearized soil curves.
The structural damping is modelled by a Rayleigh
model assuming 1 % damping on the first and sec-
ond bending modes. The wind turbine is assumed
installed at a position in the Danish waters with a
water depth of 20 m. The metocean and soil data are
based on site specific data at a region in the Baltic
Sea. The wind is simulated according to the DNV
with the IEC normal turbulence model while waves
are simulated using first-order theory and the JON-
SWAP spectrum.

Displacements and accelerations are assumed
measured by bi-axial sensors at four different ele-
vations on the turbine tower, see Fig. 2.

The DT database B is populated (utilizing Latin
hypercube sampling) with 750 realizations of soil
and wind speed parameters according to their prob-
ability distribution. Wind speed is used as a proxy
for rotor speed and pitch based on the linearization
feature of OpenFAST (Jonkman et al., 2018). The
mapping from the database is based on the system
identification of the observed accelerations accord-
ing to Section 2.1, while the modal expansion is
performed based on the displacements.

To construct the RBI plan, a constant annual re-
liability threshold approach is applied with an in-
spection threshold of 10−4. The SN-curve D from
DNV-RP-C203 (2021) is adopted with parameters
m1 = 3, m2 = 5, dref = 25 mm, and k = 0.2. The
parameters xs with components log a1 and log a2
are treated as uncertain and follow a Gaussian dis-
tribution with mean 11.764 and 15.606, respec-
tively, and a COV of 3 %. The parameters of the
NCGM are selected as dcrit = 50 mm, fplate =
1.15, s = −0.565, and ı = 0.1. The parameters

Figure 2: Wind turbine and sensor positions.

of the PoD curve are selected as x0 = 1.4, b = 2.
The stress-concentration factor is selected as un-
certain following a Gaussian distribution with mean
1.07 (DNV-RP-C203, 2021) and standard deviation
0.05.

4. NUMERICAL EXAMPLE RESULTS

The RBI results, as illustrated in Fig. 3, show an
evident improvement in the inspection plans when
using the DT-informed stress estimates over using
design model estimates when comparing with the
annual probability of failure for the fatigue sensitive
detail.

The design stress estimate schedules the first in-
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Figure 3: RBI plan with annual probability of failure
as a function of time based on stress spectra from the
DT-informed approach (yellow), the design model ap-
proach (purple), and the exact spectra (blue).

spection seven years earlier than otherwise pre-
scribed by the plan derived from the exact stresses,
revealing that the stress estimates are indeed con-
servative. As expected, the DT-informed stress es-
timate is better aligned with the actual stresses.

It should be noted that the same uncertainties
have been applied in the RBI for all three inspec-
tion plans to allow for a direct comparison.

5. CONCLUSIONS

The value of installing a SHM measurement sys-
tem and taking benefit of the information in a DT
setup is highly dependent on the bias in the design
model assumptions. However, the bias is hard to
quantify without any information of the system per-
formance after installation. In the present numer-
ical example we demonstrate that the number of
inspections for integrity management of wind tur-
bine support structures can be significantly reduced,
hence clearly illustrating the potential and value of
introducing SHM measurement systems in combi-
nation with RBI models. The procedure can also
prove beneficial in the opposite case, where the de-
sign assumptions are non-conservative, as the reli-
ability of the structure is updated and an increased
number of inspections would be performed accord-
ing to the actual utilization level.

Furthermore, the SHM measurements allow for

detection of any anomalies during operation of the
wind turbine and can update the inspections of the
structure due to changes in either load environment
or the structure itself. The SHM-DT setup also al-
lows for updating and propagation of uncertainties
based on the observations using big data techniques
and probabilistic methods, such as those presented
in Glavind et al. (2022); this will be further investi-
gated in a subsequent paper.

6. REFERENCES
Afshari, S. S., Enayatollahi, F., Xu, X., and Liang, X.

(2022). “Machine learning-based methods in struc-
tural reliability analysis: A review.” Reliability Engi-
neering & System Safety, 219, 108223.

Bismut, E. and Straub, D. (2021). “Optimal adaptive
inspection and maintenance planning for deteriorating
structural systems.” Reliability Engineering & System
Safety, 215, 107891.

DNV-RP-C203 (2021). “Fatigue design of offshore steel
structures.” Standard, Det Norske Veritas.

Faber, M. H. (2017). “Risk informed structural systems
integrity management: A decision analytical perspec-
tive.” Proceedings of the ASME 2017 36th Interna-
tional Conference on Ocean, Offshore and Arctic En-
gineering, 9.

Faber, M. H. and Sørensen, J. D. (2002). “Reliability and
risk based inspection planning for jacket structures.

Faber, M. H., Sørensen, J. D., Tychsen, J., and Straub,
D. (2005). “Field implementation of RBI for jacket
structures.” Journal of Offshore and Arctic Engineer-
ing, 127(3), 220–226.

Glavind, S. T., Sepulveda, J. G., and Faber, M. H.
(2022). “On a simple scheme for systems modeling
and identification using big data techniques.” Relia-
bility Engineering and System Safety, 220.

Goyet, J., Rouhan, A., and Faber, M. H. (2004). “In-
dustrial implementation of risk based inspection plan-
ning methods – Lessons learnt from experience: The
case of FPSOs.” Proceedings of the 23rd Interna-
tional Conference on Offshore Mechanics and Arctic
Engineering, 2, 553–563.

8



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Hofmeister, B., Bruns, M., and Rolfes, R. (2019). “Fi-
nite element model updating using deterministic op-
timisation: A global pattern search approach.” Engi-
neering Structures, 195, 373–381.

Jiang, Z., Hu, W., Dong, W., Gao, Z., and Ren, Z.
(2017). “Structural reliability analysis of wind tur-
bines: A review.” Energies, 10(12), 2099.

Jones, A. L., Kramer, S. L., and Arduino, P. (2002). “Es-
timation of uncertainty in geotechnical properties for
performance-based earthquake engineering.” Report,
University of Washington.

Jonkman, J. M., Wright, A. D., Hayman, G. J., and
Robertson, A. N. (2018). “Full-system linearization
for floating offshore wind turbines in openfast.” Pro-
ceedings of the ASME 2018 1st International Offshore
Wind Technical Conference.

Kirkemo, F. (1990). “Probabilistic strategy increases
jacket in-service inspection efficiency.” Offshore,
50(12), 46–47.

Maes, K., Iliopoulos, A., Weijtjens, W., Devriendt, C.,
and Lombaert, G. (2016). “Dynamic strain estima-
tion for fatigue assessment of an offshore monopile
wind turbine using filtering and modal expansion al-
gorithms.” Mechanical Systems and Signal Process-
ing, 76-77, 592–611.

Nabuco, B., Faber, H. B. M. H., and Brincker, R. (2019).
“A first step in quantifying the value of oma based
fatigue stress estimation.” 8th International Opera-
tional Modal Analysis Conference, 645–652.

Neu, E., Janser, F., Khatibi, A. A., and Orifici, A. C.
(2017). “Fully automated operational modal analy-
sis using multi-stage clustering.” Mechanical Systems
and Signal Processing, 84(A), 308–323.

NREL (2022). “OpenFAST – Open-source wind turbine
simulation tool.” v3.2.1.

Rackwitz, R. (2001). “Reliability analysis – a review and
some perspectives.” Structural Safety, 23(4), 365–
395.

Raiffa, H. and Schlaifer, R. (1961). Applied statistical
decision theory. Harvard University, fifth edition.

Rege, K. and Lemu, H. G. (2017). “A review of fatigue
crack propagation modelling techniques using FEM
and XFEM.” IOP Conference Series: Materials Sci-
ence and Engineering, 276, 012027.

Reynders, E., Houbrechts, J., and Roeck, G. D. (2012).
“Fully automated (operational) modal analysis.” Me-
chanical Systems and Signal Processing, 29, 228–
250.

Richard, H. A. and Sander, M. (2016). Fatigue crack
growth. Springer International Publishing.

Straub, D. (2004). “Generic approaches to risk based
inspection planning for steel structures.” Ph.D. thesis,
ETH Zurich,

Straub, D. (2011). “Reliability updating with equality
information.” Probabilistic Engineering Mechanics,
26(2), 254–258.

Straub, D. and Faber, M. H. (2005). “Risk based in-
spection planning for structural systems.” Structural
Safety, 27(4), 335–355.

Sørensen, J. D., Rackwitz, R., Faber, M. H., and Thoft-
Christensen, P. (1991). “Modelling in optimal inspec-
tion and repair.” Proceedings of the 10th International
Conference on Offshore Mechanics and Arctic Engi-
neering, 2, 281–288.

Tychsen, J. and Smedemark, J. (2017). “Development
of normalized stochastic fatigue crack growth model.”
Report No. TE17-128/JPT003, Rev. 0., 8th Dec. 2017,
Maersk Oil (dec).

van Overschee, P. and Moor, B. D. (1996). Subspace
Identification for Linear Systems. Kluwer Academic
Publishers, 57–94.

Weijtjens, W., Verbelen, T., Sitter, G. D., and De-
vriendt, C. (2016). “Foundation structural monitoring
of an offshore wind turbine – A full-scale case study.”
Structural Health Monitoring, 15(4), 489–502.

Zhang, W.-H., Qin, J., Lu, D.-G., Liu, M., and Faber,
M. H. (2022). “VoI analysis of temporally contin-
uous SHM information in the context of adaptive
risk-based inspection planning.” Structural Safety, 99,
102258.

9


	Introduction
	Digital twin-informed risk-based inspection planning
	Digital twin-informed stress estimation
	System identification
	Digital twin parameter estimation
	Virtual sensing

	Risk-based inspection
	Crack-growth model
	Detectable crack size model
	Probability of failure


	Numerical example setup
	Numerical example results
	Conclusions
	REFERENCES

