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ABSTRACT: Failure probability has been widely used as a reliability metric to provide a building block 

of reliability-based decision-making. Such use of failure probability has implications for both risk 

management and computation. In this study, we revisit the familiar concept of a reliability metric by 

comparing the conventional failure probability with a recently proposed alternative metric, the buffered 

failure probability. Comparisons are made from the perspectives of risk management, failure probability 

evaluation, and reliability-based optimization. In addition to analytical examinations, we present 

numerical investigations revealing several intriguing distinctions between the failure probabilities. We 

also contemplate the prospects of using the two metrics in parallel.  

1. INTRODUCTION 

In order to secure the reliability of an engineering 

system against hazardous events, one needs to 

make risk-informed decisions by taking into 

account uncertainties. In order to perform such a 

task, one first needs to define a reliability metric. 

One of the most common metrics in reliability 

engineering is failure probability. When using a 

failure probability, the design objective is 

effectively controlling undesirable events, i.e., 

failure events. Numerous system reliability 

analysis methods have been developed to enable 

efficient evaluation of failure probability by 

exploiting the definition of the conventional 

failure probability. 

While the conventional definition of failure 

probability has been widely used, an alternative 

reliability metric, buffered failure probability, has 

recently been proposed (Rockafellar and Royset, 

2010). Stemming from the conditional value-at-

risk (CVaR) (Rockafellar and Uryasev, 2000; 

Rockafellar and Uryasev, 2002), widely used in 

finance, economics, and operations research, the 

buffered failure probability has a fundamentally 

equivalent perspective of risk management to the 

conventional definition in that it focuses on the 

worst-case events (i.e., failure events). On the 

other hand, evaluating this alternative metric 

requires a distinctive formula, resulting in 

different computational characteristics.   

In this study, we compare the conventional 

and buffered failure probabilities. We intend to 

revisit and contemplate the familiar concept of 

failure probability from both decision-making and 

computational efficiency perspectives. The paper 

is organized as follows. First, Section 2 presents 

illustrative definitions of the two failure 

probabilities and compares them from the 

perspective of risk management. Then, Section 3 

presents their mathematical definitions and 

compares them in terms of computational 

efficiency. The section also compares the 

performance of the Monte Carlo Simulation in 

computing the failure probabilities. Section 4 

presents a comparison from the reliability-based 

optimization perspective. We analyze the 
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computational advantages of the optimization 

formulas and present a numerical example to 

compare optimization solutions obtained with the 

two metrics. Finally, Section 5 presents 

concluding remarks and future research topics. 

2. CONVENTIONAL AND BUFFERED 

FAILURE PROBABILITY AS 

RELIABILITY METRICS 

Failure events refer to undesirable events, often 

defined in terms of a reference value on the 

system state. Then, failure probability is defined 

as the probability of failure events. In this paper, 

without loss of generality, we assume that a higher 

system state indicates a worse scenario, and a 

reference value is set to 0. Conventionally, such a 

reference value is considered a fixed threshold, 

whereby an event is considered a failure when the 

corresponding system state is greater than the 

value. On the other hand, an alternative definition 

of failure probability has been recently proposed 

(Rockafellar and Royset, 2010), namely buffered 

failure probability. The buffered failure 

probability considers a provided reference value 

as the expectation of the worst (i.e., highest) 

system states, which become failure events. In 

other words, the failure events are the events that 

contribute to the expectation and can have a 

system state lower than a given reference value.  

From the decision theory perspective, 

treating the reference value determines decision 

objectives (Rockafellar and Royset, 2015). The 

conventional failure probability considers that all 

events with the system state beyond 0 are equally 

“negative.” This is equivalent to defining a loss 

function as constant for all system states beyond 

0. Then, the decision objective is to control the 

occurrence of any of those events. On the other 

hand, as the buffered failure probability considers 

the expectation of a system event’s right tail, the 

loss function increases linearly over failure events. 

From the decision-making perspective, a given 

reference value is considered a budget set aside to 

cope with the worst scenarios. The decision 

objective is to control the occurrence of losses 

beyond the budget. 

Such different views on failure events enable 

choosing the failure probability concept more 

suitable for a given problem. The conventional 

definition is more suitable for problems where the 

magnitude of the system state under failure does 

not play a significant role. For example, a 

structural system is considered failing if a load 

exceeds a capacity, regardless of the difference. 

On the other hand, the buffered failure probability 

is more suitable for problems for which such 

magnitude matters. Examples include financial 

losses or casualties. 

As the buffered failure probability considers 

a system state’s magnitude, it is not invariant to 

the formula of a limit-state function, in contrast to 

the conventional failure probability. For example, 

for two limit-state functions 𝑔1(𝑽) = 𝑉1 − 𝑉2 and 

𝑔1(𝑽) = 𝑉1/𝑉2 − 1,  the conventional failure 

probability returns the same value, while it is not 

the case for the buffered failure probability. One 

may choose between the two metrics depending 

on a given problem. 

These two similar but different reliability 

metrics show strong positive correlations (Byun 

and Royset, 2022). The buffered failure 

probability is always greater than or equal to the 

conventional failure probability. The lighter the 

thickness of the right tail, the smaller the 

difference is. If the system state follows the 

standard normal distribution, the ratio of the two 

metrics is around 2.7. 

3. CALCULATION OF FAILURE 

PROBABILITY 

3.1. Formulas 

Consider a limit-state function 𝑔(𝒙, 𝑽)  with 

design variables 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and random 

variables 𝑽 = (𝑉1, 𝑉2, ⋯ , 𝑉𝑚).  The random 

variable 𝑉𝑔 represents the value of 𝑔(𝒙, 𝑽). In the 

following, the formulas of the two failure 

probabilities are explained and compared using 

quantile and superquantile.   

The conventional failure probability, denoted 

as 𝑝𝑓 , is computed as  
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𝑝𝑓 = 𝑃[𝑉𝑔 > 0] 

= 1 − 𝐹𝑉𝑔
(𝑞𝛼0

) 

= 1 − 𝛼0, 

(1) 

where 𝐹𝑉𝑔
(⋅) is the cumulative distribution 

function (CDF), and 

𝑞𝛼0
= 0. (2) 

On the other hand, the buffered failure probability, 

denoted as  𝑝̅𝑓 , is calculated as 

𝑝̅𝑓 = 𝑃[𝑉𝑔 > 𝑞𝛼̅0
] 

= 1 − 𝐹𝑉𝑔
(𝑞𝛼̅0

) 

= 1 − 𝛼̅0, 

(3) 

where the quantile value 𝑞𝛼̅0
 has a superquatile 

value 𝑞̅𝛼̅0
= 0, i.e., 

𝑞̅𝛼̅0
= 𝔼[𝑉𝑔|𝑉𝑔 ≥ 𝑞𝛼̅0

] = 0. (4) 

Comparison of Eqs. (2) and (4) shows how the 

reference value 0 is treated differently by the 

conventional and buffered failure probability.  

Figure 1 compares the terms in Eqs. (1)-(4) 

by assuming that 𝑉𝑔  follows the normal 

distribution with a mean of −1  and a standard 

deviation of 1.  In the figure, the conventional 

failure probability 𝑝𝑓 is calculated as 0.16  with a 

threshold 𝑞𝛼0
= 0.  On the other hand, the 

buffered failure probability 𝑝̅𝑓  is computed as 

0.38, where the threshold 𝑞𝛼̅0
= −0.70  is 

obtained from 𝔼[𝑉𝑔|𝑉𝑔 ≥ −0.70] = 0. The figure 

shows how the buffered failure probability places 

a buffered zone below 0. 

 

 
Figure 1: The conventional and buffered failure 

probability in the illustrative example.  
 

In an n-dimensional problem, the failure 

probability is evaluated as 

𝑝𝑓 = ∫ ⋯ ∫ 𝕀[𝑔(𝒙, 𝒗) > 𝑞𝛼0
]

× 𝑓𝑽(𝒗)𝑑𝑣1 ⋯ 𝑑𝑣𝑚, 
(5) 

𝑝̅𝑓 = ∫ ⋯ ∫ 𝕀[𝑔(𝒙, 𝒗) > 𝑞𝛼̅0
]

× 𝑓𝑽(𝒗)𝑑𝑣1 ⋯ 𝑑𝑣𝑚, 
(6) 

where 𝕀[⋅]  is the indicator function, and 𝑓𝑽(𝒗) 

denotes the joint probability density function 

(PDF) of 𝑽.  

3.2. Monte Carlo Simulation 

3.2.1. Formulas 

When the joint PDF of random variables is 

complex and high-dimensional, the calculation of 

a failure probability can become intractable. This 

issue can be resolved by employing sampling 

techniques, for which the most basic technique is 

Monte Carlo Simulation (MCS). Specifically, by 

generating N Monte Carlo (MC) samples, 

𝑣𝑔
1, … , 𝑣𝑔

𝑁 , the conventional and buffered failure 

probabilities are respectively estimated as 

𝑝𝑓 =
1

𝑁
∑ 𝕀[𝑣𝑔

𝑖 ≥ 0]
𝑁

𝑖=1
, and (7) 

𝑝̅𝑓 =
1

𝑁
∑ 𝕀[𝑣𝑔

𝑖 > 𝑞𝛼̅0
]

𝑁

𝑖=1
. (8) 
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It is noted that, in contrast to the conventional 

failure probability, the buffered failure probability 

requires computing 𝑞𝛼̅0
 beforehand. This can be 

done by sorting 𝑣𝑔
1, … , 𝑣𝑔

𝑁 in the descending order, 

and compute (Mafusalov and Uryasev, 2018) 

𝑝̅𝑓 ≅
1

𝑁
∑ (

𝑣𝑔
𝑖 − 𝑣𝑔

𝑛∗

−𝑣𝑔
𝑛∗ )

𝑁

𝑖=𝑛∗+1
, (9) 

where 𝑣𝑔
𝑖 ≥ 𝑣𝑔

𝑗
 for all 𝑖 > 𝑗, and  𝑛∗  is an index 

that satisfies 

∑ 𝑣𝑔
𝑖

𝑁

𝑖=𝑛∗
< 0 < ∑ 𝑣𝑔

𝑖
𝑁

𝑖=𝑛∗+1
. (10) 

In other words, 𝑣𝑔
𝑛∗

 is a numerical estimation of 

𝑞𝛼̅0
 in Eq. (6). 

3.2.2. Numerical investigation of convergence 

To demonstrate the implementation of MCS for 

the two failure probabilities, we investigate four 

problems with limit-state functions 

𝑔1(𝛼1, 𝑽) = −𝛼1 +
1

√𝑀
∑ 𝑉𝑖

𝑀

𝑖=1
, (11) 

𝑔2(𝛼2, 𝜅, 𝑽) = −𝛼2 +
1

√𝑀
∑ 𝑉𝑖

𝑀

𝑖=1

−
𝜅

4
(𝑉1 − 𝑉2)2, 

(12) 

𝑔3(𝛼3, 𝑽) = −
𝛼3

|𝑉2|
+ 𝑉1, and (13) 

𝑔4(𝑟, 𝑚, 𝑽) = −1 +
‖𝑽‖2

𝑟2

+
𝑉1

𝑟

1 − (‖𝑽‖/𝑟)𝑚

1 + (‖𝑽‖/𝑟)𝑚
, 

(14) 

where  𝛼1 = 𝛼2 = 𝛼3 = Φ−1(0.99), 𝑀 = 2, 𝜅 =
1, 𝑟 = 3, and 𝑚 = 4 (Betz, 2017). We perform 

MCS for each limit-state function by varying the 

sample size from 102 to 104. The mean and ±1 

standard deviation range of each metric are 

calculated. 

The results are summarized in Figures 2 and 

3. Figure 2 shows the 104 MC samples and the 

failure domains estimated for the four limit-state 

functions. Specifically, the blue line that 

represents the conventional failure probability 

denotes the line of 𝑉𝑔 = 0, while the red line that 

stands for the buffered failure probability 

represents the estimated line of 𝑉𝑔 = 𝑞𝛼̅0
. 

Meanwhile, Figure 3 shows the convergence of 

the two failure probabilities as the sample size 

increases. Both figures show that the buffered 

failure probability leads to a larger failure domain 

and a greater failure probability.  

 A noteworthy observation in Figure 3 is that 

the buffered failure probability is consistently 

underestimated with a small sample size. All red 

lines in the figure are below the exact values 

before the sample size reaches 103. By contrast, 

MCS produces unbiased estimates of the 

conventional failure probability.  

 
Figure 2: Threshold values of the failure domains estimated with 104 samples, respectively, for 𝑔1, 𝑔2, 𝑔3, and 𝑔4 

from left to right. The red and blue lines represent the values for 𝑝̅𝑓 and 𝑝𝑓 , respectively. 
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Figure 3: Convergence of estimations for 𝑝𝑓 and 𝑝̅𝑓 for 𝑔1, 𝑔2, 𝑔3, and 𝑔4 from left to right. The red and blue 

lines represent the mean estimations of 𝑝̅𝑓 and 𝑝𝑓 , respectively, the gray shades indicate a ±𝜎 range of each 

estimation, and the dotted lines show the exact values.

4. RELIABILITY-BASED OPTIMIZATION 

4.1. Formulas 

Conventionally, reliability-based optimization 

(RBO) aims to minimize a cost function while 

satisfying reliability constraints, which can be 

formulated as 

min
𝒙

𝑐(𝒙)

s. t.  𝑝𝑓(𝒙) ≤ 𝑝𝑓
𝑡

𝒙 ∈ 𝑿,

 (15) 

where 𝒙  denotes design variables and 𝑐(𝒙), 
 𝑝𝑓(𝒙),  𝑝𝑓

𝑡 ,  and 𝑿  respectively denote a cost 

function, a (conventional or buffered) failure 

probability, a target failure probability, and a 

feasible set of 𝒙. Since the reliability constraint in 

Eq. (15) is often intractable, one can approximate 

the constraint by generating MC samples of 𝑽. 
Then, with the conventional failure probability, 

Eq. (15) becomes 

min
𝒙

𝑐(𝒙)

s. t.  
1

𝑁
∑ 𝕀[𝑔(𝒙, 𝒗𝑖) ≥ 0]

𝑁

𝑖=1

≤ 𝑝𝑓
𝑡

𝒙 ∈ 𝑿,

 (16) 

where 𝒗1, … , 𝒗𝑁 are the MC samples of 𝑽. On the 

other hand, when the buffered failure probability 

is used, Eq. (15) can be reformulated as 

min
𝒙,𝑧0,𝒛

𝑐(𝒙)

s. t.  𝑧0 +
1

𝑝̅𝑓
𝑡 ∑

𝑧𝑖

𝑁

𝑁

𝑖=1

≤ 0

𝑔(𝒙, 𝒗𝑖) − 𝑧0 ≤ 𝑧𝑖 , 𝑖 = 1, ⋯ , 𝑁

𝒙 ∈ 𝑿, 𝑧0 ∈ ℝ, 𝑧𝑖 ∈ ℝ+,   𝑖 = 1, ⋯ , 𝑁,

 (17) 

where two types of auxiliary design variables, 𝑧0 

and 𝒛 = (𝑧1, ⋯ , 𝑧𝑁) are introduced (Rockafellar 

and Royset, 2010). In Eq. (17), 𝑧0 corresponds to 

an estimation of quantile 𝑞𝛼̅0
 in Eq. (6), and 𝑧𝑖 

denotes the distance between a sample 𝑔(𝒙, 𝒗𝑖) 

and 𝑞𝛼̅0
. 

Comparison between Eqs. (16) and (17)  

underlines computational advantages of the 

buffered failure probability over the conventional 

one, as analyzed by previous works (Basova et al., 

2011; Byun et al., 2022; Royset, 2022). Those 

advantages arise from the fact that Eq. (17) does 

not involve the indicator function 𝕀[⋅] as Eq. (16), 

whose 0-1 discontinuity hinders evaluating 

gradients of reliability constraints. This issue is 

critical for optimization problems since many 

algorithms require gradient information. While 

Eq. (17) introduces additional decision variables 

𝑧0  and 𝒛,  they do not add much computational 

cost as the formula is linear in these variables. 

Another advantage is that Eq. (17) handles 𝑐(𝒙) 

and 𝑔(𝒙, 𝒗𝑖) as they are, whereby computational 

complexity is determined by the functions 

themselves. In other words, if 𝑐(𝒙) and 𝑔(𝒙, 𝒗𝑖) 

have good properties, these properties are 

preserved. For example, if the functions are 
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continuously differentiable with respect to 𝒙, Eq. 

(17) is solvable by standard nonlinear 

optimization algorithms. If the functions are linear 

(convex) in 𝒙,  the formula becomes a linear 

(convex) optimization problem.  

4.2. Numerical Comparison of RBO Solutions 

This section investigates whether the two failure 

probabilities lead to the same RBO solutions 

when a target failure probability is properly scaled. 

If the contour maps of the two metrics on a 

solution domain have similar shapes, one can 

conclude that the two failure probabilities lead to 

similar optimization solutions. To this end, we 

consider a limit-state function 

𝑔(𝒙, 𝑽) = 𝑆 − (
𝑅

𝜏𝑅
+ 𝜇𝑅), (18) 

where the random variables in 𝑽 = (𝑅, 𝑆) 

represent the capacity and demand of an 

engineering system, respectively. Since demand 𝑆 

is often uncontrollable, we set design variables as 

𝒙 = (𝜇𝑅 , 𝜏𝑅)  representing the mean and the 

precision (i.e., the inverse of standard deviation) 

of 𝑅. The solution space is set to 𝜇𝑅 ∈ (2,5) and 

𝜏𝑅 ∈ (0,4).  

For comparison, we investigate various 

distributions of 𝑅 and 𝑆, including the normal and 

lognormal distributions as representatives of light 

and heavy tail distributions, respectively. We also 

consider a multimodal shape by using a Gaussian 

mixture distribution. The parameters of the 

distributions are summarized in Table 1. 

 
Table 1: Distribution parameters for 𝑅 and 𝑆 

Shape Symbol Distribution 

Light tail L 
𝒩(𝜇, 𝜎2), 

𝜇 = 0, 𝜎 = 1 

Heavy tail H 
ℒ𝒩(𝜆, 𝜁2),  
𝜆 = 0, 𝜁 = 1 

Multimodal M 

∑ 𝜙𝑖𝒩(𝜇𝑖, 𝜎𝑖
2)

2

𝑖=1

, 

𝜙1 = 0.95, 𝜙2 = 0.05, 
𝜇1 = 0, 𝜇2 = 30, 
𝜎1 = 1, 𝜎2 = 5 

 

The two failure probabilities are estimated by 

generating 106 MC samples, as shown in Figures 

4 and 5. In Figure 4, the contours are drawn for 

different combinations of the light and heavy tail 

distributions, while Figure 5 illustrates contours 

with multimodal distributions combined with 

other distributions. In the figure, the failure 

probabilities are expressed in a decimal logarithm. 

Figures 4 and 5 show that both probabilities 

generally decrease as 𝜇𝑅  and 𝜏𝑅  increase. In 

Figure 4, all figures show consistent contour 

shapes, which suggests that tail heaviness does 

not lead to different RBO solutions between the 

two failure probabilities. On the other hand, in 

Figure 5, the contours show notable differences, 

particularly in the red boxes in the second and 

third columns. This suggests that, in contrast to 

tail heaviness, multi-modality can lead to different 

decision preferences of the two failure 

probabilities. 

5. CONCLUSIONS 

This paper presents comparative investigations of 

the conventional and buffered failure probabilities. 

In general, we observed that the two reliability 

metrics are fundamentally equivalent from the 

risk management perspective as both represent the 

likelihood of the worst scenarios, i.e., failure 

events. Nonetheless, they define failure events 

differently, resulting in notable differences. First, 

the two failure probabilities are based on different 

perspectives on failure probabilities. The 

conventional failure probability does not consider 

the magnitude of a failure event, while the 

buffered failure probability does. This 

observation suggests that the two reliability 

metrics are more suitable for different problems. 

Nonetheless, as the two metrics show strongly 

positive correlations, their interchangeable use 

seems possible in most cases. Second, while 

different mathematical expressions are used to 

calculate the two metrics, the buffered failure 

probability tends to demand more complicated 

formulas. We also observed that when Monte 

Carlo Simulation (MCS) is employed for 

calculations, the buffered failure probability is 

highly likely to underestimate the failure 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 7 

probability when the sample size is small, which 

is not the case for the conventional failure 

probability.  Third, the computation becomes 

more manageable in reliability-based 

optimization if the buffered failure probability is 

adopted, as its calculation does not cause 0-1 

discontinuity.

 

 
Figure 4: Contour maps of 𝑝𝑓  and 𝑝̅𝑓  with different combinations of light and heavy-tailed distributions. 

Distributions of R and S are represented by symbols to the left and right of the hyphen. 

 
Figure 5: Contour maps of 𝑝𝑓  and 𝑝̅𝑓  with different combinations of multimodal distributions and other 

distributions. The red boxes in (b) and (c) indicate where the contour maps show a distinctive discrepancy.  

 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 8 

Meanwhile, we observed that the two failure 

probabilities lead to similar contour maps of 

failure probability over a solution space. This 

observation implies that they generally lead to 

similar optimization solutions when a target 

failure probability is properly scaled (since the 

buffered failure probability is always equal to or 

greater than the conventional one). However, 

contour maps may show discrepancies when a 

random variable follows a multimodal 

distribution. On the other hand, such a 

discrepancy is not contingent on the tail-heaviness 

of a distribution. 

The general similarity between the two 

reliability metrics increases the potential for their 

complementary uses. This is especially appealing 

because the mathematical properties of the two 

metrics compensate for each other: the 

conventional failure probability simplifies 

probability calculations, and the buffered failure 

probability facilitates reliability-based 

optimization. Such parallel use can be enabled by 

drawing consensus on permissible levels of the 

buffered failure probability for a discipline of 

interest, which widely exists for the conventional 

probability. Another prospect is to develop 

advanced inference techniques for buffered 

failure probability, such as sampling and 

surrogate modeling. 
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