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ABSTRACT: Geological uncertainty can significantly influence the computed response of a geotechnical 

structure. For example, ignoring the presence of a weak soil layer embedded within a stronger layer and 

assuming a deterministic stratigraphic boundary can significantly underestimate the probability of 

failure. In this paper, the coupled Markov chain method has been used for modelling this form of 

uncertainty. A strategy for estimating the horizontal transition probability matrix with limited data has 

been proposed, which is one of the biggest challenges with using this method. In particular, different 

sampling intervals in the vertical and horizontal directions have been considered in estimating the matrix 

for simulating realistic field situations. The applicability of the proposed method has been demonstrated 

using a set of CPTs in the Netherlands. The results highlight a problem that arises due to the coupling 

algorithm used in this method. 

1. INTRODUCTION 

One of the first steps in the analysis of a 

geotechnical structure is the characterisation of 

the site. Uncertainty is inevitable in the 

characterisation and analysis of structures, due to 

the inherently heterogeneous nature of soils. For 

example, the subsurface is composed of different 

soil units that were formed due to a combination 

of various geological, environmental and physico-

chemical processes (Phoon and Kulhawy, 1999), 

resulting in the spatial variability of the units and 

of the properties within the units. 

Research on the characterisation of the 

subsurface is limited, although it is now receiving 

increasing attention. Wang et al. (2020) and Hu 

and Wang (2020) have proposed methods for 

interpolating cone penetration test (CPT) data in a 

2D domain and using the interpolated data with 

the soil behaviour type index to classify the 

subsurface. Qi et al. (2016), Xiao et al. (2017), Li 

et al. (2019) and Zhang et al. (2022) have used the 

coupled Markov chain (CMC) method (Elfeki and 

Dekking, 2001) for predicting soil types between 

the measurement locations. The main parameters 

of the CMC model are the transition probabilities 

in the vertical and horizontal directions. The 

former can be readily estimated from the 

measurements, whereas estimating the latter from 

the usually limited number of measurements is 

rather difficult.  

In this paper, a methodology for estimating 

the horizontal transition probabilities has been 

proposed that considers different sampling 

intervals in the two directions. The applicability 

of the proposed method has been demonstrated for 

a domain comprising five CPTs in the 

Netherlands. 

2. THE COUPLED MARKOV CHAIN 

METHOD 

In the CMC model, two independent 1D Markov 

chains in the vertical and horizontal directions are 

coupled together to predict the same state at 

unsampled locations. In this paper, a state in the 

CMC model represents a soil type, and a first-
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order Markov chain has been used to describe the 

transition from one state to the other. The first-

order Markov chain is based on the principle that 

the state of a system in the present step is 

dependent only on its state in the previous step. 

For example, a 1D Markov chain consisting of a 

sequence of n random variables 𝑍1 ,  𝑍2 , …, 𝑍𝑛 

taking values from m mutually exclusive states is 

a first-order Markov process if: 

𝑃(𝑍𝑖 = 𝑆𝑘|𝑍𝑖−1 = 𝑆𝑞 , 𝑍𝑖−2 = 𝑆𝑡, … , 𝑍1 = 𝑆𝑙) 

           = 𝑃(𝑍𝑖 = 𝑆𝑘|𝑍𝑖−1 = 𝑆𝑞)                (1) 

where 𝑃(𝑍𝑖 = 𝑆𝑘|𝑍𝑖−1 = 𝑆𝑞 , 𝑍𝑖−2 = 𝑆𝑡, … , 𝑍1 =

𝑆𝑙) is the probability that 𝑍𝑖  is in state 𝑆𝑘  given 

that 𝑍𝑖−1 = 𝑆𝑞 , 𝑍𝑖−2 = 𝑆𝑡, … and 𝑍1 = 𝑆𝑞. 

The probabilities of the transitions can be 

represented in a transition probability matrix (P), 

where each entry 𝑝𝑖𝑗 of the matrix is the one-step 

probability of transitioning from state i (row) to 

state j (column). To obtain an 𝑟 -step transition 

probability from one state to the other, the matrix 

can be multiplied r times. Under the Markovian 

property, as r increases, the probability of being 

in certain states becomes more likely than being 

in others. When r becomes very large, i.e., when 

the Markov chain tends to infinity, the distribution 

will reach an equilibrium with an associated 

probability of being in each state, known as the 

stationary probability. This stationary distribution 

of a Markov chain is a vector w such that: 

                       𝒘𝑷 = 𝒘                            (2) 

The stationary probability can be calculated by the 

eigen decomposition of P and, based on Eq. (2), it 

is the eigenvector corresponding to an eigenvalue 

of unity. 

An illustration of the simulation process 

using the CMC model is shown in Figure 1. In this 

figure, each cell represents a Markovian step. The 

shaded cells at the two ends and at the top 

represent the cells with known states. As shown 

by the arrows in Figure 1(a), the direction of 

simulation in the vertical direction is from top to 

bottom, and alternating between left to right and 

from right to left in the horizontal direction, thus 

resulting in forward and backward CMC 

processes, respectively. Because of this 

alternating arrangement of the direction of 

simulation, the soil state in the current step is 

dependent on the soil state in a previous step 

generated by the other CMC process, and it is 

therefore likely to be less biased than a fully 

forward or a fully backward CMC process. 

Furthermore, to make full use of the available 

information and to reduce uncertainty in the 

simulation, the CMC model in each direction is 

conditioned on the future states, as was proposed 

by Elfeki and Dekking (2001).  

 

 
(a) alternating forward and backward simulation 

 

 
(b) forward simulation 

 

  
(c) backward simulation 

 

Figure 1: An illustration of the simulation process 

used in the paper 

 

With reference to Figure 1(b), using forward 

CMC simulation, the probability that a cell (𝑖, 𝑗) is 

in the state 𝑆𝑘 is given by: 

𝑃(𝑍𝑖,𝑗 = 𝑆𝑘|𝑍𝑖−1,𝑗 = 𝑆𝑙 , 𝑍𝑖,𝑗−1 = 𝑆𝑞 , 𝑍𝑖,𝑗+𝑟 = 𝑆𝑡) 

              =
𝑝v

𝑙𝑘𝑝h
𝑞𝑘𝑝h(𝑟)

𝑘𝑡

∑ 𝑝v
𝑙𝑓𝑝h

𝑞𝑓𝑝h(𝑟)
𝑓𝑡

𝑚
𝑓=1

                   (3) 

where 𝑆𝑙 and 𝑆𝑞 are the states in cell (𝑖-1, 𝑗) on the 

top and in cell (𝑖, 𝑗-1) on the left, respectively, of 

the cell (𝑖, 𝑗), 𝑆𝑡 is the state in the conditioning cell 

(𝑖, 𝑗+𝑟) on the right, 𝑝v
𝑙𝑘

 is the one-step vertical 

transition probability from 𝑆𝑙  to 𝑆𝑘 , 𝑝h
𝑞𝑘

 is the 
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one-step horizontal transition probability from 𝑆𝑞 

to 𝑆𝑘,  and 𝑝h(𝑟)
𝑘𝑡

 is the r-step horizontal 

transition probability from 𝑆𝑘 to 𝑆𝑡.  

Similarly, using backward CMC simulation 

(see Figure 1(c)), the probability that the cell (𝑖, 𝑗) 

is in the state 𝑆𝑘 is given by: 

𝑃(𝑍𝑖,𝑗 = 𝑆𝑘|𝑍𝑖−1,𝑗 = 𝑆𝑙 , 𝑍𝑖,𝑗+1 = 𝑆𝑞 , 𝑍𝑖,𝑗−𝑟 = 𝑆𝑡) 

              =
𝑝v

𝑙𝑘𝑝h′

𝑞𝑘𝑝h(𝑟)′

𝑘𝑡

∑ 𝑝v
𝑙𝑓𝑝h′

𝑞𝑓𝑝h(𝑟)′

𝑓𝑡
𝑚
𝑓=1

                 (4) 

where 𝑆𝑙 and 𝑆𝑞 are the states in cell (𝑖-1, 𝑗) on the 

top and in cell (𝑖, 𝑗+1) on the right, respectively, 

of the cell (𝑖, 𝑗), 𝑆𝑡 is the state in the conditioning 

cell (𝑖, 𝑗-𝑟) on the left, and 𝑝h′

𝑞𝑘
 and 𝑝h(𝑟)′

𝑘𝑡
 are 

the one-step and r-step horizontal transition 

probabilities in the backward direction, 

respectively. 

Although the horizontal transition 

probabilities in the forward and backward 

directions are not the same, one can be calculated 

from the other by using the horizontal stationary 

probabilities 𝒘𝐡  by the following equation 

(Elfeki and Dekking, 2005): 

           𝑝h′

𝑞𝑘
= 𝑝h

𝑘𝑞
×

𝑤h
𝑘

𝑤h
𝑞
 

      𝑝h(r)′

𝑘𝑡
= 𝑝h(r)

𝑡𝑘
×

𝑤h
𝑡

𝑤h
𝑘
  

(5) 

Thus, Eq. (4) can be simplified to:  

𝑃(𝑍𝑖,𝑗 = 𝑆𝑘|𝑍𝑖−1,𝑗 = 𝑆𝑙 , 𝑍𝑖,𝑗+1 = 𝑆𝑞 , 𝑍𝑖,𝑗−𝑟 = 𝑆𝑡) 

                  =
𝑝v

𝑙𝑘𝑝h
𝑘𝑞𝑝h(𝑟)

𝑡𝑘

∑ 𝑝v
𝑙𝑓𝑝h

𝑓𝑞𝑝h(𝑟)
𝑡𝑓

𝑚
𝑓=1

                (6) 

The transition probabilities in the vertical and  

horizontal directions can also be represented via 

matrices, namely the vertical transition 

probability matrix and the horizontal transition 

probability matrix.  

2.1. Estimating the transition probability 

matrices 

The vertical transition probability matrix (𝑷𝐯) can 

be directly estimated from the distribution of soil 

types obtained from the measurements. In order to 

do that, the 1D soil stratification at the sampled 

location can be divided into equidistant intervals 

(cells). Following the division, 𝑝v
𝑙𝑘

 is calculated 

using: 

                   𝑝v
𝑙𝑘

=
𝑇v

𝑙𝑘 

∑ 𝑇v
𝑙𝑓 𝑚

𝑓=1

                      (7) 

where 𝑇v
𝑙𝑓 is the total number of cells that have 

soil type 𝑆𝑙  and are followed by cells with soil 

type 𝑆𝑓 in the vertical direction. 

In contrast, following the above procedure 

for estimating the horizontal transition probability 

matrix (𝑷𝐡)  is more complex because of the 

usually limited number of measurements. A few 

recent studies have tried to simplify the problem 

by using either prior geological information or by 

combining 𝑷𝐯  with Walther’s law, which states 

that lithologies that are observed in the vertical 

depositional sequences must also be deposited in 

adjacent transects at another scale (Elfeki and 

Dekking, 2001 & 2005). For example, Qi et al. 

(2016) and Zhang et al. (2022) proposed a simple 

method to estimate 𝑷𝐡  from 𝑷𝐯  by assuming 

𝑇h
𝑙𝑓 = 𝑇v

𝑙𝑓  for 𝑙 ≠ 𝑓 and 𝑇h
𝑙𝑙 = 𝐾 × 𝑇v

𝑙𝑙 , thus 

simplifying the problem to finding the value of 𝐾. 

However, it may be noted that, on using this 

assumption, an r-step transition probability in the 

horizontal direction can no longer be obtained by 

multiplying the one-step 𝑷𝐡 𝑟 times.  

Considering the above, the following 

equation has been proposed to estimate 𝑷𝐡  by 

combining the prior knowledge obtained from 𝑷𝐯 

with Walther’s law: 

                 𝑷𝐡 = 𝑸𝚲𝛼 𝜉⁄ 𝑸−1                      (8) 

where 𝑸 and 𝚲 are the matrices of eigenvectors 

and eigenvalues, respectively, of 𝑷𝐯, 𝛼 is the ratio 

of cell (step) size in the horizontal to vertical 

direction, and 𝜉 represents the ratio of the scale of 

deposition of a geological unit in the horizontal 

direction to that in the vertical. The unknown 𝜉 

can be estimated by maximising the likelihood (L) 

of observing the measurements. 

Note that the proposed method of estimating 

𝑷𝐡 using Eq. (8), in addition to incorporating the 

effect of different step sizes, ensures that the 
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distributions of soil types in the horizontal 

direction are also governed by the same marginal 

distributions as are obtained from the 

measurements. 

 

 
 

 clay  silty 

clay 

 silty 

sand 

 sand  gravelly 

sand      

     

Figure 2: Soil types identified at the locations of the 

five selected CPTs (scale in m) 

3. RESULTS AND DISCUSSIONS 

The applicability of the proposed model has been 

demonstrated for a domain comprising five CPTs 

(CPT1CPT5) in the Netherlands. As shown in 

Figure 2, the CPTs are spread over a domain of 

width 118 m and were carried out to a depth of 30 

m below the ground surface. Also shown in the 

figure are the soil-behaviour type classifications 

at the CPT locations. Although any method of 

CPT-based soil classification can be used, these 

have here been obtained by plotting the 

normalised CPT measurements on the Robertson 

chart (Robertson, 1990) and assuming a minimum 

layer thickness of 0.4 m. The stratification 

between the CPTs has been determined using the 

CMC model described in Section 2, by dividing 

the domain into cells of height 0.4 m and of 

different widths based on the value of α.  

The vertical transition probability matrix 

obtained using the spatial distribution of soil types 

at the CPTs is listed in Table 1(a). The stationary 

probabilities calculated using 𝑷𝐯  represents the 

spatial distribution of soil types over the domain. 

However, due to the limited number of 

measurements there can be uncertainties in the 

estimated 𝑷𝐯.  Therefore, inconsistencies in the 

form of negative probabilities could appear in the 

matrix on using smaller sampling intervals. 

Although, in this paper, this inconsistency has 

been avoided by nullifying all the negative 

probabilities, they can also be avoided by defining 

the transition probabilities based on the rate of 

change of states in a continuous Markov process. 

 
Table 1: Estimated transition probability matrices 

(a) 𝑷𝒗 

 clay silty 

clay 

silty 

sand 

sand gravelly 

sand 

clay 

 

0.778 0.111 0.049 0.062 0 

silty 

clay 

0.551 0.379 0.035 0.035 0 

silty 

sand 

0.029 0.044 0.652 0.275 0 

sand 

 

0 0.033 0.111 0.850 0.006 

gravelly 

sand 

0 0 0 0.546 0.454 

 

(b) 𝑷𝒉 

 clay silty 

clay 

silty 

sand 

sand gravelly 

sand 

clay 
 

0.948 0.031 0.010 0.011 0 

silty 

clay 

0.159 0.833 0.005 0.003 0 

silty 

sand 

0.003 0.011 0.927 0.059 0 

sand 
 

0 0.006 0.024 0.969 0.001 

gravelly 

sand 

0 0 0 0.124 0.876 

 

For a certain value of α, i.e., for a 

discretisation with a cell width of 0.4 times α, 𝑷𝐡 

has been calculated using Eq. (8) by choosing the 

value of 𝜉  that maximises the likelihood of 

independently observing CPT2 and CPT4 

simultaneously and conditioning on CPT1 and 

CPT3 and on CPT3 and CPT5, respectively. For 

different trial values of 𝜉, the CMC simulation is 

performed repeatedly in a Monte Carlo simulation 

to compute the likelihood using: 

𝐿 = ∏ (
∑ I(𝑍𝑅

𝑖,CPT2=𝑆𝑖CPT2)
𝑁𝑅
𝑅=1

𝑁𝑅
×

𝑁v
𝑖=1

                    
∑ I(𝑍𝑅

𝑖,CPT4=𝑆𝑖CPT4)
𝑁𝑅
𝑅=1

𝑁𝑅
)  

 

 

(9) 

CPT1 CPT2 CPT3 CPT4 CPT5 
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where I(.) is an indicator function which is equal 

to 1 if the condition within the brackets is true and 

is 0 otherwise, 𝑁v is the total number of cells in 

the vertical direction, 𝑁𝑅  is the total number of 

Monte Carlo realisations, 𝑍𝑅
𝑖,CPT𝑗 is the soil type 

predicted in realisation 𝑅 for a cell at depth 𝑖 in 

CPT𝑗, and 𝑆𝑖CPT𝑗 is the identified soil type in that 

cell based on the CPT measurements (i.e., the 

correct solution). 

 

 
Figure 3: Likelihoods estimated as a function of  𝜉 

 
Table 2: Stationary probabilities  

soil type 1D 2D 

vertical horizontal 

clay 0.226 0.226 0 

silty clay 0.081 0.081 0 

silty sand 0.197 0.197 0.004 

sand 0.491 0.491 0.996 

gravelly sand 0.005 0.005 0 

 

The logarithm of likelihoods computed using 

1000 realisations are shown in Figure 3. As can be 

seen from the figure, the maximum likelihood is 

obtained for 𝜉  ≈ 30. The corresponding 𝑷𝐡 

computed for 𝛼 = 5 is listed in Table 1(b).  

Table 2 shows the stationary probabilities 

computed in 1D by using the two transition 

probability matrices individually and those in 2D 

obtained by combining the matrices to predict the 

same soil type, i.e., by following the coupling 

principle of CMC. As expected, identical 

stationary probabilities are computed in 1D using 

𝑷𝐯 and 𝑷𝐡. However, because of the coupling in 

CMC, the stationary probabilities computed in 2D 

are quite different from those in 1D. This 

highlights a problem with the theory behind the 

CMC model itself. That is, the stationary 

probabilities of the coupled model do not reflect 

the marginal distributions of the soil types 

(estimated here from the CPTs), although the 

individual 1D chains do satisfy this criterion. This 

problem requires a more detailed investigation 

and correction of the CMC theory and is outside 

the scope of this paper. 

 

  
(a) clay (b) silty clay 

 

  
(c) silty sand (d) sand 

 

 
 

Figure 4: Occurrence probability of the soil types 

 

  
 

 clay  silty 

clay 

 silty 

sand 

 sand  gravelly 

sand      

     

(a) most likely stratigraphy between the CPT 

locations (scale in m) 

 

 

 
(b) uncertainty in the most likely prediction 

 

Figure 5: The most likely scenario of subsurface 

stratification and its uncertainty 

 

Following the estimation of the two matrices, 

CMC simulation was carried out using 𝛼 = 5 in 

the four zones delineated by the five CPTs and 
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conditioned on them. A total of 1000 realisations 

were carried out to predict soil types between the 

CPTs. To demonstrate the distributions of the 

predicted soil types in the domain, Figure 4 shows 

their occurrence probabilities calculated using: 

             𝑂𝑖,𝑗,𝑘 =
∑ I(𝑍𝑅

𝑖,𝑗=𝑆𝑘)
𝑁𝑅
𝑅=1

𝑁𝑅
                (10) 

where 𝑂𝑖,𝑗,𝑘 is the occurrence probability of soil 

type 𝑆𝑘  in cell ( 𝑖, 𝑗 ), and 𝑍𝑅
𝑖,𝑗  is the soil type 

predicted in a realisation for that cell. 

The generated stratigraphic realisations can 

also be summarised via a single representative 

scenario, for example, the most likely scenario 

amongst all the realisations, as is shown in Figure 

5(a). The most likely soil type in a cell has been 

determined by choosing the soil type with the 

highest occurrence probability in that cell. Figure 

5(b) shows significant deviations of the average 

predictions from this most likely scenario.  

4. CONCLUSIONS 

The coupled Markov chain method has been used 

in this paper to predict the stratification between 

the measurement locations. This method is based 

on coupling first-order Markov chains in the 

vertical and horizontal directions to predict the 

same soil type at any location. In this method, the 

transition probabilities in each direction are 

represented in a transition probability matrix. The 

vertical transition probability matrix can directly 

be estimated from the distribution of soil types 

obtained from the measurements, whereas 

estimating the horizontal transition probability 

matrix can be more complex because of the 

usually limited number of measurements. 

A methodology for estimating the horizontal 

transition probability matrix has been proposed in 

this paper that considers different scales of 

deposition of soil types in the vertical and 

horizontal directions. The proposed methodology 

ensures that, irrespective of different sampling 

intervals, the distributions of soil types in the two 

directions are identical and reflect their marginal 

distributions. 

The applicability of the proposed method has 

been demonstrated via coupled Markov chain 

simulation for a domain comprising five CPTs in 

the Netherlands. The results highlight a problem 

arising from the coupling of the 1D Markov 

chains that needs correction.  
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