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ABSTRACT: Existing active strategies for training surrogate models yield accurate structural reliability
estimates by aiming at design space regions in the vicinity of a specified limit state function. In many
practical engineering applications, various damage conditions, e.g. repair, failure, should be probabilis-
tically characterized, thus demanding the estimation of multiple performance functions. In this work, we
investigate the capability of active learning approaches for efficiently selecting training samples under
a limited computational budget while still preserving the accuracy associated with multiple surrogated
limit states. Specifically, PC-Kriging-based surrogate models are actively trained considering a variance
correction derived from leave-one-out cross-validation error information, whereas the sequential learn-
ing scheme relies on U-function-derived metrics. The proposed active learning approaches are tested in
a highly nonlinear structural reliability setting, whereas in a more practical application, failure and repair
events are stochastically predicted in the aftermath of a ship collision against an offshore wind substruc-
ture. The results show that a balanced computational budget administration can be effectively achieved by
successively targeting the specified multiple limit state functions within a unified active learning scheme.

1. INTRODUCTION
An optimized design and management of engi-

neering systems from a life-cycle perspective aims
at jointly minimizing maintenance costs and struc-
tural failure risk, quantified via economic and struc-
tural reliability metrics (Morato et al., 2022). To
probabilistically characterize a failure event and/or
a specific damage condition, one or multiple per-
formance functions can be accordingly formulated,
thereby accounting for the uncertainty associated
with system response predictions and informing as-
set management decisions. The quantification of

uncertainties associated with specifically defined
failure and/or damage events normally demands
the computation of several high-fidelity engineer-
ing simulations, e.g., finite element analysis, com-
putational fluid dynamics.

Considering that high-fidelity simulations can
be time-consuming and computationally expensive,
surrogate models offer an attractive solution by pro-
viding a light-running approximation of the model
response based on a reduced number of data points.
In general, surrogate (meta)models are able to ef-
ficiently learn the mathematical relationship be-
tween uncertain input design variables and a rele-
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vant output quantity of interest (QoI). Among vari-
ous proposed surrogate models, Gaussian Process-
based models (GP), e.g., Kriging and PC-Kriging,
have demonstrated their effectiveness in supporting
a wide range of engineering applications (Schobi
et al., 2015). Leveraging on their probabilistic
formulation, GP-based surrogate models yield not
only a point estimate of the QoI but also an uncer-
tainty measure associated with the generated pre-
diction. In many applications, surrogate models
seek the minimization of the system response gen-
eralization error with the least number of high-
fidelity model evaluations, often inducing a global
exploration of the design space. When dealing with
structural reliability applications, the relevant limit
state(s) can be directly surrogated, and the experi-
mental design logically focuses on regions near the
boundary in order to accurately estimate the proba-
bility associated with a specific event, e.g., failure,
damage condition.

With the goal of efficiently improving the ac-
curacy of a surrogated limit state function, active
learning is a machine learning technique that se-
quentially selects the training samples based on a
specified learning metric. This approach is partic-
ularly useful when the computational cost of re-
trieving new high-fidelity model evaluations is high
and/or in settings under a constrained computa-
tional/economic budget. From the original devel-
opment of the Expected Feasibility Function (EFF)
(Bichon et al., 2008) and the U-function (Echard
et al., 2011), sophisticated active learning schemes
have been widely proposed in the literature, in
which the training samples are collected based on
an exploitation-exploration trade-off, i.e., exploit-
ing observations near the limit state or exploring yet
uncertain ones. As suggested by Moustapha et al.
(2022), active learning approaches can be gener-
ally categorized according to four distinctive fea-
tures: (i) surrogate model choice, (ii) failure prob-
ability estimation technique, (iii) learning enhance-
ment metric, and (iv) stopping criteria.

Active learning methods have been proven to be
effective for a myriad of structural reliability prob-
lems (Moustapha et al., 2022). The computational
budget, however, is there mainly dedicated to effi-

ciently capturing a limit state and its associated fail-
ure event. In many engineering applications (e.g.,
inspection and maintenance planning), additional
events rather than structural failure may be rele-
vant, hence potentially demanding the evaluation
of multiple limit states that inform, for instance,
operational decisions. In this work, we investigate
the capability of active learning approaches to iden-
tify training samples when dealing with multiple
interrelated limit states under a common computa-
tional budget, in which, an observation can be in-
formative for estimating either the event associated
with only one or multiple events. Specifically, PC-
Kriging-based surrogate models are actively trained
while additionally accounting for a variance correc-
tion derived from leave-one-out cross validation er-
ror information, whereas the learning scheme relies
on sequentially Monte Carlo samples evaluated ac-
cording to a U-function.

In order to effectively balance the generation of
training points around multiple limit states within a
common budget, we additionally propose here ac-
tive learning strategies that sequentially select ob-
servations with the objective of jointly improving
the accuracy of all treated limit states. Besides the
traditional exploitation-exploration trade-off, train-
ing samples are sequentially picked by balancing
the predicted accuracy among the surrogated limit
states. The proposed active training approaches are
then tested in a characteristic multi-modal struc-
tural reliability setting, examining their accuracy
and training efficiency; and in a more practical ap-
plication, we efficiently surrogate limit states as-
sociated with both failure and repair events corre-
sponding to the aftermath of a ship collision against
an offshore wind substructure.

2. LEARNING LIMIT STATE FUNCTIONS
THROUGH SURROGATE MODELS

2.1. PC-Kriging surrogate models
Consider the response of a system represented

by y ∈ R, as a one-dimensional output space
which is retrieved from the deterministic map-
ping of the M-dimensional stochastic input param-
eter space, whose realizations are denoted as x =
{x1, . . . ,xM}T ∈Dx ⊂RM. Within this frame of ref-
erence, PC-Kriging (PCK) is a non-intrusive sur-
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rogate modeling method that combines the proba-
bilistic features of Gaussian processes, also known
as Kriging, with a prior trend specifically tailored
to the underlying input random vector, x, via Poly-
nomial Chaos Expansion (PCE). While Kriging
estimates the analyzed quantity of interest (QoI),
y, through a stationary spatial random process
where the covariance function (kernel) is defined
as a function of the relative distance between data
points, PCE further incorporates prior knowledge to
the Gaussian process mean, as the sum of orthogo-
nal polynomials described by the joint probability
density function fX. Formally, a PCK metamodel,
MPCK , is defined as: (Schobi et al., 2015)

y ≈MPCK(x) = ∑
α∈A

aαψα(x)+σ
2Z(x), (1)

where the left-hand term corresponds to the mean
of a Gaussian process, defined as the linear combi-
nation of coefficients, aα , and multivariate orthogo-
nal polynomials, ψα(x), specified according to the
input random vector, x. The terms of the polyno-
mial sum are multi-indexed through α ∈ A ⊂ NM.
The constant variance, σ2, is formulated on the
right-hand of the equation, along with the zero
mean, unit variance, stationary Gaussian process,
Z(x). The latter is described by an autocorrelation
function R(|x−x′|;θ), where the covariance is usu-
ally defined based on the relative distance of its in-
puts x,x′, and is parameterized by the hyperparam-
eter θ ∈R+, commonly referred as scale parameter
or characteristic length.

To calibrate a PCK model built from a set of
polynomials truncated by the size of A, one can rely
on non-intrusive methods that are based on discrete
system responses, gathered from a sampling plan of
N input realizations X = {X (1), . . . ,X (N)}T ∈ Dx,
also known as experimental design. The parameters
σ2 and aα can be calculated through maximum-
likelihood, i.e., maximizing the likelihood associ-
ated with model predictions, MPCK(X ). Since aα

and σ2 are defined as a function of θ , an optimiza-
tion process for determining θ can be formulated
as:

θ̂ = argmin
θ∈Dθ

1
2
[
log(detR)+N log(2πσ

2)+N
]
.

(2)

In an iterative process, various multivariate orthog-
onal polynomials of increasing truncation order can
be trained following the optimization process de-
scribed before and further classified according to
a specified error metric. For example, the optimal
PCK model can be defined as the one that yields
the minimum leave-one-out (LOO) cross-validated
error, εPCK

LOO , formulated as:

ε
PCK
LOO =

1
N

N

∑
s=1

[
y(s)−MPCK

(−s)

(
X (s)

)]2
. (3)

This error metric is an estimate of the generaliza-
tion error based on the current experimental design,
which is the mean squared error between the re-
sponses y(s) and the model predictions at X (s) of a
PCK model, MPCK

(−s), calibrated with X (−s) sample
points.

2.2. Active learning for structural reliability
analysis

Compared with conventional design of experi-
ments, e.g., Latin hypercube sampling (LHS), more
accurate predictions can be achieved with less high-
fidelity model evaluations if an active training ap-
proach is followed, in which a surrogate model is
sequentially trained based on the available observa-
tions up to that point. Each subsequent experimen-
tal design point is selected as the one that results in
a maximum expected improvement in model accu-
racy according to a metric computed from a learn-
ing scoring function. Very often, this enhancement
metric is mainly driven by the surrogate model’s
built-in probabilistic features, e.g., variance predic-
tion.

A well-known scoring function is the one pro-
posed by Echard et al. (2011), in which a metric de-
noted as ‘U’ is evaluated for a set of randomly gen-
erated samples. A tailored and efficient exploration
of the design space can be additionally accom-
plished if the samples are generated via simulation-
based methods, e.g., Monte Carlo, where the eval-
uated points are directly sampled from the underly-
ing input random variables. More specifically, the
above-mentioned U-function focuses on the design
subspace near the limit state boundary considering
an exploitation-exploration trade-off, as mentioned
in Section 1.
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Mathematically, each subsequent experimental de-
sign point, Xg, is selected as:

Xg = argmin
x

U(x) = argmin
x

|ĝ(x)|
σĝ(x)

, (4)

where ĝ(x) and σĝ(x) represent the mean and stan-
dard deviation, respectively, predicted via a surro-
gate model. The expected improvement metric fa-
vors design points close to the limit state boundary
and high associated predicted variance. In order
to calculate more accurate expected improvement
scores, the variance estimate provided by a PCK
model for a specific design point can be corrected
(Xiao et al., 2018).

The selection of subsequent experimental de-
sign points can thus be further improved by ade-
quately correcting the generated variance predic-
tions, σĝ(x), which might be potentially biased
(Le Gratiet and Cannamela, 2015). To do that, a
correction factor can be calculated from a leave-
one-out (LOO) cross-validated analysis, which is
then applied to the variance predictions associ-
ated with the experimental design, Xi, within the
Voronoi domain (Vi)i=1,...,N :

σ
2
ĝ (x)LOO = σ

2
ĝ (x)

(
1+

N

∑
i=1

[
e2

LOO
]

i[
s2

LOO

]
i

Ix∈Vi

)
, (5)

where e2
LOO denotes the vector of LOO squared er-

rors, s2
LOO the vector of LOO variances and Ix∈Vi the

domain of the Voronoi cells (Vi)i=1,...,N .

2.3. Active learning strategies for multiple limit
state functions settings

Active learning strategies developed for relia-
bility analysis sequentially select experimental de-
sign points with the objective of more accurately
representing a specific limit state function. As
mentioned in Section 1, multiple limit state func-
tions defined within a common input design domain
can be of interest in many practical applications,
e.g., informing operational decisions or estimating
the probability associated with a structural failure
event. If the experimental points are specific to a

particular limit state function, g j, predictions gen-
erated for another limit state function, ĝk might not
be necessarily accurate.

To equally balance a certain given computational
budget, a logical active training scheme could, for
instance, alternate its focus between m considered
limit state functions, improving one at each consec-
utive step. If the experimental design points, X ,
are scored via the U-function (Eq. 4), the training
sequence will subsequently evaluate the U-function
defined with respect to an alternate limit state func-
tion from all considered ones, i.e., Xg j with j =
1, ...,m.

In practice, some limit state functions are sub-
stantially easier to train, hence rendering accurate
predictions when trained with only a few observa-
tions. By implementing the alternate active learning
strategy, Xg j , the computational budget is equally
allocated for all limit state functions, even if a cer-
tain limit state is accurately predicted by the surro-
gate model early in the sequential process. Instead,
one can detect which surrogated limit state function
is still far from reaching convergence and select the
subsequent experimental design point by evaluating
a learning scoring function with respect to the iden-
tified limit state. At each active learning step, t, a
convergence-related metric δ (β̂g j) inspired on the
reliability index is here proposed for selecting the
target limit state function:

δ (β̂g j) =

∣∣∣∣∣ β̂t+1,g j − β̂t,g j

β̂t,g j

∣∣∣∣∣ . (6)

At each training step, the target limit state func-
tion, g∗j , becomes the one associated with the max-

imum δ (β̂g j), and hence the experimental design
point, Xg∗j , is accordingly chosen from a learn-
ing metric (e.g., U-function) estimated according
to the identified limit state function. Note that the
index βg j(x) follows an inverse relationship with
the probability associated with the event of inter-
est, pg j , commonly defined in the standard nor-
mal space as βg j(x) =−Φ−1{pg j(x)}, where pg j is
computed as the probability of the limit state being
negative, i.e., pg j = p{g j ≤ 0}.
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3. NUMERICAL EXPERIMENTS
3.1. Analytical reliability problem

Inspired by Xiao et al. (2018), the first limit state,
g1, studied here is defined as:

g1 (x1,x2) = sin
(

5x1

2

)
+2−

(
x2

1 +4
)
(x2 −1)

20
.

(7)

For the sake of capturing the active training perfor-
mance over a second limit state function, an addi-
tional performance function g2 is proposed and for-
mulated as:

g2 (x1,x2) = sin(2x1)−
1
2
+

(
x2

1 +4
)
(x2 +1)

20
,

(8)

with random variables, x1 and x2, described as x1 ∽
N (µ = 1.5,σ = 1) and x2 ∽ N (µ = 2.5,σ = 1),
respectively. The tested active learning strate-
gies are restricted to a computational budget of 49
ground-truth observations. From the available bud-
get, 10 training points are dedicated to an initial
global exploration following a uniform stratifica-
tion of samples through LHS, committing the re-
maining resources to the active training of the sur-
rogate model. From the stationary correlation fam-
ilies, the general form of Matérn kernel of degree
5/2 is specified as the autocorrelation function R.

At each active learning step, the subsequent ex-
perimental design point is selected as the sample
that minimizes the U-function over a population
of 105 randomly generated Monte Carlo samples.
Also relying on training samples chosen accord-
ing to U-function scoring metrics, active learning
strategies that consider corrected variance predic-
tions (Eq. 5) are additionally investigated.

The results are reported in terms of relative er-
ror between the predicted limit state function index,
β̂g j , and the ground truth, βg j , which is known in

this setting. Formally, the error estimator ε
(i)
βg j

, as-

sociated with a target limit state function g j, is cal-
culated for each conducted experiment i, as:

ε
(i)
βg j

=

∣∣∣∣∣ β̂
(i)
g j −βg j

βg j

∣∣∣∣∣ . (9)

In total, 15 experiments are executed for each
tested active learning strategy considering both U
and U-LOO scoring function metrics: (i) training
points selected with respect to target limit state
function g1, i.e., Xg1 , (ii) training points that specif-
ically target limit state function g2, i.e., Xg2 , (iii)
alternate sequential active learning approach, i.e.,
Xg j , and (iv) training points selected based on the
convergence criterion stated in Eq. 6, i.e., Xg∗j . In
order to objectively evaluate the error accumulated
from both considered limit state functions, an error
metric is formulated as: ε

β (i) =∑
m
j=1 ε

(i)
βg j

, providing

a proxy for assessing the joint performance.

Results and discussion
Figure 1 showcases the evolution of the surro-

gated event probabilities, pg1 and pg2 , estimated
from all tested active training strategies. In partic-
ular, the resulting expected probability, bounded by
30-60% percentiles, is represented over 49 training
samples. With the purpose of interpreting the influ-
ence of the predicted variance on the learning evo-
lution, strategies resulting from U-based learning
scores computed from both PCK’s variance (U) and
corrected variance (U-LOO) are additionally com-
pared.

As seen in the figure, PCK models trained with
respect to a specific target limit state result inac-
curate when the surrogate model is applied for the
estimation of the other considered limit state func-
tion. Particularly, strategies Xg1 and Xg2 render in-
accurate estimations and significant training vari-
ance across experiments for pg2 and pg1 , respec-
tively. In contrast, strategies that sequentially target
both limit state functions within the available com-
putational budget are able to yield a more balanced
result in terms of accuracy and training stability.
The straightforward alternate strategy, Xg j , for in-
stance, concurrently reduces the inaccuracy gap re-
sulting from both surrogated limit state functions
over the training process. By implementing the
strategy based on a converge-related metric, Xg∗j ,
more accurate predictions can be achieved for both
limit state functions. This can be attributed to the
fact that, at each learning step, the selected training
point seeks the improvement of the most inaccurate
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Figure 1: Active learning evolution corresponding to the tested strategies in terms of the predicted probability
associated with both considered events g1 and g2. (Left) U-function score metrics evaluated from PC-Kriging
variance predictors. (Right) U-function score metrics calculated from corrected variance predictors (U-LOO).

gj g *
j g1 g2

10 2

10 1

100

U

gj g *
j g1 g2
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Figure 2: Box-plot representation of all investigated active learning approaches in terms of the combined rel-
ative error metric, εβ . (Left) U-function score metrics evaluated from PC-Kriging variance predictors. (Right)
U-function score metrics calculated from corrected PC-Kriging variance predictors (U-LOO).

surrogated limit state function.
The performance reached at the end of the train-

ing process is additionally described in Table 1, list-
ing the expected relative error metric and its cor-
responding standard deviation for each considered
limit state function, εβg j

, together with the total rel-
ative error, εβ . For each listed error metric, the best
strategy is highlighted. Evidently, the strategies Xg1

and Xg2 yield accurate predictions for their corre-
sponding target limit state function, yet high rela-
tive errors are then observed when they are applied
to the other limit state function, thus ultimately re-
sulting in a global high error, εβ , compared to the
strategies Xg j and Xg∗j . When considering U-LOO-
based learning score metrics, Xg∗j surprisingly be-
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Table 1: Error estimator associated with a target limit state function, εβg j
, and combined error estimator, εβ .

Strategy Learning metric E[εβg1
](σ [εβg1

]) E[εβg2
](σ [εβg2

]) E[εβg](σ [εβg ])

Xg j U(PCK) 3.7 ·10−2(7.1 ·10−2) 3.0 ·10−2(6.2 ·10−2) 6.7 ·10−2(8.6 ·10−2)

Xg∗j U(PCK) 4.5 ·10−2(7.8 ·10−2) 8.2 ·10−3(7.4 ·10−3) 5.3 ·10−2(7.7 ·10−2)

Xg1 U(PCK) 2.4 ·10−3(1.8 ·10−3) 2.7 ·10−1(1.8 ·10−1) 2.7 ·10−1(1.8 ·10−1)

Xg2 U(PCK) 4.6 ·10−1(6.0 ·10−1) 7.1 ·10−3(6.0 ·10−3) 4.7 ·10−1(6.0 ·10−1)

Xg j U(PCK-LOO) 5.8 ·10−2(8.9 ·10−2) 1.0 ·10−2(7.2 ·10−3) 6.8 ·10−2(9.1 ·10−2)

Xg∗j U(PCK-LOO) 3.7 ·10−2(6.6 ·10−2) 6.0 ·10−3(5.2 ·10−3) 4.3 ·10−2(6.6 ·10−2)

Xg1 U(PCK-LOO) 7.4 ·10−3(1.6 ·10−2) 9.9 ·10−2(9.5 ·10−2) 1.1 ·10−1(9.2 ·10−2)

Xg2 U(PCK-LOO) 4.0 ·10−1(4.5 ·10−1) 6.9 ·10−3(4.3 ·10−3) 4.1 ·10−1(4.4 ·10−1)

comes the best strategy for accurately representing
the second limit state over all tested experiments,
yet with a higher variability than Xg2 .

To further inspect the spread of the reported rel-
ative error metric εβ over experiments, a box plot
is shown in Figure 2, delimiting the interquartile
range, i.e., between 25% and 75% quantiles, and
featuring a whisker that extends over 2.5% and
97.5%. Additionally, the mean and median val-
ues are indicated with solid orange and dashed red
lines, respectively. In the figure, one can clearly
observe that the strategy based on the converge-
related metric, Xg∗j , yields a lower mean and median
relative error in both U and U-LOO settings com-
pared to its counterparts. While rendering accurate
predictions for both limit state functions, the alter-
nate active learning strategy, Xg j , logically results
in higher variability over experiments compared to
Xg∗j , as the target limit state function is not there in-
tentionally assigned. With respect to the learning
metric, the reported results also show that correct-
ing the variance retrieved from the surrogate model
leads to more accurate learning strategies.

3.2. Offshore wind substructure subject to ship
collision accidental events

In this second numerical experiment, we test the
proposed active learning approaches for quantify-
ing the probability associated with a repair and a
failure event in the aftermath of an offshore wind
substructure subject to ship collisions. All compu-
tations are conducted on an Intel Core i9−10920X
processor with a clock speed of 3.50 GHz. The as-

sumed ground truth corresponds, in this setting, to
the substructure penetration, ∆p, computed from a
simplified numerical model (Pire, 2018) based on
limit plastic analysis. Since each numerical sim-
ulation requires approximately 3 minutes of com-
putational time, a non-surrogated estimation of the
failure and repair probabilities is computationally
unfeasible.

Both considered limit state functions are defined
according to the resulting maximum substructure
penetration, ∆p,max. A failure occurs if the maxi-
mum penetration exceeds a critical value, ∆F :

gF (vs,ρ0) = ∆F −∆p,max (vs,ρ0) , (10)

whereas a repair event is stated as a function of a
specified damage condition, ∆d , as:

gd (vs,ρ0) = ∆d −∆p,max (vs,ρ0) , (11)

where ∆F and ∆d are specified as 3 and 2 meters, re-
spectively. The random variables governing a col-
lision scenario are the initial velocity of the ship,
vs, and the material flow stress, ρ0, assumed here as
elastic-perfectly plastic. These variables are proba-
bilistically described as vs ∽N (µ = 3.0,σ = 0.6)
m/s and ρ0 ∽N (µ = 317,σ = 30) N/mm2, respec-
tively.

Results and discussion
The active learning evolution is showcased in

Figure 3, representing both failure and damage
probabilities over 10 experiments. Note that, in this
case, only the corrected variance active learning
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Figure 3: Active learning evolution in terms of the pre-
dicted probability associated with both considered
events, gF and gd , all relying on U-function metrics
estimated from corrected variance predictors (U-LOO).

scheme (U-LOO) is investigated. Since a closed-
form solution of the analyzed failure and damage
events is not available, all tested strategies are ex-
amined in terms of convergence. One can observe
that with only a few training samples, most strate-
gies easily reach convergence, yet active learning
schemes that only target one specific limit state
function (i.e., XgF and Xgd ), are evidently more un-
stable when applied to the other considered limit
state. Instead, active learning strategies that inter-
changeably target all considered limit state func-
tions converge to both estimated failure and dam-
age event probabilities, all trained under the same
computational budget.

4. CONCLUSIONS
Surrogate-based active learning strategies for re-

liability analysis effectively yield accurate predic-
tions for a specifically targeted limit state func-
tion, yet they may render inaccurate estimates for
other regions within the design space. This pa-

per reveals that, by sequentially targeting multiple
limit state functions throughout the training pro-
cess, combined active learning strategies are able
to achieve a balanced computational budget alloca-
tion, resulting in low overall prediction errors.
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