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ABSTRACT: Uncertainty characterisation and reliability analysis for high-fidelity models is often
prohibitive due to the large analysis efforts it demands. This is particularly prevalent in highly complex
systems that require costly simulations, such as that case of traffic networks. If reliability of traffic
networks is to be evaluated for different perturbations, regardless of how it is defined, then prohibitive
analysis times and efforts should be expected. Traffic networks are network systems composed of
multiple sub-systems and components. When changes in the system intrinsic variables occur, these
result in operational changes in the network that can only be understood in an holistic form.

In the present work, a perturbation-dependent fast reliability assessment is proposed. It considers
reliability as a variation in travel time to the reference time, which is often used to characterize
reliability in traffic. In the present work it is discussed in a full probabilistic context, with reliability
curves being characterised using a lower-fidelity model that uses a kriging-based sequential learning
approach approach. This metamodeling approach enables the characterisation of different levels of
reliability for a perturbation, through a N threshold modelling approach, that uses probability density
functions and that sets reliability curves in a form of a fragility curve. With such implementation it is
possible to enable a fast characterisation of reliability, and its probabilistic behaviour, in traffic. The
implementation is researched in two reference traffic networks with uncertain demands, and results
show that this technique can inform multiple purposes of decision-making, ranging from reduced order
modelling tools to operational management of the system.

1. INTRODUCTION

The probabilistic analysis of traffic involves char-
acterising the influence of its different uncertain-
ties with posterior quantification in a probabilistic
form of their effects on traffic performance. This
is done under a number of user demand and de-
fined origin destination trips. There are different
modelling approaches to traffic, nonetheless, and
regardless of the approach used, it can be said that
the more realistic traffic models become the more
time and effort-consuming is their analysis. This
results from increasing complexity in modelling, as
well as, larger data availability for the creation of

progressively more involved models. In practice,
this progressive increase in complexity makes prob-
abilistic approaches quite challenging in practice.
As a result there is a demand to enable, not only
accurate but also pragmatical modelling techniques
that allow to perform highly relevant probabilistic
evaluations in systems. Teixeira et al. (2022a) high-
lighted this before when discussing the relevance
of working at different fidelities to explore the full
potential of progressively more realistic compu-
tational models, e.g., digital-twins of engineering
systems. The same rationale is used in (Zhang et al.,
2023), where a high-fidelity model is used to ex-
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trapolate domains of operational conditions.

In the present work, modelling fidelities are ex-
plored to perform a probabilistic evaluation of traf-
fic, enabling damage-dependent reliability curves
that would be unpractical due to the sheer num-
ber of traffic simulations required to define these.
For such, simulated traffic is used to create an un-
certainty quantifier that uses a lower-fidelity meta-
model, a kriging, that allows, after efficiently de-
fined, to characterize levels of operational reliabil-
ity in a spectrum of perturbation scenarios at virtu-
ally no cost. For this approach to be efficient (in
effort and accuracy), and due to the complexity of
the simulation model, the approach to construct the
lower-fidelity model is key. Hence, an approach to
define a lower-fidelity surrogate that uses k-means
for exploration and uncertainty in the prediction for
exploitation of the uncertain variable space is pro-
posed to support a probabilistic evaluation of traf-
fic. It is then successfully implemented in two rep-
resentative traffic networks. In both case a user-
equilibrium is applied, that despite its medium fi-
delity, is a proxy for validation of the proposed ap-
proach, which is well-suited to more complex traf-
fic models.

1.1.  Traffic reliability

Nogal et al. (2019) discusses alternatives to de-
fine reliability in the context of transportation. Ac-
cording to Mattsson and Jenelius (2015), reliability
in transportation is related to the certainty and pre-
dictability of travel conditions, which can vary due
to a number of factors, such as, daily demand fluc-
tuations, weather conditions or perturbation with
non-natural causes. Transportation network relia-
bility can be measured in different forms and, such
as in most reliability problems, the separation be-
tween what is failure or not depends on the ratio-
nale that is applied. In transport networks, capac-
ity reliability (e.g., (Chen et al., 2002)), travel time
reliability (e.g., (Wakabayashi, 2012)) and connec-
tivity reliability (e.g., (Bell and Iida, 1997)) can be
identified.

In the present work, reliability is assessed us-
ing the travel cost, or travel time reliability (No-
gal et al., 2019). Its operational definition is as
follows; travel time reliability measures the feasi-
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bility that road users reach a destination within a
certain travel time under the operating conditions
encountered. To measure the reliability of a given
Origin-Destination (OD) pair ij or at the network
level, the actual travel cost experienced by users
travelling from origin(s) i to the destination(s) j, t;;,
is compared with the associated travel time in free
flow conditions, ;.

t;j(x) is the function that defines the travel cost
t;; for an uncertain operational condition x, where x
is a vector of size n that defines the number of traf-
fic network random or uncertain variables, such as,
capacities, number of users in OD pairs, uncertain-
ties related to choice of routes, traffic cost function,
among other. Then R;; is the reliability associated
with the OD pair(s) ij dependent on the x opera-
tional conditions,

t. .
R=Rijx) = tijl&)

)

that is upper bounded with the value of 1. Because,
as defined, R depends on x, then it is possible to
define the OD ij travel time reliability probabil-
ity density function pg(x) and cumulative density
function Pg(x), with reliability as in Equation (1).
This Pr(x) can be applied to solve an operational
probabilistic characterization problem considering
stochastic behaviour for x.

Having this representation of reliability has high
relevance for decision-making, because it can in-
form about deviations in the levels of reliability in
the network, or network members, if any imposed
or accidental changes occur.

Despite of high relevance, defining reliability
levels using a probabilistic approach that depends
on simulations of a high-fidelity model can become
challenging due to the large number of network per-
formance evaluations that may be required to ad-
dress the network’s multi-component probabilistic
functionality and dependence. This assessment, to
be feasible, demands the need to enable techniques
that facilitate its implementation; being one of the
most promising in this context the application of
multiple levels of fidelity in the simulation of traf-
fic performance.
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2. ON THE USAGE OF MULTIPLE LEVELS OF FI-
DELITY IN TRAFFIC

One important remark in the context of using
multiple-fidelities in the modelling of traffic is re-
lated to the existence of different alternatives that
can be potentially applied, each with its own as-
sumptions. In the present implementation meta-
models are applied, and a Kriging is implemented
due to its capability to act as a robust surrogate
of complex problems. Other alternatives exist
which are capable of performing as global surro-
gates. However, their applicability may depend
on the complexity of the function to be approxi-
mated. In traffic, the performance function depen-
dence on systems variables is expected to be highly
non-linear. In such cases, of high non-linearity,
kernel-based metamodels, such as the Kriging, have
proven to perform.

The idea of using multiple fidelities with a meta-
model is that of surrogating a performance function
f(x) dependence on variables x (in the case of prob-
abilistic analysis, uncertain variables x), that usu-
ally demands large efforts to be evaluated, with a
lower fidelity model G(x) that has adequate accu-
racy. The latter, can be used to approximate queries
of f(x) at virtually no cost. Such approach is highly
relevant in the context of probabilistic analysis, as it
allows to perform analyses that are frequently hin-
dered by large analysis efforts, such as probabilis-
tic analysis. This rationale is used to create an ap-
proach that allows to define traffic reliability curves
in a cost-effective manner for any intrinsic opera-
tional condition in the network (e.g., loss of func-
tionality in network links).

2.1.

Generating reliability curves using surro-
gates of traffic

In the context of using multiple fidelities with
metamodels, iterative experimental designs (EDs)
have proven to be highly effective for the develop-
ment of accurate surrogates. The significant interest
captivated by iterative EDs has generated a spec-
trum of methods for the creation of efficient sur-
rogates in different contexts. Iterative or sequen-
tial designs rely fundamentally in enriching a pre-
established ED, frequently in accordance with some
notion of improvement related to the metamodel
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expected performance in approximating a specified
function (Teixeira et al., 2022b). Recently the idea
of using learning functions to iteratively add new
points to the ED became popular. This approach,
which pursues to use the strictly necessary points
to set an accurate metamodel is frequently called to
as adaptive metamodeling. It is noted that in the
context of probabilistic assessment, several meth-
ods have been actively researching the unique char-
acter of this type of analysis, with global and lo-
cal metamodelling, or multi-fidelity approaches be-
ing used for this effect. As highlighted in (Teixeira
et al., 2022a) a choice of a global or local approach
may depend on the necessary responsiveness of the
decision-making scheme.

To define a lower-fidelity model, as a meta-
model, that is representative of the uncertain perfor-
mance of the traffic network with reference to dif-
ferent uncertain variables, a k-clustered approach
that builds on the uncertainty of the predictions
applied in (Teixeira et al., 2022b) is used. In it
S = [s1,82,...,sn] € R? is a Sobol Sequence of
size N in a d-dimensional space (representing the
number of support variables), with N being the ED
budget. Then an ED enrichment sequence based
on k-clusters §0:{1,.,_’k} = {59} C S, each S, with
J=A{1,...j1;5...;1... jx} elements, is used to con-
struct a X, € R that is a set of operational points
that considers traffic performance information and
that includes the most uncertain candidates in §0.

The X, is used to iteratively enrich a subset of
the S sample, Xi C S in iteration i, that defines a
low-fidelity model M;(x), that uses a kriging, and
that after a number of i is able to describe the prob-
abilistic performance of the network or any of its
ED considered components with low error. In con-
secutive 7, the progressively enriched sample X that
defines the kriging is built as,

Xip1 = {Xiyu{Xy} (2)
with

Xy, ={xo} €S, ={81,....5} 3)

and in each o cluster,

x, = argmax{n (M;(s}))In (Mi(S;)) > no} (4)
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with § = [S1,...,5)] being obtained by a k-cluster
classification of §' = {S§|n (M;(S)) > 1o} in itera-
tion 7 with
ML) = ol )
M)

and 1o being a threshold of uncertainty in the krig-
ing prediction. M* and MI® refer respectively to the
kriging mean prediction and standard deviation. X;
is updated with the additional points at i from X},
that are predicted by the model with +=Z margin of
uncertainty larger than 1, that is in relative devi-
ation to the mean prediction. Z relates to the un-
certainty of the prediction and at 1.645 provides a
a relative prediction deviation from the mean with
likelihood lower than 5%. ng, in the other hand,
will evaluate the probabilistic interest of new points
in the ED, avoiding simulating points that provide
limited information to the definition of the lower-
fidelity model in the current iteration. It encloses
the relative (maximum) deviation from the mean
that is accepted in accordance to the probabilistic
representation of Z.

the update of X continues until no further interest
in exploring and exploiting points in S is identified
as given by the kriging predictions, with,

max{n(M;-1(S5))} < 1o (6)

being true, where 7 is an evaluator of relative de-
viation from the mean. If this condition is true, the
M used to predict S is assumed to be an accurate
lower-fidelity model of the traffic network perfor-
mance indicator of interest.

The rationale for this approach is straightfor-
ward. Because performing the large number of
evaluations that characterize the probabilistic re-
sponse of a traffic network is costly, then there
is interest in replacing the traffic network perfor-
mance model with another model that is less costly
to evaluate. Therefore, defining a probability den-
sity function of any output of interest in this new
function can be done at virtually no cost. How-
ever, there is a need to ensure that this new func-
tion is an accurate representation of the higher fi-
delity traffic performance. For such, a series of per-
formance points are generated, randomly or quasi-
randomly, then an iterative search is conducted for
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Figure 1: Nguyen-Dupuis network as defined in the
present work.

the further performance points that enrich and im-
prove the accuracy of this secondary, lower-fidelity,
model. This avoids the simulation of points that
have limited contribution to improve the accuracy
of the metamodel, making its definition highly ef-
ficient. The k-clustered algorithm ensures efficient
exploration of the space (i.e. that new points are
further apart and cover the space of possible op-
erational points, ensuring global coverage of the
space) and the kriging uncertainty guarantees that
the new iterated points are of interest to improve
the accuracy of the currently built model. When
no further interest is identified, it is assumed that
the lower-fidelity model is an adequate approxima-
tion of the traffic network performance, and it can
be used to perform a probabilistic analysis. Such
performance is confirmed by the results obtained.

Figure 1 presents the traffic network used to build
a representative example of application of the ap-
proach presented, with results in Figure 2, where
the usage of an iterative design is illustrated. In
order to study the problem defined the traffic user
equilibrium model is applied.

In Figure 2, it is possible to infer the first two it-
erations of the search (I-II) for an accurate kriging,
with the (black) filled circles representing the sam-
ple X; and the (red) filled squares representing the
Xh,- for the current i (the coloured cross marks rep-
resent each a subset S where )A(hl. are selected), that
will define the i + 1 experimental design in II. It is
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possible to infer how the space of potential candi-
dates is constrained from I to II when the sample X
is enlarged.

dg 1
II - Tteration 2

0.1 0.2
dy-1

III - Total travel time curve
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Figure 2: Example of metamodel fit to a two-
dimensional example enclosing links 1 and 9 damage
in the ED, respectively d\_,9 and dy_,1, subscript node
direction travel. I-1I - Experimental design of iterations
1 and 2. 1l - Two-dimensional representation of the
variations in travel time, depending on dy_9 and dg_,.
1V - ED size and relationship to the Sobol sequence in
the present example metamodel definition.

In III it is possible to analyse the final converged
surrogate for the total travel time with reference to
changes in the capacity of the links 1 and 6, ac-
cording to Figure 2 nomenclature. In IV, the con-
vergence criteria results are evaluated, where the
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Experimental Design is halted after X has been ex-
tended to 31 points. It is noted that the initial space
is started with 6 points.

In the context of defining the surrogate, as the di-
mensions of the space are key in its capability to
approximate the traffic performance accurately and
convergence of the iterative approach used to de-
fine it, it sufficiently large enough initial sample X
is required, and hence an adopted size of at least
3d is recommended for reliable performance, with
d being the size of the dimensional space. Man-
ache and Melching (2008) use the same sample size
for the purpose of reliable validation of a sensitivity
analysis. Other al;alternative may consider an ini-
tial sample of Latin Hypercube Points, which was
identified before to provide an adequate global de-
scription of traffic networks (Martinez-Pastor et al.,
2020). After definition of an accurate lower fidelity
model of the network, it can be used to define prob-
ability distribution functions (PDFs) of the perfor-
mance dependence as a function of any uncertain
variables; using for example, Monte Carlo Simu-
lation (MCS). In Figure 3 the PDF of total travel
time with dependence on links 1, and link 9 is pre-
sented. These PDFs include the probabilistic re-
sponse of the traffic network performance (in travel
time) with respect to a uncertain number of users
in 15 of its Origin-Destination (OD) pairs. Users in
OD pairs are assumed to follow a normal distribu-
tion with Coefficient of Variation of 10%, and all
the variables are fitted in uniform space x € 0, 1.
All newly defined metamodel use a sample X of 51
function evaluations, defined at each level of link
damage (or reduction of capacity).

Results show good concordance of the PDFs for
the two cases. While the metamodel based PDF
only uses 51 evaluations (for each of I-1II) of the
traffic model simulation, each of the Real PDF uses
1250 function calls generated using MCS, making
it substantially more effort consuming. In practice
this has the potential to constitute a reduction of ap-
proximately % if the metamodel is defined
for different levels of damage in a single simulation,
with Nycs being the size of the Monte Carlo Sim-
ulation samples, and Nppr the number of PDF ex-
tracted in the analysis at different operational con-
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ditions. While it is noted that the traffic assignment
here used is already a simplified approximation of
more complex traffic models, this same rationale
can be used to model traffic in other more time con-
suming evaluation models, such as traffic modelling
that uses agents, and that are more representative of
what can be a digital-twin of a traffic network per-
formance in the future.

I - No link damage; size(X) =51

125 130 135
total travel time (h)

11 - dy 9 = 50%; size(X) =51

120

140

135 140 145
total travel time (h)

I0I - dy_9 = 70% and dy_,; = 30%; size(X) =51

130

150

145 150 155 160
total travel time (h)
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Figure 3: Prediction of the probability density func-
tion for the Nguyen-Dupuis network total travel time
considering three operational scenarios, and consider-
ing random number of OD users in 15 OD pairs. I - no
damage in the network. Il - 50% loss of capacity in the
link I connecting nodes 1 to 9 (d\_9). Il - 70% loss
of capacity in link 9 connecting nodes 9 to 1 (do_,),
combined with a 40% loss of capacity in link 1 that
operates the reverse direction (d_9).

In the present work, the Cuenca traffic network is
applied to illustrate how the proposed methodology
can be used to build perturbation dependent relia-
bility curves for traffic networks, that are a form of
fragility curve at different reliability levels. Gauchy
et al. (2022) use a similar rationale with a global
estimator that defines a fragility curve, using its un-
certainty also to characterize confidence intervals.
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3. REFERENCE EXAMPLE: MULTIPLE-LINK
RELIABILITY ANALYSIS FOR THE CUENCA

TRAFFIC NETWORK
In this example the Cuenca network is consid-

ered. Cuenca is a city in the south of Spain and
its network is composed of 232 nodes and 672
links. This same network was used earlier to study
link criticality in (Martinez-Pastor et al., 2022), and
considers 199 OD pairs in 207 routes. For the anal-
ysis performed a pair OD that has at least one al-
ternative route is selected. The Bureau of Public
Roads (BPR) function is applied to model the rela-
tionship between link service capacity, the demand
and travel time in each link, with oo = 0.286 and
B = 5.091 determining the shape of this function.
For effects of uncertainty quantification, a coeffi-
cient of variation of 5% is considered in both pa-
rameters.

Perturbation dependent reliability curves are
studied in three links, 425, 430 and 431, as part of
two routes through the mentioned OD, Figure 4 .

Reliability damage-dependence is studied con-
sidering uncertainty in the number of users that pass
through this OD pair (10% in coefficient of varia-
tion), and in the BPR shape parameters « and f3, as
referred.

The idea here is to study how uncertainty af-
fects the reliability of traffic for it, considering a
full probabilistic response. With the approach men-
tioned it is possible to define an accurate surrogate
for the three links considered in this analysis with
No = 0.1 using 845 evaluations of the traffic net-
work.

In Figure 5 it is possible to infer on the reliability
curves for link 430 (the second link in the 4 links
route of Figure 4). In this curve, each evaluation of
a damaged scenario implies sampling the PDF of
R to characterize the level of probability at which
a certain reliability is surpassed. Therefore, each
reliability curve at a certain value of R represents
a probabilistic transition of R with the reduction of
capacity. That is, below that least value of capacity
for which the probability P[R(x) > R] is larger than
0, the probability of the reliability being lower that
R is 100%. These curves are highly informative in
decision-making, if their definition is enabled. It
is interesting to note the increasingly faster transi-
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Cuenca Traffic Network

Figure 4: Cuenca network and reference OD pair re-
searched. Highlighted OD pair, routes and Links 425,
430, and 431.

tion (i.e. lower reduction of capacity is required)
that occurs for a certain value of R with decreas-
ing capacity, which is likely to be related to shape
of the travel cost function. To understand the de-
gree of complexity in defining these curves that re-
late the probability of R with decreases in capac-
ity, € 4, it is important to emphasize that for each
value of ', a MCS is required to describe the PDF
of R and hence quantify the probabilistic behav-
ior of it at different R thresholds. In practice, this
requires ¢t X Nycs samples, with ¢ being the num-
ber of reduction capacities to be inferred. In the
present case, because evaluations of the traffic per-
formance have zero cost in the lower-fidelity model
of the Cuenca, a fine resolution for the reduction
of capacity was used, with 160 values of %, being
used to draw these curves. In practice, and with-
out the use of a lower fidelity surrogate, more than
1 million evaluations of the Cuenca traffic network
model would be required to achieve the same level
of probabilistic significance, which is highly chal-
lenging in practice to do. If different links are con-
sidered in the analysis this becomes unfeasible.

It is noted that a surrogate can be defined for mul-
tiple links such that individual or coupled behavior
can be studied. In the present example, with 845
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Figure 5: Reliability curves for damage dependence, as
a form of capacity of link 430, in the network link.

evaluations of the network it is possible to define
the individual and coupled performance of the links
considered. In Figure 6 a mapping for coupled be-
havior of links with different reductions of capacity
is presented, where as expected the accuracy loss at
larger reliability is larger. The coupled effects are
not significant at lower reduction of capacity, how-
ever, when R < 0.7 the coupled effects of reduction
in capacity may have an impact of 100% or more in
the value of R (i.e. R becomes less than half due to
coupled effects than a same level of damage indi-
vidually considered in the link)

The present implementation is indicative of how
working with multiple fidelities may help decision-
makers to have insight into information that would
be unfeasible to obtain in a practical basis other-
wise.

4. CONCLUSIONS

The present work investigated how different fi-
delities of modelling can be paired to perform
highly effort consuming analysis in traffic net-
works, such as a probabilistic evaluation of traf-
fic reliability when defined as a fraction between
the free-flow travel time and the system state travel
time. An approach is proposed to define global sur-
rogates that define traffic reliability for a spectrum
of damage scenarios, that then form the basis of
the creation of damage-dependent reliability curves
for the network as whole, or individualised at com-
ponent level. Results show that only a fraction
of evaluations are necessary, when a lower-fidelity
model, in the present a kriging, is used to surrogate
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Figure 6. Reliability surface for coupled effects in Link
425, Links 430, and Link 431.

the higher-fidelity traffic model; enabling, an other-
wise, highly effort consuming computations of reli-
ability curves. Validation is made in two networks,
and the approach presented is shown to be an effec-
tive way to compute damage-dependent reliability
curves for traffic at virtually no cost and with high
accuracy, which are a powerful tool for decision-
making of damaged systems. Future works may
consider adaptive thresholds at different reliabil-
ity levels, such as considered in (Teixeira et al.,
2021) to enable an even further faster computation
of these curves, instead of using global sampling.
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