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ABSTRACT: Accurate and efficient rare event uncertainty quantification is of ever-increasing signifi-
cance, including for natural hazard cases characterized by substantial dynamic loads. In this work, our
computationally efficient framework for precisely estimating rare events probabilities, termed Approxi-
mate Sampling Target with Post-processing Adjustment (ASTPA), is further examined and demonstrated
to maintain its effectiveness and applicability even on complex first-passage dynamic problems. The
ASTPA framework weighs the multi-dimensional random variable space by a cumulative distribution
function that utilizes the limit-state expression, to construct an approximate sampling target distribu-
tion. While any appropriate sampling scheme can be used to sample this constructed target distribution,
Hamiltonian Markov Chain Monte Carlo (HMCMC) samplers have shown notable efficiency in this task,
particularly our developed Quasi-Newton mass preconditioned Hamiltonian MCMC (QNp-HMCMC)
approach. Given that the acquired samples are drawn from an approximate target, a post-processing
adjustment is performed through a devised original inverse importance sampling (IIS) procedure. The
capabilities and efficiency of the discussed approach are demonstrated and compared against the Subset
Simulation method in a series of high-dimensional, non-linear, stochastic dynamic problems.

1. INTRODUCION

In this work, we investigate the application of
our developed Hamiltonian MCMC-based frame-
work for estimating first-passage probabilities of
complex dynamic systems. These systems are of-
ten described by high-dimensional random vari-
able spaces, due to the system’s inherent uncer-
tainties and the random variables involved in sim-
ulating the dynamic excitations as stochastic pro-
cesses. Despite many advances in the field of
computational reliability analysis, efficient first-
passage probabilities estimation remains a sig-
nificant challenge (Andrieu-Renaud et al., 2004;

Song and Der Kiureghian, 2006; Zhang et al.,
2017). As a step towards universally addressing
this challenge, we employ our computationally ef-
ficient framework, termed Approximate Sampling
Target with Post-processing Adjustment (ASTPA),
which has demonstrated exceptional performance
in general static problems, including challenging
cases of high-dimensionality, multi-modality, non-
Gaussianity, and very small probabilities (Papakon-
stantinou et al., 2022, 2023).

The ASTPA framework, as its name suggests,
consists of two main stages: (i) constructing and
acquiring samples from the approximate sampling
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target, and (ii) performing a post-processing adjust-
ment to compute the unbiased target probability.
The approximate sampling target, generally con-
structed utilizing a cumulative distribution function
and the limit-state expression, successfully places
greater importance on the relevant regions of inter-
est in the random variable space and manages to ac-
cordingly guide the related samples. Hamiltonian
Markov Chain Monte Carlo (HMCMC) samplers,
particularly our developed Quasi-Newton mass pre-
conditioned Hamiltonian MCMC (QNp-HMCMC)
approach, have shown notable efficiency in sam-
pling this constructed target distribution. After ac-
quiring the samples, the approximate sampling tar-
get must be appropriately normalized to correctly
compute the target probability. This is achieved
through the post-processing adjustment step using
a novel inverse importance sampling (IIS) proce-
dure, that utilizes an importance sampling density
properly suggested based on the already acquired
HMCMC samples.

The focus of this work is on further utilizing
the ASTPA framework in estimating first-passage
probabilities of complex dynamic problems,
described in both Gaussian and non-Gaussian
stochastic spaces. The ASTPA framework’s
ability to directly work on non-Gaussian spaces
is advantageous in scenarios where the transfor-
mation to the favorable and preferred Gaussian
space cannot be achieved. Finally, the capabilities
and efficiency of the discussed framework are
demonstrated and compared against the Subset
Simulation method (Au and Beck, 2001) in a
series of high-dimensional, nonlinear, stochastic
dynamic problems, involving model uncertainties
and stochastic processes expressed through white
noise, Karhunen-Loève (K-L) expansion, and the
Spectral Representation Method.

2. FIRST-PASSAGE PROBABILITIES
The first-passage probability is defined by the

probability that the interested response of a stochas-
tic dynamic system, Z(t,θθθ), reaches or exceeds a
prescribed threshold, λ , for the first time within a
given time interval [0,T ]. The first-passage proba-
bility PF is hence expressed as:

PF = Pr{Z(t,θθθ)≥ λ , ∃t ∈ [0,T ]} (1)

where Pr is the probability operator; θθθ is a time-
independent random parameter vector [θ1, ...,θd]

T ,
describing the dynamic system; F ⊂ Rd is the tar-
geted rare event in the parameter space. Since the
occurrence of the rare event is indicated by any at-
tainment or surpassing of the prescribed threshold
λ , the first-passage probability can be rewritten as:

PF = Pr{max
t

Z(t,θθθ)≥ λ , ∃t ∈ [0,T ]} (2)

The system performance is thus typically described
using a limit state function g(t,θθθ), defined as:

g(t,θθθ) = λ −Z(t,θθθ) (3)

Eq. (2) can be then accordingly expressed as:

PF = Pr{min
t

g(t,θθθ)≤ 0, ∃t ∈ [0,T ]}

= Pr{G ≤ 0}
(4)

where G = mint∈[0,T ] {g(t,θθθ)}. Therefore, the first-
passage probability can be computed as a d-fold in-
tegral, as:

PF = EπΘ
[IF(θθθ)] =

∫
G≤0

IF(θθθ)πΘ(θθθ)dθθθ (5)

where I(.) is the indicator function with: IF (θθθ ) =
1 if θθθ ∈ G ≤ 0 and IF (θθθ ) = 0 otherwise; E is the
expectation operator, and πΘ is the joint probability
density function (PDF) for Θ.

In rare events, the first-passage probabilities are
typically very small, e.g., in order of PF ∼ 10−4 −
10−9. Given that complex engineering systems are
often described by high-dimensional random vari-
able spaces, and are computationally expensive,
using direct Monte Carlo approaches to evaluate
such probabilities through the described integra-
tion in Eq. (5) is generally infeasible, due to the
prohibitive number of required system evaluations
(model calls), and the associated high coefficient of
variation (C.o.V).

Importance sampling (IS) is a well-known, com-
putationally efficient, variance-reduction approach
capable of computing such integrals. The IS ap-
proach involves sampling from an alternative sam-
pling density, referred to as the importance sam-
pling density (ISD), h(θθθ), that places greater im-
portance on regions of interest in the random vari-
able space. This results in an increased number of
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samples being drawn from these regions, thereby
reducing the number of required model calls. The
IS estimate of Eq. (5) is formulated as:

PF =
∫

G≤0
IF(θθθ)

πΘ(θθθ)

h(θθθ)
h(θθθ)dθθθ

= Eh(θθθ)[IF(θθθ)
πΘ(θθθ)

h(θθθ)
]

(6)

A theoretically optimal ISD can be given by (Bion-
dini, 2015):

ĥ(θθθ) =
1

PF
(IF(θθθ)×πΘ(θθθ)) (7)

Yet, it is evident that this ISD cannot be utilized due
to the fact that the normalizing constant in Eq. (7)
is the sought target probability PF. The disconti-
nuity and non-smoothness of the indicator function
also impose significant sampling challenges, partic-
ularly in cases of high dimensionality and/or multi-
modality. As a near optimal ISD is generally con-
sidered beneficial, numerous methods have been
proposed for approximating the theoretically opti-
mal ISD, such as (Papaioannou et al., 2019). The
ASTPA framework, however, offers an alternative
approach by directly constructing an unnormalized
sampling target in a distinct context, as discussed in
subsequent sections.

3. APROXIMATE SAMPLING TARGET
WITH POST-PROCESSING ADJUST-
MENT (ASTPA)

The proposed ASTPA framework consists of two
main stages. The first stage involves constructing
and sampling an approximate sampling target, fol-
lowed by a post-processing adjustment step to com-
pute an unbiased target probability.

3.1. Approximate Sampling Target
In accordance with the previous discussion on

the optimal ISD, we analyze here our approach
to construct an unnormalized sampling target. It
should be noted that after acquiring the samples,
this sampling target is appropriately normalized, to
correctly compute the target probability. The main
idea of our approach is to replace the indicator func-
tion in Eq. (7) with a one-dimensional likelihood

function ℓgθθθ
, using the limit-state expression g(θθθ);

t is dropped here for generalization purposes. This
smoothening of the indicator function has already
been suggested and explored in the literature (Pa-
paioannou et al., 2019), albeit in a completely dif-
ferent context. The likelihood function is then ex-
pressed here as a logistic CDF, Fcd f , with mean
= µg(θθθ) and a dispersion factor σ :

ℓgθθθ
= Fcd f

(
−g(θθθ)

gc

 µg(θθθ), σ

)
=

1

(
1+ e

((g(θθθ)
gc

)+µg(θθθ)

(
√

3
π
)σ

)) (8)

where gc is a scaling constant. The main reason for
this general scaling, g(θθθ)/gc, is in order to conform
the likelihood scale with the density of the sampling
space.

Removing the normalizing term (1/PF), and re-
placing the indicator function with the likelihood
function ℓgθθθ

, Eq. (7) is then written as:

h̃(θθθ) = ℓgθθθ
×πΘ(θθθ) (9)

where h̃(θθθ) represents the approximate sampling
target. The suggested likelihood function places
greater importance on the rare event domain, i.e.,
for θθθ ∈ g(θθθ)≤ 0, similar to the indicator function.
In contrast, ℓgθθθ

is smooth, continuous, and sup-
ported in the entire random variable space, thereby
allowing the use of any appropriate sampling tech-
nique to sample the constructed sampling target.
Having the total number of model calls in mind, as
well as the coefficient of variation of the estimator
(C.o.V), the suggested value for σ is deemed to be
in the range [0.2 0.8]. The mean parameter µg(θθθ) is
determined by placing a recommended percentile,
p = 0.1, of the logistic CDF on the limit-state sur-
face g(θθθ) = 0 (see (Papakonstantinou et al., 2023)
for more details).

3.2. Post-processing Adjustment
To finally compute the first-passage probability,

we have to adjust the IS estimate in Eq. (6), to con-
sider the fact that the sampling target h̃(θθθ) is un-
normalized. Assuming the ISD h(θθθ) = h̃(θθθ)/Ch,
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Figure 1: The ASTPA framework is depicted through the above figures. They represent the approximate sampling
target, sampled target distribution samples based on our HMCMC-based method, and fitted Gaussian Mixture
Model describing the simulated samples, from left to right, respectively.

where Ch is the normalizing constant of the con-
structed sampling target, Eq. (6) is rewritten as:

PF = Eh̃(θθθ)[IF(θθθ)
Ch πΘ(θθθ)

h̃(θθθ)
] (10)

Assuming now that N samples have been sam-
pled based on our constructed sampling target h̃(θθθ),
using any appropriate sampling technique, and sub-
stituting h̃(θθθ) as defined in Eq. (9), the first-passage
probability can be computed as:

PF =

(
1
N

N

∑
i=1

IF(θθθ i)

ℓgθθθ
(θθθ i)

)
Ch (11)

To determine the normalizing constant Ch, an
original post-sampling step is devised at this stage
using our inverse importance sampling procedure,
i.e., having the samples, choose a pertinent impor-
tance sampling density (ISD), Q(.), automatically,
based on the samples. Given that, this normalizing
constant is then computed as:

Ch =
1
M

M

∑
i=1

h̃(θθθ i)

Q(θθθ i)
(12)

where Q(.) can be, for example, a computed Gaus-
sian Mixture Model (GMM), based on the already
available samples and the generic Expectation-
Maximization (EM) algorithm. Since HMCMC
samplers are chosen in this work to generate sam-
ples from h̃(θθθ), these samples will be called HM-
CMC samples hereafter. Accurate fitting of a

GMM allows for the direct utilization of the orig-
inal HMCMC samples to compute the normaliz-
ing constant Ch. However, given that the accu-
racy of GMMs may often deteriorate, particularly
in high-dimensional and challenging multi-modal
cases, additional samples from the computed Q(.)
can be required, just in order to adequately eval-
uate the normalizing constant Ch. In this latter,
more general case, even a quite approximately fitted
GMM with diagonal covariance matrices, particu-
larly appropriate for high-dimensional cases, works
effectively.

Figure 1 concisely portrays the ASTPA frame-
work by using a multi-modal target distribution.
The green curves represent the isolated regions of
the limit-state function g(θθθ) of this problem, with
the rare event domain being outside g(θθθ), i.e., to-
wards the edges. The left figure displays the con-
structed approximate sampling target h̃(θθθ), which
can be visualized in this complex 2D case. The
middle figure showcases the samples drawn from
the target distribution by our suggested Hamilto-
nian MCMC variant, as described in the following
section. The right figure indicates the GMM, Q(.),
fitted based on the HMCMC samples, as discussed
above.

4. HAMILTONIAN MARKOV CHAIN
MONTE CARLO (HMCMC)

In HMCMC methods, Hamiltonian dynamics are
used to produce distant Markov chain samples,
thereby avoiding the slow exploration of the state
space that results from the diffusive behavior of
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simple random-walk proposals. Given a parameter
of interest θθθ with (unnormalized) density πΘ(.), the
HMCMC method introduces an auxiliary momen-
tum variable z and samples from the joint distribu-
tion characterized by π(θθθ ,z) ∝ πΘ(θθθ) πZ|Θ(z|θθθ),
where πZ|Θ(.|θθθ) is proposed to be a symmetric
distribution. With πΘ(θθθ) and πZ|Θ(z|θθθ) being
uniquely described up to normalizing constants,
the functions U(θθθ) = − logπΘ(θθθ) and K(θθθ ,z) =
− logπZ|Θ(z|θθθ) are introduced as the potential en-
ergy and kinetic energy (Neal, 2011). The total en-
ergy H(θθθ ,z) can be thus expressed as H(θθθ ,z) =
U(θθθ) +K(θθθ ,z) and is often termed the Hamilto-
nian H. In most typical cases, the momentum is
given by a zero-mean normal distribution (Neal,
2011), z ∼ N(0,M), and accordingly the kinetic en-
ergy can be written as: K(θθθ ,z)=− logπZ|Θ(z|θθθ)=
− logπZ(z) = 1

2zT M−1z, where M is a symmetric,
positive-definite inverse covariance matrix.

HMCMC generates a Metropolis proposal on the
joint state-space (θθθ ,z) by sampling the momentum
and simulating trajectories of Hamiltonian dynam-
ics in which the time evolution of the state (θθθ ,z) is
governed by Hamilton’s equations, expressed typi-
cally by:

dθθθ

dt
=

∂H
∂z

=
∂K
∂z

= M−1z,

dz
dt

=−∂H
∂θθθ

=−∂U
∂θθθ

= ∇θL (θθθ)

(13)

where L (θθθ) denotes the log-density of the target
distribution. Given that the analytical solution of
the Hamiltonian equations is in general intractable,
a symplectic integrator, typically the leapfrog one,
can be used to solve them numerically by discretiz-
ing time, using some small step size ε , thus simulat-
ing solution trajectories of length τ . In connection
with the ASTPA framework, it is worth noting that
the L (θθθ) is the logarithmic form of the approxi-
mate sampling target h̃(θθθ).

In complex high-dimensional problems, the
computational cost of the typical HMCMC sampler
may increase considerably and a prohibitive num-
ber of model calls may be required. We address
this issue here in a developed Newton-type con-
text, where the Hessian matrix, W−1, is approxi-
mated without any required additional model calls

per leapfrog step. In the burn-in phase we are still
sampling the momentum from an identity mass ma-
trix, M = I, but the ODEs of Eq. (13) now become:

θ̇θθ = WM−1z, ż = W∇θL (θθθ) (14)

This new dynamic scheme efficiently and com-
patibly provides an approximation of the structure
of the target distribution, allowing large informed
jumps across the state space. The final estimation
of the approximated inverse of the Hessian matrix,
W, from the burn-in phase, is then used to define the
preconditioned mass matrix, M = W−1, to sample
the momentum in the subsequent phase of the al-
gorithm, where Eq. (13) is again used. For further
information on the implementation of the HMCMC
samplers within the ASTPA framework, we refer
the reader to (Papakonstantinou et al., 2023).

5. NUMERICAL RESULTS
In this section, three stochastic dynamic cases are

presented, to indicatively illustrate the efficiency of
the proposed approach. Comparisons with Subset
Simulation (SuS) results are provided, with a uni-
form SuS proposal, U(−1,1), a number of sam-
ples per each subset level, ns, accordingly defined
in each example, and p0 = 0.1, with p0 being the
percentile of the samples that determines the inter-
mediate subsets (Au and Beck, 2001). In all ex-
amples, analytical gradients are provided, and the
number of limit-state function evaluations for the
HMCMC-based methods has been set to roughly
provide a C.o.V ∈ [0.2, 0.5], for comparison pur-
poses. Results for all examples are based on 100 in-
dependently performed simulations, to acquire the
sample mean and C.o.V. The problem dimension is
denoted by d in all cases, and the ASTPA param-
eters are carefully chosen for all examples here, as
also described in (Papakonstantinou et al., 2023),
but are not optimized for any of them. The ref-
erence first-passage probabilities are estimated by
computing the average of 100 independent simula-
tions obtained by SuS with ns = 105.

5.1. Example 1: SDOF Hysteretic Oscillator
This example studies a SDOF hysteretic oscilla-

tor, defined by the following differential equation:

mẍ(t)+ cẋ+ k[αx(t)+(1−α)z(t)] = f (t) (15)
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Table 1: Performance of various methods on the SDOF oscillator with white noise in example 1(a) (d = 150).

λ = 0.06
τ = 0.7
σ = 0.4

100 Independent Simulations SuS HMCMC QNp-HMCMC

Number of model calls 8,390 7,507 7,139
C.o.V 0.25 0.18 0.18
E[P̂F ] (Reference PF ∼0.98E-4) 1.02E-4 0.98E-4 0.98E-4

λ = 0.07
τ = 0.7
σ = 0.4

Number of model calls 11,000 8,122 8,183
C.o.V 0.37 0.25 0.25
E[P̂F ] (Reference PF ∼2.35E-6) 2.47E-6 2.37E-6 2.31E-6

Table 2: Performance of various methods on the SDOF oscillator with K-L expansion in example 1(b) (d = 200).

λ = 0.18
τ = 0.7
σ = 0.5

100 Independent Simulations SuS HMCMC QNp-HMCMC

Number of model calls 12,800 11,900 12,447
C.o.V 0.41 0.40 0.33
E[P̂F ] (Reference PF ∼3.50E-7) 3.10E-7 3.44E-7 3.53E-7

where ẍ(t), ẋ(t), and x(t) are the acceleration, ve-
locity, and displacement of the oscillator at time t,
respectively. The m = 6×104 kg, k = 5×106 N/m,
c = 2mξ

√
k/m, and ξ = 0.05 are mass, stiffness,

damping coefficient, and damping ratio of the oscil-
lator, respectively. The yielding displacement of the
oscillator xy, and the parameter α are set to 0.04m
and 0.1, respectively. The hysteretic displacement
z(t) follows the Bouc-Wen hysteretic model:

ż(t) =−γ|ẋ(t)||z(t)|n̄−1z(t)−β |z(t)|n̄ẋ(t)+Aẋ(t)
(16)

with β = γ = 1
2xn̄

y
, n̄ = 3, and A = 1. The system is

subjected to random input loading f (t), simulated
as a stochastic process using two cases: (i) Gaus-
sian white noise, and (ii) the Karhunen-Loève (K-
L) expansion. The details and the results of these
two methods are subsequently discussed. The limit-
state function is defined in terms of the maximum
displacement of the oscillator in the time interval
[0,10 sec] as:

g(t,θθθ) = λ −max(x(t,θθθ)) (17)

5.1.1. Case 1a: Gaussian white noise
The random input force is represented as:

f (t,θθθ) =−m σ̄

d/2

∑
i=1

[θi cos(ωi t)+θ d
2+i sin(ωi t)]

(18)

where θi’s, i= 1, ...,d, denote independent standard
Gaussian random variables; ωi = i∆ω is the discrete
frequency, and ∆ω = ωcut/(d/2) in which ωcut =
15π is the cut-off frequency; σ̄ =

√
(2S∆ω), where

S = 0.005 is the intensity of the white noise. The
number of dimensions is chosen as d = 150. In
this case, two threshold levels λ = 0.06 and 0.07
are considered, to evaluate the performance for two
distinct first-passage probability levels. The results
are presented in Table 1, where the ASTPA param-
eters are also shown, i.e., the dispersion factor σ

and Hamiltonian trajectory length τ . For compar-
ison purposes, the SuS results reported in this ex-
ample are based on ns = 2,000. It is seen that
our HMCMC-based ASTPA framework can outper-
form the SuS for both probability levels.

5.1.2. Case 1b: Karhunen-Loève (K-L) expansion
This second case involves using the Karhunen-

Loève (K-L) expansion to simulate f (t,θθθ) as a
zero-mean Gaussian excitation process, represented
as:

f (t,θθθ) =
d

∑
i=1

θi
√

λi φi(t) (19)

where θi’s, i= 1, ...,d, denote independent standard
Gaussian random variables; λi, and φi are the i-th
eigenvalue and eigenvector of a Gaussian autoco-
variance kernel expressed as:

C(t1, t2) = exp
(
− (t1 − t2)2/L2) (20)
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Table 3: Performance of various methods on example 2, in the: (a) standard Gaussian space, and (b) non-
Gaussian space (d = 202).

(a)
λ = 0.229
τ = 0.7
σ = 0.6

100 Independent Simulations SuS HMCMC QNp-HMCMC

Number of model calls 19,264 17,844 16,153
C.o.V 0.83 0.38 0.35
E[P̂F ] (Reference PF ∼2.57E-5) 2.51E-5 2.56E-5 2.51E-5

(b)
λ = 0.229
τ = 1.0
σ = 0.6

Number of model calls – 29,476 24,318
C.o.V – 0.48 0.41
E[P̂F ] (Reference PF ∼2.57E-5) – 2.28E-5 2.47E-5

where the correlation length L is set to 0.08. Con-
sidering the first 200 terms of the K-L expansion
in this application, corresponding to the 200 largest
eigenvalues, i.e., d = 200, is found to be sufficient.
In this case, the threshold λ in Eq. (17) is set to
0.18. The results, accompanied by the ASTPA pa-
rameters, are presented in Table 2, and it is shown
again that the HMCMC-based ASTPA framework
can outperform the SuS method.

5.2. Example 2: Two-story Shear Frame Struc-
ture Under Stochastic Ground Motion

A two-story nonlinear shear frame structure
with uncertain stiffness properties under stochastic
ground motion is investigated in this example. The
equation of motion of this structure reads:

Mẍ(t)+Cẋ(t)+K[αααx(t)+(1−ααα)z(t)] =−MẌg
(21)

where ẍ, ẋ, and x are the lateral acceleration, ve-
locity, and displacement vectors of the structure;
M, C, and K are the mass, damping, and stiff-
ness matrices, repectively. The lumped masses and
damping coefficients are set to m = 0.4 × 103 kg
and c = 0.28× 103N.s/m for both stories, respec-
tively. The stiffnesses of the two stories are con-
sidered random normal variables with a mean of
49×103N/m, and a coefficient of variation of 0.1.
It is assumed that only the first story of the frame
exhibits hysteretic/nonlinear behavior, with ααα =
[0,1]T . This nonlinear behavior is again modeled
using the Bouc-Wen law in Eq. (16), with β = 1,
γ = n̄ = 2, and A = 1. The ground motion accel-
eration is described in the frequency domain by a
filtered Kanai-Tajimi power spectral density (PSD),

defined as:

SẌg
(ω) = S0

ω4
f +4ξ 2

f ω2
f ω2

(ω2
f −ω2)2 +4ξ 2

f ω2
f ω2

· ω4

(ω2
s −ω2)2 +4ξ 2

s ω2
s ω2

(22)

where S0 = 0.01m2/s3, ω f = 15rad/sec, ξ f = 0.6,
ωs = 1.5rad/sec, and ξs = 0.6 are the PSD param-
eters. The ground motion acceleration Ẍg is simu-
lated based on the PSD in Eq. (22) using the Spec-
tral Representation Method as:

Ẍg(θθθ , t) =
√

2
d̄−1

∑
i=0

√
SẌg

(ωi)∆ω cos(ωi t +θi)

(23)
where θi’s, i = 1, ..., d̄ = 200, are independent ran-
dom phase angles uniformly distributed between 0
and 2π; ωi = i∆ω is the discrete frequency and
∆ω = ωcut/d̄, in which ωcut = 30π is the cut-off
frequency.

The limit-state function is expressed as in
Eq. (17), with the top story displacement be-
ing the response of interest and a threshold λ =
0.229. Results, accompanied by the ASTPA pa-
rameters, are shown in Table 3(a) based on sam-
pling in the standard normal space. As seen, our
ASTPA approach considerably outperforms SuS,
with ns = 4,000, in this challenging example, while
QNp-HMCMC shows improved computational ef-
ficiency compared to the original HMCMC sam-
pler.

The first-passage probability is also directly
computed in the non-Gaussian space in this ex-
ample. Given that the random variables involved
in the SRM are uniformly distributed with θθθ ∈
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[0, 2π], they are first transformed to the uncon-
strained space for the HMCMC-based sampling,
see (Papakonstantinou et al., 2022) for transforma-
tion details. It should be noted that the stiffness
Gaussian random variables have been transformed
to the standard normal space in both cases.

Table 3(b) displays the obtained results based
on the non-Gaussian space sampling. Compared
to the typical HMCMC method, and noting also
the difference in the number of model calls be-
tween the two HMCMC approaches, this exam-
ple further supports the results in (Papakonstanti-
nou et al., 2023), and confirms that the application
of QNp-HMCMC in high-dimensional challenging
problems is in general very attractive and most ap-
propriate. For SuS in this non-Gaussian space, we
could not achieve any competitive and meaningful
results. Comparing Tables 3(b) and 3(a), we also
note that the results based on the Gaussian space
sampling are overall better than those in the non-
Gaussian one, an effect that could be perhaps ex-
pected due to the favorable sampling attributes of
the normal space.

6. CONCLUSIONS
The ASTPA (Approximate Sampling Target with

Post-processing Adjustment) framework for pre-
cisely estimating rare event probabilities is suc-
cessfully applied to complex first-passage dynamic
problems. ASTPA can provide accurate, unbi-
ased estimations of rare events probabilities with
an efficient number of limit-state function eval-
uations. The basic idea of ASTPA is to con-
struct a relevant target distribution by weighting the
high-dimensional random variable space through a
one-dimensional likelihood model, using the limit-
state function. To sample from this target dis-
tribution, we utilize here gradient-based HMCMC
schemes, including our newly developed efficient
Quasi-Newton mass preconditioned HMCMC al-
gorithm (QNp-HMCMC). In the absence of analyt-
ical gradients for the examined problems, then the
presented sampling schemes would require numeri-
cal gradient estimations and would not probably be
computationally competitive anymore. The perfor-
mance of the proposed methodology is examined
and compared very successfully herein against Sub-

set Simulation in challenging, high-dimensional,
nonlinear, stochastic dynamic problems, involv-
ing model uncertainties and stochastic processes
expressed through white noise, Karhunen-Loève
(K-L) expansion, and the Spectral Representation
Method, with implementation and sampling in both
non-Gaussian and standard Gaussian spaces.
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