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ABSTRACT: Second-generation Eurocode 8 introduces the displacement-based approach for design and 
assessment, where action effects are determined via nonlinear analysis, in terms of deformations and 
forces, for ductile and brittle failure modes, respectively. The code also provides all the necessary capac-
ity models (e.g., chord rotation). The introduction of this approach requires ad hoc calibration of new 
partial factors to ensure that a reliability level consistent with that implied by traditional force-based 
design is achieved. This paper discusses the formulation of these partial factors. Probability distributions 
for the seismic action effect and the resistance, as well as target reliability for different limit states and 
consequence classes are introduced and discussed. The problem can be simplified to one with only two 
lognormal variables and a uniform reliability can be achieved over the calibration space when two factors 
are used, one on the resistance-side and the other on the load side. It is also shown that the well-known 
König and Hosser formulation of partial factors with constant sensitivity factors can be used also in the 
seismic design situation, with values tailored to the seismic case reflecting the larger weight of the action-
related uncertainty. The problem with this otherwise good result is that a load partial factor must be used 
and, further, that its value is site dependent. This approach is not in line with current practice, thus a 
corrected site-independent resistance-side partial factor is proposed, which is compatible with the frame-
work of Eurocode 8. Notably, the proposed format coincides with that proposed in the second-generation 
EN1990 and EN1992 for the assessment of existing (concrete) structures under non-seismic design situ-
ations, resulting in sure benefit for the final user. 

Eurocodes, the set of harmonized European tech-
nical norms for the design and construction of 
civil works, are a cornerstone of the common mar-
ket policy of the European Union. Their first gen-
eration was drafted and published between the end 
of the 1990s and the early 2000s. Their revision 
started in 2015 under mandate M515 from Tech-
nical Committee 250 of the European Committee 
for Standardization (CEN/TC250) and its fore-
seen completion is in 2024. The task had three 
goals: technical update, scope increase and en-
hancement of ease of use. Sub-committee 8 (SC8) 
oversees Eurocode 8 (EN1998), devoted to seis-
mic design and assessment. In terms of technical 
update, one of the main changes in the second 
generation EN1998 introduced by SC8 is the dis-
placement-based approach. This latter has been 

long recognized as a more truthful, less conven-
tional way to determine the response and perfor-
mance of a structure or geotechnical system to 
seismic ground motion excitation (Working 
groups, 1997).  

Traditional force-based seismic design is car-
ried out in terms of stress resultants determined 
via linear analysis under equivalent forces re-
duced to account for global ductility, redundancy 
and overstrength. The new approach, based on the 
explicit check of deformations, determined via 
nonlinear analysis under an unreduced seismic ac-
tion, requires ad hoc calibration of new partial fac-
tors specifically derived to achieve a level of reli-
ability consistent with that implied by traditional 
design. This in turn required making explicit the 
target reliability for the seismic design situation 
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(first generation EN1998 did not declare such a 
target). 

This paper illustrates the derivation of the 
partial factors for the displacement-based ap-
proach, the reliability targets, and the seismic in-
tensity levels as a function of performance level 
(limit state, LS) and importance of the structure 
(consequence class, CC). It should be noted that a 
partial-factor safety format for the problem at 
hand has been proposed in the past by Cornell et 
al (2002). As pointed out in Franchin and Noto 
(2023), the partial factors proposed herein are 
equivalent to those in Cornell et al (2002), but are 
derived in a different way, consistent with the der-
ivation of partial factors for non-seismic design 
situations in the other Eurocodes. As shown later, 
the proposed partial factors follow a well-known 
format, which is the same adopted for existing 
structures in non-seismic design situations first in 
fib Bulletin 80 (Caspeele et al, 2016) and lately by 
Eurocode 2 on concrete structures. Overall, the 
outcome increases consistency across the Euro-
codes, and thus ease of use, and is more transpar-
ent with respect to source of uncertainty and target 
safety. 

1. NON-SEISMIC DESIGN SITUATIONS 
Code-calibration aims to provide an economic de-
sign with accepted minimum safety over a desired 
set of structures and design situations, defined as 
scope of application of the code (set of design 
cases). In reliability-based calibration, the safety 
is explicitly expressed in terms of target reliability 
index 𝛽𝛽𝑡𝑡. For any given code format (number of 
partial factors and load combination factors; 
whether load partial factors should be material in-
dependent and/or material partial factors should 
be independent of load type, etc. US codes have a 
smaller set of factors, whereas the Eurocodes em-
ploy a larger one) calibration is a minimization 
such as: 

 min
𝜸𝜸
∑ 𝑤𝑤𝑖𝑖[𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑖𝑖(𝜸𝜸)]2𝑖𝑖  (1) 

where 𝛽𝛽𝑖𝑖 is the reliability index of the i-th design 
case, function of the partial factors collected in the 

vector 𝜸𝜸 , and 𝑤𝑤𝑖𝑖  the weight reflecting its im-
portance to the overall design practice.  

The link between 𝛽𝛽𝑖𝑖 and 𝜸𝜸 is reliability anal-
ysis. To this end, probability distributions for the 
load/action effect and the resistance are needed. 
The former is known, while the latter must be de-
rived for each design case, in other words, the ac-
tion is given, while the resistance is designed. For 
the i-th case, the design equation (obtained taking 
the equal sign in the design inequality) provides 
the resistance fractile 𝑅𝑅𝑘𝑘,𝑖𝑖 for given values of the 
partial factors 𝛾𝛾𝐸𝐸 and 𝛾𝛾𝑅𝑅, and fractile of the seis-
mic action effect 𝐸𝐸𝑘𝑘,𝑖𝑖: 

 𝑅𝑅𝑑𝑑,𝑖𝑖 = 𝑅𝑅𝑘𝑘,𝑖𝑖 𝛾𝛾𝑅𝑅⁄ = 𝛾𝛾𝐸𝐸𝐸𝐸𝑘𝑘,𝑖𝑖 = 𝐸𝐸𝑑𝑑,𝑖𝑖 (2) 

 𝑅𝑅𝑘𝑘,𝑖𝑖 = 𝛾𝛾𝑅𝑅𝛾𝛾𝐸𝐸𝐸𝐸𝑘𝑘,𝑖𝑖 (3) 

where 𝐸𝐸𝑑𝑑,𝑖𝑖 and 𝑅𝑅𝑑𝑑,𝑖𝑖 are the design values of load 
effect and resistance (notation as per Eurocodes). 
Once 𝑅𝑅𝑘𝑘,𝑖𝑖 is known, given the uncertainty on re-
sistance 𝜎𝜎𝑅𝑅, the distribution of the resistance ran-
dom variable 𝑅𝑅𝑖𝑖 is known and reliability analysis 
on the limit state function (LSF) 𝑔𝑔𝑖𝑖 = 𝑅𝑅𝑖𝑖 − 𝐸𝐸𝑖𝑖 
yields 𝛽𝛽𝑖𝑖.  

Instead of using optimization with the objec-
tive function in Eq. (1), partial factors can be de-
rived in a different, approximate way, called De-
sign Value Method (ISO, 1998), using the same 
Equation (2). Rather than assigning 𝛾𝛾𝐸𝐸 and 𝛾𝛾𝑅𝑅 to 
determine 𝛽𝛽𝑖𝑖, the latter is set equal to 𝛽𝛽𝑡𝑡 and the 
design values of action effect and resistance are 
obtained as the coordinates of the design point ac-
cording to: 

 𝑅𝑅𝑑𝑑,𝑖𝑖 = 𝐹𝐹𝑅𝑅,𝑖𝑖
−1[Φ(−𝛼𝛼𝑅𝑅𝛽𝛽𝑡𝑡)] (4) 

 𝐸𝐸𝑑𝑑,𝑖𝑖 = 𝐹𝐹𝐸𝐸,𝑖𝑖
−1[Φ(−𝛼𝛼𝐸𝐸𝛽𝛽𝑡𝑡)] (5) 

where 𝐹𝐹𝑅𝑅,𝑖𝑖 , 𝐹𝐹𝐸𝐸,𝑖𝑖  and Φ are the cumulative distri-
bution functions (CDF) of resistance, action effect 
and the standard Gaussian variable, while 𝛼𝛼𝑅𝑅 and 
𝛼𝛼𝐸𝐸 are the FORM sensitivity factors. The partial 
factors follow as 𝑅𝑅𝑘𝑘 𝑅𝑅𝑑𝑑⁄  and 𝐸𝐸𝑑𝑑 𝐸𝐸𝑘𝑘⁄ . This rela-
tively crude method is very useful when 𝐸𝐸 and 𝑅𝑅 
are both either Gaussian or lognormal (LN), be-
cause analytical solutions are available.  

For example, if both are LN, one has: 
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 𝛾𝛾𝑅𝑅 = 𝑒𝑒𝜇𝜇ln𝑅𝑅+𝜅𝜅𝑅𝑅𝜎𝜎ln𝑅𝑅

𝑒𝑒𝜇𝜇ln𝑅𝑅−𝛼𝛼𝑅𝑅𝛽𝛽𝑡𝑡𝜎𝜎ln𝑅𝑅
= 𝑒𝑒𝛼𝛼𝑅𝑅

2𝛽𝛽𝑡𝑡𝜎𝜎𝑡𝑡𝑒𝑒𝜅𝜅𝑅𝑅𝜎𝜎ln𝑅𝑅   (6) 

 𝛾𝛾𝐸𝐸 = 𝑒𝑒𝜇𝜇ln𝐸𝐸−𝛼𝛼𝐸𝐸𝛽𝛽𝑡𝑡𝜎𝜎ln𝐸𝐸
𝑒𝑒𝜇𝜇ln𝐸𝐸+𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸

= 𝑒𝑒𝛼𝛼𝐸𝐸
2𝛽𝛽𝑡𝑡𝜎𝜎𝑡𝑡𝑒𝑒−𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸 (7) 

where 𝜅𝜅𝑅𝑅  and 𝜅𝜅𝐸𝐸  are the number of logarithmic 
standard deviations from the log-mean corre-
sponding to 𝑅𝑅𝑘𝑘 and 𝐸𝐸𝑘𝑘, respectively, the sensitiv-
ity factors are: 

 𝛼𝛼𝑅𝑅 = 𝜎𝜎ln𝑅𝑅
𝜎𝜎𝑡𝑡

 and 𝛼𝛼𝐸𝐸 = −𝜎𝜎ln𝐸𝐸
𝜎𝜎𝑡𝑡

 (8) 

and the total logarithmic standard deviation is: 

 𝜎𝜎𝑡𝑡 = �𝜎𝜎ln𝑅𝑅2 + 𝜎𝜎ln𝐸𝐸2  (9) 

To make derivation of material partial factors 
load-independent and that of load partial factors 
material-independent (a choice that facilitates 
code committee work), a further simplification is 
to approximate sensitivity factors, which depend 
on both sides of the equation, as shown by (8)-(9), 
with constant values. König and Hosser (1982) 
did exactly this, showing that in a large interval of 
𝜎𝜎𝐸𝐸  to 𝜎𝜎𝑅𝑅  (or 𝜎𝜎ln𝐸𝐸  to 𝜎𝜎ln𝑅𝑅 ), taking 𝛼𝛼�𝑅𝑅 = 0.8 and 
𝛼𝛼�𝐸𝐸 = −0.7  guarantees deviations |Δ𝛽𝛽| ≤ 0.5 
from 𝛽𝛽𝑡𝑡. This “simplified Level II method” was 
very influential for European normative develop-
ments. Much later, it also informed the first at-
tempts made to derive a safety format for the as-
sessment of existing structures in non-seismic de-
sign situations (Caspeele et al, 2016), which in 
turn led to the draft second-generation Eurocode 
on assessment of existing structures for non-seis-
mic design situations (CEN/TC250, 2021). For 
these reasons, a similar approach is adopted 
herein to derive partial factors for displacement-
based seismic design and assessment, as illus-
trated in the next sections. 

2. SEISMIC DESIGN SITUATION 

2.1. Time-variant reliability problem 
The seismic reliability problem is time-variant: 
earthquake occurrence is a stochastic process and 
resistance, in general, also varies with time. Using 
the approach summarized in the previous section 

requires two assumptions. The first is that the pro-
cess of earthquake occurrences is Poisson, while 
the second is that deterioration of resistance is ne-
glected. The first assumption is acceptable at least 
for mainshocks, while the second is justified for a 
well-maintained structure, not exposed to previ-
ous damaging earthquakes during its lifetime. 

Under the above assumptions, probability of 
failure over design life 𝐿𝐿  can then be found by 
comparing the maximum seismic action effect in 
the reference period, function of the rate of earth-
quakes, with the time-invariant resistance. As 
shown in the next two sections, both capacity and 
demand can be modelled as LN. 

2.2. Resistance (capacity) 
Verification according to the displacement-based 
approach is carried out in terms of deformations 
(chord rotation in members) or forces (shear in 
members or joints and connections), for ductile or 
brittle failure modes, respectively. In EN1998, 
chord rotation models (Pangiotakos and Fardis, 
2001) and a 'seismic' shear strength model 
(Biskinis et al. 2004) are present since the first-
generation in Part 3 (CEN/TC250, 2005), devoted 
to assessment and retrofit. Second-generation 
EN1998 contains the latest updated version of 
these models for reinforced concrete (RC) mem-
bers and covers extensively also steel and compo-
site, as well as masonry and timber structures. The 
models are now included in Part 1-1 
(CEN/TC250, 2022b), for displacement-based de-
sign of new structures, while rules to modify them 
for existing non-conforming members are given 
in Part 3 (CEN/TC250, 2022a). 

All these models consist of semi-empirical 
functions of basic mechanical variables 𝒙𝒙, 𝑟𝑟(𝒙𝒙), 
are derived to be unbiased and provided with the 
estimate of the coefficient of variation (CV) of the 
ratio of experimental to predicted resistances. 
They can all be modelled as LN, as it is customary 
for resistance variables (ISO 1998), as the product 
of 𝑟𝑟(𝒙𝒙) and of a unit-median LN variable 𝜖𝜖𝑅𝑅 with 
logarithmic standard deviation, 𝜎𝜎ln𝑟𝑟, function of 
the above CV (model error). As shown in 
(Franchin and Pagnoni 2018), a Taylor expansion 
of the natural logarithm of this product around the 
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median of the basic variables 𝒙𝒙� yields a LN ran-
dom variable with median 𝑟𝑟(𝒙𝒙�) and total logarith-
mic standard deviation, accounting also for varia-
bility in resistance resulting from uncertainty in 
the basic variables, given by: 

 𝜎𝜎ln𝑅𝑅 = �𝜎𝜎ln 𝑟𝑟2 + ∑�𝑐𝑐𝑖𝑖𝜎𝜎ln𝑥𝑥𝑖𝑖�
2
 (10) 

which is a function of 𝒙𝒙 through the coefficients 
𝑐𝑐𝑖𝑖 . In the process of drafting second-generation 
EN1998, Eq.(10) was used to evaluate 𝜎𝜎ln𝑅𝑅 for all 
resistance models over a large calibration space, 
with 𝜎𝜎ln 𝑟𝑟 supplied for each formula 𝑟𝑟(𝒙𝒙) and typ-
ical values of 𝜎𝜎𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  for the basic variables (ISO 
1998). For illustration purposes, Table 1 reports 
these values for the ultimate chord rotation of RC 
members (values appropriate for assessment, rela-
ted to non-conforming members, are higher and 
dependent on Knowledge Level in EN1998). 

 
Table 1: Model error and total dispersion of ultimate 
chord rotation 𝜃𝜃𝑢𝑢 for code-conforming RC members. 
Model Section 𝜎𝜎𝑙𝑙𝑙𝑙 𝑟𝑟 𝜎𝜎𝑙𝑙𝑙𝑙𝑅𝑅 
𝜃𝜃𝑢𝑢 Rectangular 0.20 0.22 

 Circular  0.15 0.17 
 Other (e.g., hollow) 0.20 0.21 

 
The low model error values for the chord rotation 
models are those based on improved regression 
techniques reported in (Grammatikou et al. 2018). 

2.3. Maximum seismic action effect over the de-
sign life (demand) 

Strong seismic ground motion excites the dy-
namic response of a structure well in the nonlinear 
range and in a frequency-dependent manner. To 
describe the seismic action effect 𝐸𝐸, the following 
model is adopted, after Cornell et al (2002): 

 𝐸𝐸 = 𝑎𝑎𝑆𝑆𝑏𝑏𝜂𝜂 (11) 

where 𝑆𝑆 is a scalar measure of intensity (IM) of 
the input ground motion, commonly a spectral or-
dinate at the fundamental period, 𝑎𝑎 and 𝑏𝑏 are the 
coefficients of a power-law accounting for the 
nonlinear relation between the input intensity and 
median effect, and 𝜂𝜂 is a unit-median LN variable 

with dispersion  𝜎𝜎ln𝐸𝐸|𝑆𝑆  modelling the so-called 
record-to-record variability (Shome et al, 1998). 

Since Eq.(11) is a function of two random 
variables, 𝑆𝑆 and 𝜂𝜂, the two-variable LSF becomes 
a three-variable LSF: 

 𝑔𝑔 = 𝑅𝑅 − 𝑎𝑎𝑆𝑆𝑏𝑏𝜂𝜂 (12) 

where 𝑅𝑅 and 𝜂𝜂 are LN. If 𝑆𝑆 is taken to be the life-
time maximum spectral ordinate at a vibration pe-
riod 𝑇𝑇, 𝑆𝑆𝐿𝐿, its CDF can be derived from the mean 
annual rate of 𝑆𝑆, 𝜆𝜆𝑆𝑆(𝑠𝑠), or seismic hazard curve 
(SHC) under the Poisson assumption (probability 
of zero events): 

 𝐹𝐹𝑆𝑆𝐿𝐿(𝑠𝑠) = exp(−𝜆𝜆𝑆𝑆(𝑠𝑠)𝐿𝐿) (13) 

which is not any known analytical distribution be-
cause the SHC is the result of an integration over 
all magnitudes and distances that has no closed 
form solution. An approximation is thus needed. 
Franchin and Noto (2023), show two such approx-
imation, one as Fréchet, or extreme value (EV), 
Type II, the other as a LN. While EV models have 
long been known to be a good approximation 
(Cornell, 1968), the LN one is attractive because 
Eq.(12) would reduce again to a two-variable LSF 
with LN variables, for which the approximations 
presented in §1 hold. Since Franchin and Noto 
(2023) have already shown that the latter approx-
imation is acceptable (by comparing reliability re-
sults in the three-variable LSF with both demand 
models), only the LN one is considered herein. 

The LN fit can be written as: 

 𝐹𝐹�𝑆𝑆𝐿𝐿(𝑠𝑠) = Φ�
ln 𝑠𝑠−𝜇𝜇ln𝑆𝑆𝐿𝐿
𝜎𝜎ln𝑆𝑆𝐿𝐿

� (14) 

with parameters found performing a least square 
fit (𝑏𝑏0 = −𝜇𝜇ln𝑆𝑆𝐿𝐿 𝜎𝜎ln 𝑆𝑆𝐿𝐿⁄  and 𝑏𝑏1 = 1 𝜎𝜎ln 𝑆𝑆𝐿𝐿⁄ ): 

 𝑏𝑏0 + 𝑏𝑏1 ln 𝑠𝑠 + 𝜖𝜖 = Φ−1�𝐹𝐹𝑆𝑆𝐿𝐿� (15) 

It is intuitive and can be easily shown that 
𝜎𝜎ln𝑆𝑆𝐿𝐿  is inversely proportional to the hazard slope 
𝑘𝑘. The actual (inverse) proportionality coefficient 
depends on the fit interval. Numerical tests have 
shown that results are very limitedly impacted by 
this choice. Herein, the fit is carried out between 
𝜆𝜆𝑆𝑆 = 1 100⁄  and 1 2500⁄  years. Figure 1 shows 
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four SHCs (spectral acceleration at four vibration 
periods), top, and the corresponding distributions 
of the lifetime maximum 𝑆𝑆𝐿𝐿 , bottom, together 
with the LN approximation, for the site of L’Aq-
uila, Italy. Black horizontal lines mark the fit in-
terval, also highlighted with grey bands in the bot-
tom panel. 
 

 
Figure 1: 𝑆𝑆𝑎𝑎 at four vibration periods: seismic haz-
ard curves (top) and LN approximation to the corre-
sponding CDF of lifetime maximum 𝑆𝑆𝐿𝐿 (bottom). 
Solid and dashed lines denote numerical curves and 
approximations, respectively. Site: L’Aquila, Italy. 

 
If 𝑆𝑆𝐿𝐿  is modelled as LN, then 𝐸𝐸 = 𝑎𝑎𝑆𝑆𝐿𝐿𝑏𝑏𝜂𝜂  is 

also LN, with parameters: 

 𝜇𝜇ln𝐸𝐸 = ln 𝑎𝑎 + 𝑏𝑏𝜇𝜇ln 𝑆𝑆𝐿𝐿 (16) 

 𝜎𝜎ln𝐸𝐸 = �𝑏𝑏2𝜎𝜎ln 𝑆𝑆𝐿𝐿
2 + 𝜎𝜎ln𝐸𝐸|𝑆𝑆

2  (17) 

and Eq.(6)-(9) hold. 

2.4. Target reliability 
The target reliability index 𝛽𝛽𝑡𝑡  is needed for the 
considered reference period. If reliability over the 
lifetime 𝐿𝐿 is considered, then 𝛽𝛽𝐿𝐿,𝑡𝑡 can be specified 
directly, or indirectly in terms of the annual relia-
bility. It should be noted that the latter option is a 
possibility also for computing the actual reliabil-
ity, not just the target, i.e., computing the failure 
rate 𝜆𝜆 from the rate of all earthquakes times the 
probability of failure in one event, and using this 
with a Poisson assumption of failure occurrences. 
It involves, however, an approximation since fail-
ure events are not independent due to the common 
capacity and for this reason it has not been 
adopted. The approximation is inevitable, how-
ever, when establishing the target reliability if the 
starting point is the annual probability 𝑝𝑝1 . This 
was in fact the case for the draft EN1998, which 
specified 𝑝𝑝𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡 = 2 × 10−4/year for the Near 
Collapse (NC) limit state of ordinary, e.g., resi-
dential structures (CC2), Table 2. 

 
Table 2: Target reliability: 𝑝𝑝1 by LS & CC (× 10−4). 

LS CC1 CC2 CC3a CC3b 
NC 8,2 2,0 1,0 0,4 
SD 24,4 11,3 8,0 4,6 
DL 87,0 73,5 68,6 61,7 

 
Accounting for the numerical equivalence 𝑝𝑝1 =
𝜆𝜆 ≤ 0.1 (Der Kiureghian, 2005) one has: 

 1 − 𝑝𝑝𝐿𝐿 = e−𝜆𝜆𝜆𝜆 = �𝑒𝑒−𝜆𝜆�
𝐿𝐿

= (1 − 𝑝𝑝1)𝐿𝐿 (18) 

and the reliability index in 𝐿𝐿 years follows as: 

  𝛽𝛽𝐿𝐿 = −Φ−1(1− (1 − 𝑝𝑝1)𝐿𝐿) (19) 

Setting 𝑝𝑝1 = 𝑝𝑝𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡  and 𝐿𝐿 = 50  years, 
one gets 𝛽𝛽𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡 = 2.33, as shown in Table 3. 
The tables show also values for the other CCs and 
LSs (Significant damage, SD, and Damage Limi-
tation, DL). Apart from NC-CC2, where the start-
ing point is 𝑝𝑝𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡, all other values have been 
established inverting Eq.(22), from the appropri-
ate 𝛽𝛽𝑡𝑡. The latter have been established for each 
CC as a fraction (CC1) or a multiple (CC3a and 
b) of the corresponding CC2 value. They are sug-
gested in the code as default values but European 
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countries can change them as they wish, as they 
are in charge of safety in each respective territory. 
The only ‘stiff’ value is 𝛽𝛽𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶2,𝑡𝑡 = 1.6, for rea-
sons explained later. 

 
Table 3: Target reliability: β50,t by LS and CC. 

LS CC1 CC2 CC3a CC3b 
NC 1,75 2,33 2,56 2,91 
SD 1,20 1,60 1,76 2,00 
DL 0,38 0,50 0,55 0,63 

3. RELIABILITY ANALYSIS 
FORM analysis yields identical results when car-
ried out on the three-variable LSF in Eq.(12) or 
the two-variable LSF with LN variables with pa-
rameters in Eq.(16)-(17). Reference is thus made 
exclusively to the latter case in the following. 

Consider the NC limit state and CC2:  
𝛽𝛽𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡 = 2.33 and, consistently with EN1998, 
𝑇𝑇𝑅𝑅 = 1600 years. Figure 2a and b show the val-
ues of 𝛼𝛼𝑅𝑅 ,𝛼𝛼𝐸𝐸 obtained with Eq.(8) and the partial 
factors obtained with Eq. (6)-(7), respectively. 
They have been determined over the range of the 
hazard slope 𝑘𝑘 between 2 (high seismicity) and 4 
(low). As explained in detail in Franchin and Noto 
(2023), all other parameters (𝑘𝑘0,𝜎𝜎ln 𝑆𝑆𝐿𝐿 , etc) fol-
low. Further values considered are 𝜎𝜎ln𝑅𝑅= 0.2 and 
0.5 (representative of lower and upper bound un-
certainty on resistance for the models in EN1998); 
𝑏𝑏= 0.8 and 1.2 (𝑎𝑎 = 1.0, since it cancels out); 
𝜎𝜎ln𝐸𝐸|𝑆𝑆 = 0.3 (𝜂̂𝜂 = 1). Results are plotted versus 
𝜎𝜎ln𝐸𝐸  (see Eq.(17)). 

Figure 2a also reports average values 𝛼𝛼�𝑅𝑅 =
0.42  and 𝛼𝛼�𝐸𝐸 = −0.91  (dashed lines). These are 
equivalent to the well-known König and Hosser 
values 𝛼𝛼�𝑅𝑅 = 0.8 and 𝛼𝛼�𝐸𝐸 = −0.7, but reflect the 
much larger weight of 𝜎𝜎ln𝐸𝐸  with respect to 𝜎𝜎ln𝑅𝑅 
in the seismic case. Using these ‘seismic’ values 
to determine 𝛾𝛾𝐸𝐸 ,𝛾𝛾𝑅𝑅 leads to the reliability in Fig-
ure 2c, with deviations |Δ𝛽𝛽| ≤ 0.1 from 𝛽𝛽𝑡𝑡 (obvi-
ously using the exact values in Figure 2b gives 
𝛽𝛽 = 𝛽𝛽𝑡𝑡 ). These 𝛾𝛾𝐸𝐸  and 𝛾𝛾𝑅𝑅  (values reported in 
panel c) would therefore be an excellent solution 
to the problem, were not for the fact that current 
practice (at least in EN1998) does not include a 
load-side partial factor for the seismic action. 

What results would be obtaind if the seismic 
action effect was not amplified, i.e., 𝛾𝛾𝐸𝐸 = 1.0 . 
Figure 3 shows that, with 𝛾𝛾𝑅𝑅 = 1.5 and 2.7, for 
𝜎𝜎ln𝑅𝑅 = 0.2  and 0.5 , respectively, 𝛽𝛽  is within 
|Δ𝛽𝛽| = 0.2  of 𝛽𝛽𝑁𝑁𝑁𝑁,𝐶𝐶𝐶𝐶2,𝑡𝑡 = 2.33  and quite uni-
form, if not as close as in Figure 2c (recall, this is 
a single factor, not two), over the considered range 
of seismicity and nonlinearity in response. Is this 
a general result? What if 𝑇𝑇𝑅𝑅 or 𝛾𝛾𝑅𝑅 were different? 
The next section answers this question. 

 
Figure 2: FORM sensitivity factors (a), correspond-
ing partial factors (b), reliability index obtained with 
average values for 𝛼𝛼𝐸𝐸 and 𝛼𝛼𝑅𝑅 (c). 
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Figure 3:Reliability index obtained with 𝛾𝛾𝐸𝐸 = 1.0 
and 𝛾𝛾𝑅𝑅 = 1.5 and 2.7, for 𝜎𝜎𝑙𝑙𝑙𝑙𝑅𝑅 = 0.2 and 0.5, re-
spectively. 

4. SINGLE-FACTOR CODE PROPOSAL 
To provide a reliability close to the target and ap-
proximately uniform over the range of interest of 
𝜎𝜎ln𝐸𝐸  (i.e., 𝑘𝑘  and 𝑏𝑏 ), a corrected resistance-only 
partial factor is proposed, starting from: 

 𝛾𝛾𝑅𝑅∗ = exp(𝛼𝛼𝑅𝑅∗𝛽𝛽𝑡𝑡𝜎𝜎ln𝑅𝑅) = 𝛾𝛾𝑅𝑅𝛾𝛾𝐸𝐸 (20) 

Recalling Eq.(6)-(7) and, further, that 𝛼𝛼𝐸𝐸2 +
𝛼𝛼𝑅𝑅2 = 1 and 𝜅𝜅𝑅𝑅 = 0, 𝛾𝛾𝑅𝑅𝛾𝛾𝐸𝐸 can be written as: 

 𝛾𝛾𝑅𝑅𝛾𝛾𝐸𝐸 = exp(𝛽𝛽𝑡𝑡𝜎𝜎𝑡𝑡 − 𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸) (21) 
which leads to: 

 𝛼𝛼𝑅𝑅∗ = 𝛽𝛽𝑡𝑡𝜎𝜎𝑡𝑡−𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸
𝛽𝛽𝑡𝑡𝜎𝜎ln𝑅𝑅

= 𝛽𝛽𝑡𝑡+𝜅𝜅𝐸𝐸𝛼𝛼𝐸𝐸
𝛽𝛽𝑡𝑡𝛼𝛼𝑅𝑅

=
1+𝛼𝛼𝐸𝐸

𝜅𝜅𝐸𝐸
𝛽𝛽𝑡𝑡

�1−𝛼𝛼𝐸𝐸
2

 (22) 

This expression for 𝛼𝛼𝑅𝑅∗  depends on seismic-
ity, through 𝛼𝛼𝐸𝐸  and 𝜅𝜅𝐸𝐸 , which depend on 𝜎𝜎ln 𝑆𝑆𝐿𝐿 , 
and on 𝛽𝛽𝑡𝑡. Ideally, one would like 𝛼𝛼𝑅𝑅∗  to be con-
stant and site independent. Such an approximate 
value can be obtained as follows.  

First, a useful relation between 𝜅𝜅𝐸𝐸 and 𝜅𝜅𝑆𝑆 is 
derived. Taking the ratio of two alternative ex-
pressions of the demand fractile 𝐸𝐸𝑘𝑘: 

𝐸𝐸𝑘𝑘
𝑎𝑎𝑆𝑆𝑘𝑘

𝑏𝑏𝜂𝜂𝑘𝑘
= 𝑒𝑒𝜇𝜇ln𝐸𝐸+𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸

𝑎𝑎�𝑒𝑒𝜇𝜇ln𝑆𝑆+𝜅𝜅𝑆𝑆𝜎𝜎ln𝑆𝑆�
𝑏𝑏
1

= 𝑒𝑒𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸
𝑒𝑒𝜅𝜅𝑆𝑆𝜎𝜎ln𝑆𝑆𝑏𝑏

= 1 (23) 

since 𝐸𝐸� = 𝑎𝑎𝑆̂𝑆𝑏𝑏, i.e., exp(𝜇𝜇ln𝐸𝐸) = 𝑎𝑎 exp�𝜇𝜇ln 𝑆𝑆𝐿𝐿�
𝑏𝑏
, 

one gets: 

 𝜅𝜅𝐸𝐸 = 𝜅𝜅𝑆𝑆
𝜎𝜎ln𝑆𝑆𝑏𝑏
𝜎𝜎ln𝐸𝐸

= 𝜅𝜅𝑆𝑆�1 − �𝜎𝜎ln𝐸𝐸|𝑆𝑆

𝜎𝜎ln𝐸𝐸
�
2
 (24) 

Next, the site-independence is aimed at set-
ting to zero the derivative of (the argument of) 
Eq.(21), using (24) in the process: 

𝜕𝜕(𝛽𝛽𝑡𝑡𝜎𝜎𝑡𝑡−𝜅𝜅𝐸𝐸𝜎𝜎ln𝐸𝐸)
𝜕𝜕𝜎𝜎ln𝑆𝑆

= 0 → 𝜅𝜅𝑆𝑆
𝛽𝛽𝑡𝑡

= 𝑏𝑏𝜎𝜎ln𝑆𝑆
𝜎𝜎𝑡𝑡

 (25) 

Both Eq.(24) and (25) can be averaged over 
the already defined calibration space, getting 
𝜅𝜅𝐸𝐸 = 0.9𝜅𝜅𝑆𝑆  and 𝜅𝜅𝑠𝑠 𝛽𝛽𝑡𝑡⁄ = 0.79 . Replacing these 
values, as well as 𝛼𝛼𝐸𝐸  with 𝛼𝛼�𝐸𝐸 = −0.91 , in 
Eq.(22), leads to the sought constant value 𝛼𝛼𝑅𝑅∗ =
0.85. In other words, a single value of 𝛼𝛼𝑅𝑅∗  can be 
used, provided that the design action for each LS 
is linked to the target reliability. This can be done 
based on Eq.(13), (14) and 𝜅𝜅𝑠𝑠 𝛽𝛽𝑡𝑡⁄ = 0.79: 

 𝐹𝐹�𝑆𝑆𝐿𝐿(𝑠𝑠𝑘𝑘) = Φ(𝜅𝜅𝑠𝑠) = 𝑒𝑒−𝜆𝜆𝑆𝑆𝐿𝐿 = 𝑒𝑒−
𝐿𝐿
𝑇𝑇𝑅𝑅 (26) 

leading to: 

 𝑇𝑇𝑅𝑅 = − 𝐿𝐿
lnΦ(0.79𝛽𝛽𝑡𝑡) (27) 

Figure 4 confirms that using an arbitrary seis-
mic action leads to an average 𝛽𝛽 ≠ 𝛽𝛽𝑡𝑡, possibly 
non-uniform as a function of seismicity (for 𝑇𝑇𝑅𝑅 =
475 years 𝛽𝛽  decreases with increasing seismic-
ity), while using an action determined by Eq.(27) 
ensures uniformity with deviations |Δ𝛽𝛽| ≤ 0.2. 

 
Figure 4: Reliability index obtained using partial fac-
tors according to Eq.(20),𝛼𝛼𝑅𝑅∗ = 0.85 with 𝑇𝑇𝑅𝑅 arbi-
trary (475, 2500) or determined with Eq.(27). 
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Table 4 reports the values of 𝑇𝑇𝑅𝑅  obtained with 
𝜅𝜅𝑠𝑠 𝛽𝛽𝑡𝑡⁄ = 0.8  and further rounded for code use. 
𝑇𝑇𝑅𝑅 = 475 for SD and CC2 is the exception, it is 
𝛽𝛽𝑡𝑡 in Table 3 derived from it inverting Eq.(27). 

 
Table 4: 𝑇𝑇𝑅𝑅 of the seismic action by LS and CC. 

LS CC1 CC2 CC3a CC3b 
NC 600 1600 2500 5000 
SD 275 475 600 900 
DL 100 115 125 140 

5. CONCLUSIONS 
The second-generation EN1998 introduces dis-
placement-based design alongside the traditional 
force-based one. Further, unlike its first-genera-
tion counterpart, it declares explicitly the reliabil-
ity targets. The paper presents a partial safety fac-
tor format that can be used consistently for the de-
sign of new structures or the assessment of exist-
ing ones, while being also compatible with the 
format adopted for non-seismic design situations. 
The new format is a step forward in terms of trans-
parency on safety objectives and the actual uncer-
tainty in the resistance models. 
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