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ABSTRACT: Decision making in geotechnical engineering is characterized by considerable uncertainty.
To find optimal solutions in such an environment, an iterative decision-making process, which includes
new information as it becomes available, is required. In this contribution we extend the risk-based
framework of Bismut et al. (2023) for optimal planning of a geotechnical construction to include
predictions, which are based on a linear regression analysis of monitoring data. This approach is
illustrated for the design of a surcharge on an embankment in clayey soil, as the optimal preloading
sequence is searched. We demonstrate that by increasing the amount of information considered more
cost efficient strategies can be identified and outcome uncertainties can be reduced.

1. INTRODUCTION

Predicting the consolidation behavior of soils repre-
sents a major challenge to geotechnical engineers,
as it is subject to significant uncertainty. Reasons
are the lack of knowledge of prevailing soil con-
ditions, limitations in understanding the behaviour
of soil over time and predicting ground-structure
interactions. Considering the design of geotech-
nical structures, it is critical that such uncertain-
ties are understood and considered. In practice, the
observational method offers a pragmatic approach
to dealing with uncertainties in sequential manner
(Spross and Larsson, 2021). In some areas of engi-
neering, e.g., optimal inspection and maintenance
planning, sequential decision problems under un-
certainty are approached by formal decision anal-

ysis (e.g., Straub and Faber, 2005; Memarzadeh
et al., 2014; Wang et al., 2022). An example for
the design of a geotechnical structure under uncer-
tainty is the design of preloading with surcharge
and prefabricated vertical drains (PVD) for an em-
bankment on soft soil (see Figure 1). The predic-
tion of the long-term settlement of preloaded soils
is challenging. Geotechnical investigations are re-
quired to increase the knowledge of the prevailing
soil conditions. If epistemic knowledge uncertainty
is neglected in the design phase, excessive residual
settlements might occur after it has been taken into
service. In a risk-based approach to this problem,
engineers try to find an optimal preloading strategy,
which balances the risk of settlements with the ex-
pected construction costs.
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Figure 1: Preloading of an embankment with a sur-
charge of total height ∆H to accelerate consolidation.
Prefabricated vertical drains are omitted for clarity
(Bismut et al., 2023, CC-BY-4.0).

To address this challenge, Bismut et al. (2023)
proposed a risk-based decision-theoretic frame-
work to optimal sequential planning in geotech-
nical engineering. It allows to compare different
strategies, by quantifying the consequences of ac-
tions using a cost model and combining them with
a probabilistic geotechnical model. To optimise
the sequence of decisions a heuristic approach is
used (Bismut and Straub, 2021). This methodology
was applied to the embankment preloading prob-
lem, which can be modeled using the following de-
cision sequence: 1) initial surcharge height and 2)
later additions to the surcharge depending on the
observed settlements. The optimisation should en-
sure that the desired settlement is reached at mini-
mal expected costs. It results in a preloading strat-
egy that defines the initial surcharge height and a
possible increase in the surcharge height at a later
time dependent on a measurement outcome. The
approach uses the probabilistic geotechnical model
developed by Spross and Larsson (2021), which de-
scribes the long-term primary compression settle-
ment of an embankment with initial pre-loading and
PVDs.

While in Bismut et al. (2023) only a single mea-
surement is considered, in practice, settlement mea-
surements can be available at regular time intervals.
We refer to this case as continual monitoring.

In this work, the methodology is extended to
include predictions, which are based on continual
monitoring. We investigate the effect of this modi-
fied framework for the same embankment preload-
ing problem that was previously studied in Bismut

et al. (2023). The new approach is then compared
to the old framework.

2. ELEMENTS OF THE DECISION ANALYSIS

The underlying basic theory for the decision analy-
sis framework follows (Raiffa and Schlaifer, 1961).
It formalises decision problems under uncertainty
with varying information, which can be used to
find the optimal preloading strategy. The optimisa-
tion of the surcharge height strategies is framed as
a sequential decision problem influenced by mea-
surements of the embankment settlement during the
preloading phase.

A decision analysis under uncertainty is based on
a probabilistic model of the system, a model of the
decision alternatives and a utility or cost function.
In the following each model is introduced.

2.1. Probabilistic Model
A complete probabilistic model should not only
model the system behaviour, but also account for
the effects of actions affecting the system and re-
flect uncertainty in information collection, through
a likelihood function (Bismut and Straub, 2022).
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Figure 2: Sample soil settlement trajectories for an
initial surcharge h0 = 0[m] (no additional surcharge).
One such trajectory is highlighted in black.

2.1.1. Geotechnical Model
In the investigated engineering problem, we use
the soil consolidation model defined by Spross and
Larsson (2021). This geotechnical model describes
for an embankment with an added surcharge on
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top of prefabricated vertical drains (PVD), 1) how
the primary compression settlement develops with
time, and 2) the effect of the preloading on the
overconsolidation ratio (OCR). Sample trajectories
of the settlement obtained using the model are de-
picted in Figure 2.

The evolution of the consolidation depends on
parameters for the soil properties and PVD design.
In this soil consolidation model the soil parameters
are modelled as random variables with an associ-
ated probability distribution, which is obtained by
means of constant-rate-of-strain (CRS) oedometer
tests or, in cases of lack of data, defined based on
engineering judgement. The PVD model is based
on the work of Hansbo (1979). The detailed de-
scription of the model is provided in Spross and
Larsson (2021).

2.1.2. Settlement and OCR requirements

Spross and Larsson (2021) also define performance
criteria, based on which preloading decisions can
be evaluated. To ensure sufficient consolidation
such that the embankment can be taken into service,
settlement and OCR targets are defined.

The settlement target starget is defined such that
the long term settlement S∞ caused by the load of
the completed embankment ∆σemb does only ex-
ceed a residual (post-construction) primary consol-
idation settlement with an acceptable probability
pFT . In the numerical investigations, pFT is set to
5% to reflect a serviceability limit state. Thereby,
starget to be reached within the available preload-
ing time, can be obtained as the quantile value cor-
responding to pFT of samples of the S∞(∆σemb).
If starget is not reached for a preloading strategy,
penalties due to projects delays or structure dam-
ages occur.

The overconsolidation ratio quantifies the effect
of secondary consolidation in soils. To avoid any
negative impact from this type of consolidation, the
OCRtarget should be reached in the middle of the
soft soil stratum at the moment of unloading the
surcharge. In this paper, we define OCRtarget =
1.10 in line with the general technical requirements
and guidance for geotechnical works issued by the
Swedish Transport Administration (2013a,b).

2.1.3. Observations

The probabilistic consolidation model described
above can be used to obtain information on the state
of the system in form of a measurement Mti of the
settlement Sti at time ti. The value of Mti includes
an additive measurement error ε:

Mti = Sti + ε (1)

2.2. Cost function

To represent the preferences of the decision maker,
the outcome of a decision is evaluated in terms of
utility (Fishburn, 1970). In this work, we express
utility in terms of costs associated with the actions
and the systems performance. The optimal decision
can be identified as the one which minimizes the
total expected cost.

For the considered engineering problem, we have
identified three cost components, the sum of which
results in the total cost Ctot

Ctot = ∑
i

Csur,i +Cdelay +COCR. (2)

The first cost component Csur,i quantifies the cost
of adding a surcharge of the height ∆Hi (see Fig-
ure 1). The term accounts for all the costs surround-
ing the construction of the surcharge and includes
material costs, mobilization costs, material avail-
ability at the time of the decision, and the need for
berms for slope stability.

The second cost component Cdelay is used to ex-
press the penalty for cases when the settlement tar-
get starget is not reached within a required time pe-
riod. As it is crucial that starget is reached before the
embankment can be taken into service, the penalty
is proportional to the additional time required for
reaching it.

To quantify the consequences of reaching insuf-
ficient overconsolidation at time of unloading, we
introduce the third cost component COCR. By not
reaching OCRtarget the probability for residual sec-
ondary consolidation settlement (creep) during the
lifetime of the embankment is high. This damage is
not critical for structural safety, but negatively im-
pacts the serviceability of the superstructure.
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Figure 3: Influence diagram for the DS presented in Section 2.3. We note that interactions between different deci-
sions on surcharge height are represented in a simplified manner.

2.3. Decision setting and decision alternatives
Decision settings (DS) for finding the optimal sur-
charge strategy can be defined. For this, operational
constrains and the complexity of the decision se-
quence have to be considered.

In this contribution, a decision setting is analysed
in which the initial surcharge of the height ∆H0 is
fixed in the beginning. Afterwards, there is one op-
portunity at time t1 to increase the surcharge height
to ∆H1. The adjustment is based on a series of mea-
surements taken up to the point t1. In the numerical
example, the time between measurements is set to
one week. The influence diagram of the DS can
be seen in Figure 3. This DS will be compared to
the decision settings from our previous work, where
only a single measurement was considered.

2.4. Optimal decision
The goal of the optimisation is to identify the deci-
sion sequence with the lowest expected cost. This
is a non-trivial task, because of the uncertain nature
of the soil which results in an uncertain total cost.

For this particular sequential decision problem,
the optimal action can be identified after observing
the evolution of the system state over time. A func-

tion is required, which extracts information from
the observations and transforms them into (optimal)
actions. This function, which is a mapping from ob-
servations to actions, is called decision rule or pol-
icy. Finding optimal policies is computationally ex-
pensive and exact solutions become intractable with
increasing number of decision steps (Papadimitriou
and Tsitsiklis, 1987).

One approach to solving general sequential deci-
sion problem, is by defining preloading strategies S,
which describe a sequence of decisions for the pro-
posed problem. A strategy contains a set of rules
for any time step, which specify by how much the
surcharge height should be increased, based on in-
formation extracted from observations. For our spe-
cific decision setting, it prescribes the initial sur-
charge height at time t = 0 and the time t1 at which
a decision on the adjustment of the surcharge height
should be made. It also includes rules based on
measurements that specify if the surcharge height
should be increased and by what amount.

From Equation (2) one obtains the expected total
cost associated to a preloading strategy E [Ctot(S)]
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as

E [Ctot(S)]=E[Csur(S)]+E[Cdelay(S)]+E[COCR(S)]
(3)

where for the preloading strategy S: E[Csur(S)] is
the total expected surcharge cost, E[Cdelay(S)] ex-
pected delay cost and E[COCR(S)] expected cost of
creep.

The optimal preloading strategy S∗ is the
preloading strategy which minimizes the expected
total cost

S∗ = argmin
S

E [Ctot(S)] . (4)

The expected total cost of a strategy can usually
not be evaluated analytically. Instead we utilize
a Monte Carlo (MC) approximation. Using the
geotechnical model of (Spross and Larsson, 2021),
we generate nMC random settlement trajectories
St

(k), and the overconsolidation ratio at unloading,
OCR(k)

f in, in function of the surcharge heights. Us-
ing the cost model defined in Equation (2), the cost
of each trajectory can be computed. Therefore, the
MC approximation of the expected total cost is

E [Ctot(S)]≃
1

nMC

nMC

∑
k=1

C(k)
tot (S). (5)

2.5. Heuristic Approach
As the solution space of Equation (4) is infinite-
dimensional, an exact solution is generally in-
tractable. Therefore, to find the optimal sequence
of decision, we employ a heuristic approach fol-
lowing Bismut and Straub (2022). In the heuris-
tic approach, the problem complexity is reduced by
restricting the number of considered strategies. By
means of predefined parameters w= [w1;w2; ...;wn]
a set of rules can be defined, to which a strat-
egy must adhere. The heuristic parametrisation
of a problem enables the encoding of engineering
knowledge and operational constraints. The sim-
plicity of the heuristic rules has the added benefit
that the resulting strategies can be interpreted from
a geotechnical point of view. However, the heuris-
tics should be defined carefully to ensure that the
identified solutions are near-optimal strategies.

The optimal heuristic strategy w∗ is given as the
set of parameter values which minimise the ex-
pected cost

w∗ = argmin
w

E [Ctot(S(w))] . (6)

To solve this problem, we employ an efficient cross-
entropy (CE) based optimisation (Rubinstein and
Kroese, 2004; Bismut et al., 2022). It enables
to find solutions for noisy optimisation problems.
Here, the objective function evaluations are subject
to noise because of the MC approximation error.

2.6. Linear Regression
To extract information from the observation data,
linear regression analysis is performed. A multiple
linear regression model is defined as follows

y = β0 +∑
i

βixi + ε (7)

with βi as the regression coefficients and an error
term ε .

For the embankment problem, the regression
analysis is used to predict the settlement at time of
unloading tmax (the response variable y) based on
settlement measurements (the predictors xi). An ex-
ample is illustrated in Figure 4, where a regression
model is used to predict Stmax based on 5 measure-
ment points. In this specific case, there is a pre-
diction error of 0.1m. One common way to in-
crease the accuracy of the prediction is to increase
the number of used predictors xi.
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Figure 4: Prediction of the settlement at t = 72[week]
based on 5 measurement points using a regression
model.
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3. NUMERICAL INVESTIGATION
3.1. Problem setting
The numerical investigation in this work is per-
formed on the example presented in Spross and
Larsson (2021). Using pFT = 5% we obtain a set-
tlement target starget = 1.27[m].

Table 1: Parameters of the cost model

Cost factor Value
csur 3.45 ·106[SEK/m]

cdelay 3 ·105[SEK/week]
cOCR 2 ·107[SEK]
fadd,0 1
fadd,1 1
tmax 72[weeks]

3.2. Cost model
The cost components of the cost function described
in Section 2.2 for this specific problem, defined in
Bismut et al. (2023), are presented here.

The cost of adding surcharge is quantified in the
component Csur,i. It includes the construction costs,
as well as the cost of ensuring slope stability with
berms. If one considers the total surcharge height
Htot the cost is defined as

Csur(Htot) =

{
Htot · csur if Htot ≤ 1m
1.25 ·Htot · csur otherwise.

(8)

To account for potential added costs in the case of
adding surcharge ∆Hi at a later time t > 0, we in-
troduce the factor fadd,i ≥ 1 such that

Csur,i(∆Hi)= (Csur(Htot +∆Hi)−Csur(Htot))· fadd,i.
(9)

The second cost component, Cdelay quantifies the
cost of project delay, which occurs when settlement
does not reach starget within the project specific
preloading time, tmax, (ttarget > tmax) or is unable to
meet starget at all in reasonable time (ttarget > tlim).
Thus, the cost is defined as

Cdelay(ttarget) ={
0 if ttarget ≤ tmax

cdelay · (min(tlim, ttarget)− tmax) otherwise,
(10)

where cdelay represents the penalty per week of de-
lay.

The third cost component COCR quantifies the
cost associated to residual creep settlement due to
insufficient OCR after the embankment has been
taken into service. We use a logistic function to
encode the correlation between overconsolidation
ratio at time of unloading OCR f in and the amount
of residual settlement to occur. Thus, we have

COCR(OCR f in) =
cOCR

1+ exp
(
−1.075−OCR f in

4.5·10−3

) . (11)

The cost factors csur, cdelay and cOCR and the avail-
able preloading time tmax for the numerical investi-
gation are given in Table 1.

3.3. Heuristic parametrisation
The novelty of this work is in investigating the
heuristic for the decision setting where continual
monitoring of the settlement in considered. We re-
fer to this heuristic as Heuristic 4 and compare it
to the heuristics 1 and 3 defined in (Bismut et al.,
2023).

Heuristic 4
Optimised parameters: h0 ≥ 0, sth ≥ 0, a≥ 0,
b ≥ 0, t1 ∈ {1,2,3, ..., tmax}

1. At time t = 0, add surcharge of height
∆H0 = h0

2. Obtain weekly measurements mi + ε up
to time t1.

3. Predict settlement spred
tmax at time tmax us-

ing measurements mi as an input to the
linear regression model

4. Compute d = starget − spred
tmax

5. Add surcharge

∆H1 =

{
0, d ≤ 0
ln(d ∗a+1)∗b, d > 0.

.

In this case the preloading strategy starts with
specifying an initial surcharge height h0. Measure-
ments mi are taken in weekly time steps up until the
decision time t1. The optimisation searches a de-
cision time which balances the collection of infor-
mation with performing the mitigation action early

6



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

enough. For example, the later the decision time,
the more information is collected. However, the
remaining time until unloading at tmax is shorter.
Based on these measurements, a predictor func-
tion, obtained using regression analysis, predicts
the settlement at tmax. The prediction is compared
to starget . Depending on the difference d between
the two, the strategy adjusts the height of the added
surcharge using a exponential function, character-
ized by the parameters a and b.

3.4. Linear regression
Regression analysis requires a data-set of response
variables and associated predictors to be trained. To
create this a data-set we use the probabilistic model
presented in Section 2.1.1. To learn the behaviour
of the soil we simulate 10 000 sample settlement
trajectories for an embankment without preloading.
In this specific case, the response variable y is the
settlement at time tmax and the predictors xi are set-
tlement measurements. Thus, the linear regression
model gives a prediction of the settlement spred

tmax at
time tmax based on measurements Mi up to the point
t1.

4. RESULTS

The optimal parameter values for the heuristic for
the presented cost model are obtained with the CE
method. In this work we analysed two variations:
first, we consider observations without measure-
ment errors (results in Table 2). This can be com-
pared to our previous work, where the same ap-
proach was used. Secondly, we consider observa-
tions with measurement errors (see Table 3) and
analyse their impact on the optimisation problem.

4.1. Comparison to previous work
The results of the optimisation for measurements
without measurement errors are presented in Ta-
ble 2. We consider two heuristics from our previ-
ous work. Heuristic 1 is the reference case from
our previous work, which optimizes the initial sur-
charge height without allowing any surcharge ad-
justment at a later stage. Heuristic 4 is a simpli-
fied version of the new heuristic proposed in this
study, which uses a single measurement at t1 to de-
cide whether ti adjust the surcharge height instead

of considering all measurements up to that point.
The coefficient of variation of the total cost for the
optimal strategies varies between 80−90%, which
results in a standard error of the MC estimated ex-
pected cost of ≤ 1%. This is a high enough ac-
curacy, to evaluate the heuristics according to the
estimated expected costs.

The optimal surcharge strategy for our new ap-
proach, Heuristic 4, shows a clear improvement to
our previous best heuristic, Heuristic 3. By in-
cluding more information in the decision process,
a strategy with 2% less cost is obtained. However,
more interesting is that the coefficient of variation
is reduced by about 10%. This indicates that by
increasing the amount of considered data in the de-
cision making process, uncertainties of the final ex-
pect cost can be significantly reduced.

4.2. Measurement error
In the second analysis the influence of measurement
errors is analysed. The results of this optimisation
are presented in Table 3. To simulate imperfection
during measurements, we define a Gaussian distri-
bution ε ∼ N(µε ,σ

2
ε ) with µε = 0[cm] and a stan-

dard deviation σε ∈ [0.01,0.02,0.03]. The predictor
is trained using measurements which contain mea-
surement errors. Table 3 shows that even by intro-
ducing a measurement error, preloading strategies
that are at least 10% better than the reference case
(no adjustment of the surcharge) are obtained. With
a larger measurement error the expected cost of the
identified optimal strategy also increases. The in-
creasing noisiness of the data, increases the diffi-
culty for the predictor to learn the underlying be-
haviour of soil. For best results with this method,
adequate data quality is required.

5. CONCLUSION

In this paper, we extended the methodology based
on heuristics for finding optimal preloading strate-
gies for a geotechnical problem defined by Bismut
et al. (2023), such that a continual data stream can
be integrated in the decision making process. The
analysis showed the potential of data-driven reduc-
tion of uncertainties in the decision making process
for geotechnical problems.
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Table 2: Optimal heuristic parameters and associated expected costs

Parameter Unit Heuristic 1 Heuristic 3 Heuristic 4
h0 [m] 1.05 0.95 0.99
a [m] - −0.28 2.95
b [m] - - 1.98
t1 [weeks] - 20 13
Expected cost [106SEK] 8.11 6.06 5.94
Std. dev. cost [106SEK] 7.4 5.6 4.84

Table 3: Optimal heuristic parameters and associated expected costs for different measurement errors.

Parameter Unit Heuristic 1 Heuristic 4
σε [cm] - 0 0.01 0.02 0.03
h0 [m] 1.05 0.99 0.99 1.08 1.00
a [m] - 2.95 1.57 3.22 1.34
b [m] - 1.98 3.1 1.80 1.17
t1 [weeks] - 13 14 18 13
Expected cost [106SEK] 8.11 5.94 7.01 7.11 7.33
Std. dev. cost [106SEK] 7.4 4.84 4.81 4.91 5.56
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Bismut, E., Cotoarbă, D., Spross, J., and Straub,
D. (2023). “Optimal adaptive decision rules in
geotechnical construction considering uncertainty
[manuscript submitted to a scientific journal].

Bismut, E. and Straub, D. (2021). “Optimal adaptive
inspection and maintenance planning for deteriorating
structural systems.” Reliability Engineering & System
Safety, 215, 107891.

Bismut, E. and Straub, D. (2022). “A unifying review
of NDE models towards optimal decision support.”
Structural Safety, 97, 102213.

Bismut, E., Straub, D., and Pandey, M. (2022). “Inspec-
tion and maintenance planning of a feeder piping sys-
tem.” Reliability Engineering & System Safety, 224,
108521.

Fishburn, P. C. (1970). “Utility theory for decision mak-
ing.” Report no., Research analysis corp McLean VA.

Hansbo, S. (1979). “Consolidation of clay by band-
shaped prefabricated drains.” Ground Engineering,
12(5), 16–25.

Memarzadeh, M., Pozzi, M., and Kolter, J. Z. (2014).
“Optimal planning and learning in uncertain environ-
ments for the management of wind farms.” Journal of
Computing in Civil Engineering, 29(5), 04014076.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). “The
complexity of Markov decision processes.” Mathe-
matics of operations research, 12(3), 441–450.

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical
Decision Theory. Harvard Business Review Press,
Boston, MA.

Rubinstein, R. Y. and Kroese, D. P. (2004). The cross-
entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine
learning. Springer Science & Business Media.

Spross, J. and Larsson, S. (2021). “Probabilistic obser-
vational method for design of surcharges on vertical
drains.” Géotechnique, 71(3), 226–238.

Straub, D. and Faber, M. H. (2005). “Risk based in-
spection planning for structural systems.” Structural
Safety, 27(4), 335–355.

Swedish Transport Administration (2013a). “TK Geo
13: Trafikverkets tekniska krav för geokonstruk-
tioner.” Report No. TDOK 2013:0667, Borlänge,
Sweden: Trafikverket (Swedish Transport Adminis-
tration).

Swedish Transport Administration (2013b). “TR Geo
13: Trafikverkets tekniska råd för geokonstruktioner.”
Report No. TDOK 2013:0668, Borlänge, Sweden:
Trafikverket (Swedish Transport Administration).

Wang, Y., Zechner, M., Mern, J. M., Kochenderfer,
M. J., and Caers, J. K. (2022). “A sequential decision-
making framework with uncertainty quantification for
groundwater management.” Advances in Water Re-
sources, 166, 104266.

8


	Introduction
	Elements of the decision analysis
	Probabilistic Model
	Geotechnical Model
	Settlement and OCR requirements
	Observations

	Cost function
	Decision setting and decision alternatives
	Optimal decision
	Heuristic Approach
	Linear Regression

	Numerical Investigation
	Problem setting
	Cost model
	Heuristic parametrisation
	Linear regression

	Results
	Comparison to previous work
	Measurement error

	Conclusion
	REFERENCES

