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ABSTRACT: Infrastructure are vulnerable to natural and anthropogenic hazards. The general steps 
in the risk analysis of infrastructure include modeling the undamaged network, modeling the hazard, 
predicting the damage to components, and assessing the functionality of the network given the predicted 
damage. However, these steps require information about the infrastructure that might not be available. 
This work develops a general procedure to generate representative and functionally equivalent models 
(i.e., digital twins) of infrastructure. The proposed procedure is systematic and uses detailed geospatial 
information that are generally available. By using only these data, representative networks can be 
generated for most locations of interest. We also develop a general modeling approach to assess the 
impact of localized damage on infrastructure networks. We consider the uncertainty in the network 
topology by generating multiple representative network realizations. Finally, we demonstrate the 
proposed procedures by generating representative wastewater networks and assessing the impact of 
localized damage on the network for a case study location. 

 
Critical infrastructure transport essential 
resources to buildings. In the case of hazardous 
events, damage to critical infrastructure may 
cause disruption. Risk analysis requires 
predictions about the impact of future hazardous 
events on the infrastructure. To make these 
predictions, models are used. Specifically, 
networks are models that describe the connection 
of components and how the components act as a 
system. However, the information needed to 
define the network (i.e., the location of 
components and how they are connected) may not 
be known. For example, network information 
might not be available when the infrastructure is 
controlled by a different government or 
corporation. However, the impact of hazardous 
events on unknown infrastructure may still be of 
interest. For example, a corporation may wish to 
model the impact of future hazardous events on 
the operations of another corporation on which 
their operations are dependent. For modeling 
unknown infrastructure, network generators use 
other data that are available to create 
representative networks.  

 

Existing infrastructure network generators 
have not focused on data availability. Some 
studies have not used data that is generally 
available. In these studies, synthetic/virtual 
infrastructure networks have been developed as 
research tools, either as test beds or for 
anonymizing sensitive network data. These 
include generators for elector power networks 
(Aksoy et al. 2019, Birchfield et al. 2017), sewer 
networks (Urich et al. 2010, Jeffers and Montalto 
2018), potable water networks (Möderl et al. 
2011), natural gas networks (Vaccariello et al. 
2020), and for multiple types of networks 
(Sitzenfrei et al. 2010, Wang et al. 2022). These 
studies do not consider detailed location-specific 
data that could provide additional constraint to 
generate more realistic networks for location-
specific risk analyses. Other studies have used 
data that is not generally available. The location 
of demand nodes is often assumed (Ahmad et al. 
2020, Chahinian et al. 2019, Sitzenfrei et al. 
2020). Other studies generate cost-optimal 
networks (Wang et al. 2017, Moeini and Afshar 
2019, Chahinian et al. 2019, Sitzenfrei et al. 
2020), but the detailed cost data needed for these 
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models is not generally available. This data is also 
location and time-specific. Moreover, 
optimization may not represent typical design 
procedures. In general, there is a need for a 
location-specific infrastructure network generator 
that uses data that should always be available. 
This network generator would provide a baseline 
representation that could always be used. 

 
In this paper, we use generally available data 

to generate models of infrastructure for risk 
analysis. Critical infrastructure typically connect 
centralized production, storage, or collection 
facilities with every building in a community. 
This produces a hierarchy in the network, 
whereby larger components serving larger areas 
are different than the infrastructure that connect to 
individual buildings. We call the larger 
components that serve large areas of a community 
the arterial infrastructure, and we call the smaller 
components that connect to every building the 
capillary infrastructure. For community-level risk 
analysis, the functionality of arterial infrastructure 
is more important than that of the capillary 
infrastructure. In this paper, we propose a 
procedure to generate arterial infrastructure 
networks using generally available data. We use 
this procedure for risk analysis of unknown 
infrastructure to localized damage. That is, we 
model the functionality of the infrastructure when 
we know where damage will occur, but we do not 
know anything about the infrastructure. In this 
situation, uncertainty in the network itself must be 
considered. We modify the proposed arterial 
network generator to account for this uncertainty, 
generating many representative network 
realizations. We demonstrate the proposed 
procedure by generating arterial networks and 
assessing the impact of localized damage on the 
wastewater network of a medium-sized city in the 
United States. 

 
The rest of this manuscript is organized as 

follows. In Section 1, we introduce the generally 
available data that we use to generate arterial 
infrastructure. In Section 2, we present the 

proposed procedure. In Section 3, we describe a 
procedure to consider uncertainty in the network 
generator. Finally, in Section 4, we present the 
results for the case study location. 

 
1. GENERALLY AVAILABLE DATA 
In this section, we describe the data that we use to 
generate arterial networks. The component 
locations and connections between components 
are in general not available. However, there are 
many detailed geospatial data that are available 
for most locations. These data typically come 
from remote sensing or from large, standardized 
data collection efforts. By using only these 
generally available data, we are able to generate 
representations of the infrastructure for most 
locations of interest without any direct 
information on the infrastructure. Table 1 lists 
these data and the sources that we use. These 
datasets have consistent coverage for the entire 
United States, and comparable datasets should be 
available for international locations. To 
manipulate the geospatial inputs, we use 
GeoPandas (Jordahl et al. 2021).  
 
Table 1: Inputs for the arterial network generator 

Input Description Source 

Streets 
shapefile 

Mainline streets are 
potential locations for 
arterial infrastructure 

Boeing (2017) 

Building 
footprints 
shapefile 

Locations where 
arterial networks 
provide resources 

Microsoft 
(2018) 

Digital 
elevation 
model 

Used to evaluate 
weights for 
determining the 
topology 

USGS (2022) 

Total area 
shapefile 

Area over which the 
network is being 
generated 

Manually 
specified 

Primary 
node 

Location from which 
resources are being 
distributed or to 
which waste is being 
collected  

Manually 
specified 

 
Before proceeding with the proposed 

procedure, these data are cleaned and pre-
processed. First, we manually modify the street 
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shapefile so that there is topological consistency. 
For example, street intersections are represented 
by two lines with endpoints that are exactly 
coincident. Occasionally, the two endpoints in the 
unmodified shapefile are not at the exact same 
location. In this case, we modify the endpoints to 
be exactly coincident. Second, we merge any 
boulevards in the street shapefile into single lines. 
That is, the street shapefile may have two parallel 
lines representing a single street along which there 
is likely only one infrastructure line. 

 
The rest of the pre-processing of the inputs 

more precisely defines the extent of the network 
that is generated. First, we remove any buildings 
without associated streets or streets without 
associated buildings. For example, if the capture 
date of the building data is after the capture date 
of the street data, it is possible there are buildings 
in locations that are served by streets that were not 
present when the streets were recorded. More 
accurate networks could be developed by 
manually adding missing streets and buildings 
using more recent aerial imagery. However, we 
suggest that removing these parts of the network 
produces a reasonable representation assuming all 
data is the most recent available, and any new 
additions to the network are relatively small as 
compared to the rest of the network. Second, we 
remove any small or geographically isolated 
buildings that would not be connected to the 
infrastructure. Third, we remove any lines from 
the street shapefile that represent interstates or 
large highways along which infrastructure would 
not be present. Finally, we create the total area 
shapefile to represent the likely geographic extent 
of the network based on the other inputs. 

 
2. PROPOSED ARTERIAL NETWORK 
GENERATOR  

The proposed procedure has three steps that 
we illustrate in Figure 1. First, we break the full 
area into subareas. The arterial network connects 
the subareas. Second, we determine the point 
where the infrastructure in each subarea connect 
to the arterial infrastructure. Finally, we 

determine the topology of the arterial 
infrastructure by connecting all of the subareas to 
the primary node. The rest of this section is 
organized by these steps. 

 

 
Figure 1: Steps of the proposed procedure to 
generate arterial networks 
 
2.1 Step 1: Identify subareas 
We identify preliminary subareas based on 
mainlines in the street network. Any large streets 
that run continuously through large portions of the 
network area are manually identified as street 
mainlines. These street mainlines can usually be 
easily identified. We assume that all arterial 
infrastructure is along the identified street 
mainlines and there is no capillary infrastructure 
along the street mainlines. So, each street 
mainline is a boundary for the adjacent subareas 
(i.e., no subarea can cross a street mainline). In 
this way, the street mainlines define preliminary 
subareas. The preliminary subareas may be larger 
or smaller depending on the layout of the mainline 
street network. However, ideally the subareas 
should all be a similar size. That is, instead of 
ensuring that the subareas are all equally sized, we 
propose to use the street mainlines that we can 
easily identify to realistically divide the total area 
into subareas. Consequently, the subareas have no 
clear physical meaning in the proposed procedure. 
 

The preliminary subareas are then further 
refined. In each subarea, we remove lines that 
connect pieces of the network that should be 
disconnected. Also, we add non-mainline 
extensions to isolated groups of buildings that 
would be directly connected to a mainline. For 
example, this is common for apartment complexes 
and for large commercial and industrial building. 
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In these cases, the pathways along which the 
infrastructure lines would be placed are 
commonly not streets and are not included in the 
available street shapefiles. Given these 
modifications, the street network in each subarea 
may be disconnected. We define one final subarea 
for each connected components of the street 
network in each preliminary subarea. 
 
2.2 Step 2: Identify arterial nodes 
Next, we determine the location where the 
infrastructure in each subarea are connected to the 
arterial infrastructure. To do this, we use a graph. 
A graph is a pair of a vertex/node set and an edge 
set, 𝐺 = (𝑉, 𝐸), where 𝐸 ⊆ 𝑉!. An edge (𝑖, 𝑗) of 
a graph represents a connection between node 𝑖 
and node 𝑗. Each edge has a weight that represents 
how difficult it is to move between the nodes. A 
natural choice for the weight when the edges are 
representing street segments is distance. More 
specific weights can be formulated for specific 
circumstances. For example, for wastewater 
networks, downhill flow is much easier than 
uphill flow. So, the elevation can be considered in 
the formulation of the weights. We propose edge 
weights for generating wastewater networks as 
follows: 
 𝑤"# =

$!%&'(	($)
&,-($)%&'(	($)

𝑑"#
  (1) 
where ℎ# is the elevation of node 𝑗, min(ℎ) is the 
minimum of all nodal elevations, max	(ℎ) is the 
maximum of all nodal elevations, and 𝑑"#  is the 
distance between node 𝑖  and node 𝑗 . With this 
formulation, more weight is given to edges that go 
to higher elevation. So, flow in the downhill 
direction is encouraged. 

 
The mainline street network can be modeled 

as a graph 𝑆 = (𝑉., 𝐸.)  where 𝑉.  are street 
intersections and 𝐸.  are street segments that 
connect street intersections. For the arterial 
network, there are additional nodes that connect 
to each of the subareas. Adding these nodes to 𝑆 
yields the modified mainline street network, 𝑆/ =
(𝑉./, 𝐸./), where 𝑉. ⊆ 𝑉.′. To determine the arterial 

node for each subarea, we choose from the points 
where the non-mainline streets in the subarea 
intersect the mainline streets. We choose the 
candidate that is closest to the primary node in 𝑆, 
considering the weight of the edges. We use 
NetworkX for this, and other, graph operations 
(Hagberg et al. 2008). Finally, 𝐸.′ is determined. 
The topology from 𝑆 is maintained, but each edge 
in 𝐸.  may be split if a subarea node is now in 
between the two street intersections. 

 
2.3 Step 3: Identify arterial network topology 
Finally, we determine the arterial network, 𝑁 =
(𝑉0, 𝐸0) . We propose to model the arterial 
infrastructure as a subtree of 𝑆′ that spans all of 
the subarea nodes. So, 𝑉0 ⊆ 𝑉.′ and 𝐸0 ⊆ 𝐸.′. For 
each subarea node, we determine the shortest path 
to the primary node in 𝑆′, considering the edge 
weights. The nodes and edges along the path are 
added to 𝑉0 and 𝐸0, respectively. So, all subarea 
nodes are included in 𝑁 . But, if a street 
intersection node is not used to connect one of the 
subarea nodes to the primary node, then it is not 
included in 𝑁. 
 
3. NETWORK UNCERTAINTY FOR 
LOCALIZED DAMAGE 

In this section, we consider the use of the 
arterial network generator for assessing the 
impact of localized damage on the network. For 
example, this type of damage could come from 
accidents, attacks, or earthquake-induced 
liquefaction. Whatever the source, we consider 
the case where the geographic extent of damage is 
known. If we also know the location of the 
infrastructure, then we know which components 
are damaged (i.e., the components in the damage 
area). If we do not know anything specific about 
the location of the infrastructure components, we 
use the proposed arterial network generator. 
However, in this case we need to consider 
uncertainty in the network itself. We do this by 
generating many realizations of the network 
topology, step 3 in the proposed procedure. We 
suggest that the topology is the most important 
step in terms of the connectivity of each subarea. 
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We illustrate this in Figure 2. Regardless of the 
exact geographic extent of each subarea and 
where each subarea is connected to the arterial 
network (the other steps in the proposed 
procedure), there is some arterial path from the 
subarea to the primary node. Whether components 
along this path are damaged determines whether 
the area is disconnected. There is uncertainty 
because subareas can be connected to the primary 
node with multiple paths of similar length but that 
pass through different locations. Strictly, this 
uncertainty should always be considered, though 
it may not be important for some hazards that do 
not have sharp variation in intensity. This comes 
from the assumptions we made in the 
deterministic procedure described in Section 2. 
That is, the actual designer of the infrastructure 
does not use a deterministic procedure like the one 
that we proposed, though the formulation 
accounts for the correct design tendency. 

 
Figure 2: Uncertainty in the arterial topology 

and how it affects the analysis results 
 

We consider this uncertainty by modifying 
the weights used in the shortest path tree 
algorithm. We apply multiplicative random error 
to the weights as follows: 
 𝑤"#′ = 𝛿𝑤"# (2) 
To determine the value of 𝛿  for each edge, we 
generate independent samples from a lognormal 
distribution. We consider two cases for the 

parameters of the lognormal distribution. First, we 
consider a low uncertainty (LU) case with a mean 
of 1 and a standard deviation of 0.05. Second, we 
consider a high uncertainty (HU) case with a mean 
of 1 and a standard deviation of 0.25.  
 
4. CASE STUDY 
Following the proposed procedure to generate 
arterial infrastructure networks, we generate 
wastewater networks for Irving, Texas. The 
location of Irving is shown in Figure 3. Irving is a 
city with approximately 250,000 residents. We 
collect and pre-process the input data, shown in 
Figure 4. Figure 4 also shows the damage area for 
which we are assessing the risk to the wastewater 
network. 

 
Figure 3: Case study location: Irving, Texas 
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Figure 4: Input data for Irving, Texas 

 
We generate arterial wastewater networks for 

this location as described in Section 2. We use the 
weight formulation from Equation 1. To assess 
the impact of localized damage on the 
functionality of the wastewater network, we use 
the procedure described in Section 3. Figures 5 
and 6 map the probability of disconnection of each 
subarea for the LU and HU cases, respectively. 
We evaluate the probability of disconnection as 
the number of network realizations where the 
subarea is disconnected divided by the total 
number of network realizations. We generate 
enough realizations of the network so that the 
mean coefficient of variation of the estimates of 
the probability of disconnection, over the subareas 
with non-zero probability, is less than 0.5. Figures 
5 and 6 demonstrate that the extent of 
disconnection may be larger for the HU case. 
However, some subareas have lower probability 
of disconnection for the HU case. These subareas 
are further away from the damage area, so with 
more uncertainty there is more chance that these 
areas may be connected to the primary node with 
an alternative path that is not damaged. Overall, 
the two maps show similar subareas that will 
likely be disconnected. 

 
Figure 5: Probability of disconnection of each 
subarea for the LU case 

 

 
Figure 6: Probability of disconnection of each 
subarea for the HU case 
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Figures 7 and 8 plot the histogram of the 
fraction of the total network area that is 
disconnected for each realization of the network. 
These figures aggregate the results for each 
network realization into a single quantity and 
show how that quantity varies over the network 
realizations. The HU case has slightly more 
damage on average. Also, the variation is much 
higher for the HU case.  

 
Figure 7: Histogram of the percentage of the 
network area that is disconnected for each of the 
network realizations, in the LU case 

 
Figure 8: Histogram of the percentage of the 
network area that is disconnected for each of the 
network realizations, in the HU case 
 
5. CONCLUSION 
We proposed a systematic procedure to generate 
representative models of infrastructure using 
generally available data. In particular, we defined 
arterial infrastructure as the larger components of 
the infrastructure that serve large areas in a 
community. To generate the arterial 
infrastructure, we proposed a three-step 

procedure. First, we divided the total area into 
subareas. Second, we determined nodes where 
each subarea connects with the arterial 
infrastructure. Third, we determined the network 
topology, connecting the subarea nodes with the 
primary node. Then, we used the network 
generator to assess the impact of localized damage 
on an unknown network. We generated multiple 
network realizations and evaluated the probability 
of disconnection over the realizations. Finally, we 
applied the proposed procedure to a case study 
location. We tested low uncertainty and high 
uncertainty cases when generating multiple 
network realizations. Ultimately, both analyses 
indicate similar subareas that would probably be 
disconnected given the geographic extent of 
damage that we started with.  
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