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ABSTRACT: As an extension to the Point Estimate Method (PEM) to evaluate probabilistic moments
of quantities of interest (QoI) in general n-dimensional spaces, the Quadratic Point Estimate Method
(QPEM) has been recently developed. This new method is defined to fully represent up to fifth-order
input moments in the Gaussian space, providing general analytical expressions for sample locations and
weights, without any optimization procedure requirements. The QPEM can significantly improve the
estimation accuracy of the output QoI moments, in relation to PEM-based methods with linear samples
increase with respect to the involved problem dimensions, while at the same time having an affordable
and competitive computational cost up to a considerable number of dimensions. The QPEM is further
enhanced and generalized in this work by enabling copula integration into the framework, which enables
effective modeling of the joint input probability density function by estimating marginals and the de-
pendence structure of the involved random variables. The validity and outstanding performance of the
copula-based QPEM are showcased against numerous other sampling methods in various examples with
emphasis on geotechnical applications where PEM-based methods have a long history of development
and successful implementations.

1. INTRODUCTION
In many engineering applications, Uncertainty

Quantification (UQ) through a nonlinear model of-
ten entails calculating probabilistic moment inte-
grals. For calculating these numerical integra-
tions, the Monte Carlo method (MC) is the most
versatile and widely used sampling technique em-
ployed in engineering. The MC method gener-
ally requires a considerable number of samples that
may be very computationally expensive if an en-
gineering problem involves computationally inten-
sive simulations. Variance reduction techniques,
such as quasi-Monte Carlo methods (QMC) and
Latin Hypercube Sampling (LHS), can be alterna-
tives to the MC method and can offer the advantage
of faster convergence up to certain dimensions, in

relation to the number of performed simulations.
Quadrature techniques have also been utilized for
the estimation of the moment integrals, and, over-
all, they work well in deterministic cases. In proba-
bilistic problems, however, such techniques can be
prohibitive when high-dimensional spaces are in-
volved.

The development of relevant dedicated proba-
bilistic methods, such as the Point Estimate Method
(PEM) also has a long history. The concept of
PEM was first introduced by Rosenblueth (1975).
Since then, many PEM variations have been de-
veloped that are generally powerful yet simple ap-
proximation methods used to estimate the first few
moments of an output Probability Density Function
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(PDF). In many cases, PEM-based methods pro-
vide noticeably accurate mean and standard devi-
ation estimations, with notable computational effi-
ciency. However, most existing PEMs are unsuit-
able for higher-order moments estimation with low
computational cost, such as skewness and kurtosis.
This accuracy largely depends on their ability to ac-
curately describe high-order input moments, with
more sampling points (also called sigma points)
generally required for this. Hence, the main com-
putational cost of the PEMs is relevant to the uti-
lized number of sigma points, and there is a natural
trade-off between computational efficiency and es-
timation accuracy concerning this number. In addi-
tion, PEMs often use an optimization procedure to
find the sigma points locations and weights (Rosen-
blueth, 1975) which might be an undesirable prac-
tice in many problems.

Motivated by the aforementioned, a Quadratic
Point Estimate Method (QPEM) has been recently
proposed, to improve the moment estimation accu-
racy taking also the computational cost into con-
sideration (Ko and Papakonstantinou, 2023). The
QPEM completely captures up to fifth-order input
moments of the Gaussian distributions, without re-
quiring any expensive optimization procedures to
determine the sigma point characteristics. In ad-
dition, it can control/reduce some errors of out-
put moment estimation without additional sampling
points, in contrast to other PEMs.

A suitable joint PDF input model f (x) is needed
in probabilistic analysis, and quite often Gaussian
distributions are employed. This Gaussian assump-
tion introduces a convenient representation of input
dependencies. However, the real dependence struc-
ture may not adhere to this assumption.

Recently, dependence modeling has seen signifi-
cant advances with the widespread adoption of cop-
ula models, including vine copulas. In higher di-
mensions, constructing multivariate dependencies
that suitably define the couplings and interactions
is a challenging problem. Vine copulas, first estab-
lished by Joe (1997), ease this construction by ex-
pressing the multivariate dependence as a product
of bivariate copulas among pairs of random vari-
ables. As a result, the vine models provide an easy

interpretation and are extremely flexible in con-
structing the joint PDF.

In this work, the QPEM is further enhanced and
generalized by enabling vine copulas integration
into the framework, which enables effective model-
ing of the joint input PDF by estimating marginals
and representing dependencies of the random vari-
ables based on available data. The validity and out-
standing performance of copula-based QPEM are
showcased against numerous other sampling meth-
ods based on two geotechnical applications, where
PEM related methods have a long history of devel-
opment and successful implementations.

2. QUADRATIC POINT ESTIMATE
METHOD

Recently, Ko and Papakonstantinou (2023) de-
veloped the QPEM to overcome drawbacks of ex-
isting PEMs with respect to accuracy, efficiency,
and practicality. The QPEM has three main prop-
erties, as follows: (a) fully symmetric sigma points
that can satisfy odd-order moments of zero auto-
matically; (b) general, analytical expressions for
sigma points and associate weights, avoiding the
likely undesirable optimization process; and (c)
ability to often offer reduced errors in higher-order
output moments without additional computational
cost.

The QPEM can completely capture up to fifth-
order moments of the n-D standard Gaussian ran-
dom variable z. Figure 1 shows the fully symmetric
sigma points of the QPEM and the corresponding
point types based on their weights. Three types of
points are used: (a) 1st type is a single point that lies
at the origin point 0 with weight w0; (b) 2nd type

Figure 1: Sigma points of QPEM in 3-D
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Table 1: Sigma points and weights selection for QPEM

Weights W (1)
0 =W (2)

0 = w0 W (3)
0 = w0 +ζ W (4)

0 = w0 +ξ

W (k) a
i =

{
w1, for i = 1, · · · ,2n
w2, for i = 2n+1, · · · ,2n2

Sigma
Point

1st type S0 = 0n×1
2nd type S1 = {s1,0, · · · ,0}T · · · Sn = {0, · · · ,0,s1}T

Sn+1 = {−s1,0, · · · ,0}T · · · S2n = {0, · · · ,0,−s1}T

3rd type S2n+1 = {s2,s2,0, · · · ,0}T · · · S2n2−3 = {0, · · · ,0,s2,s2}T

S2n+2 = {−s2,s2,0, · · · ,0}T · · · S2n2−2 = {0, · · · ,0,−s2,s2}T

S2n+3 = {s2,−s2,0, · · · ,0}T · · · S2n2−1 = {0, · · · ,0,s2,−s2}T

S2n+4 = {−s2,−s2,0, · · · ,0}T · · · S2n2 = {0, · · · ,0,−s2,−s2}T

a Associated weights for calculating kth moments of the response function

consists of 2n points on the orthogonal axis with a
distance s1 from the origin point and has weight w1;
and (c) 3rd type includes 2n(n−1) points obtained
by permutations and by changes of sign of the coor-
dinates {s2,s2,0, · · · , 0}T . The associated weight
of the third type of points is w2. In total, 2n2+1
points are required for the QPEM. The analytical
solution of sigma points and weights is given as:

s0 = 0
s1 = r

s2 =

[
r2 (n−1)
r2 +n−4

]1/2


w0 = 1−2nw1 −2n(n−1)w2

w1 =
4−n
2r4

w2 =
1
4

[
r2 +n−4
r2 (n−1)

]2

(1)
where r is an arbitrary user-defined tuning parame-
ter, satisfying r >

√
2 due to QPEM stability. De-

pending on this parameter r, the error induced from
moments higher than the fifth-order could be re-
duced. In this work, the default value of r is used
as r=3, as suggested by Ko and Papakonstantinou
(2023).

The sigma points can also include here partial
higher-order input moments information than fifth-
order by adopting the scaling parameters ζ and
ξ , with no additional computational effort. These
parameters are considered additional weights for
the origin point 0 when estimating the third- and
fourth-order moments, i.e., skewness or kurtosis.
The sigma points and associated weights for the
QPEM are provided in Table 1. For any input dis-
tribution, whether Gaussian or non-Gaussian, the
sigma points, Si, are initially selected in the stan-
dard normal z-space, and are then translated to
the original x-space using an appropriate transfor-

mation Xi=T (Si). These transformed points are
then propagated through the computational model
Yi = M(Xi). The first four moments of the re-
sponse model are obtained as:

E [y]≡ ȳ =
2n2

∑
i=0

W (1)
i Yi (2)

E
[
(y− ȳ)k

]
=

2n2

∑
i=0

W (k)
i (Yi −y)k (3)

Eq. (3) represents the kth-order moments estima-
tion where k=2, 3, and 4. The kth-order moments
are vectorized and expressed with the Kronecker
product, ⊗, e.g., E[(y− ȳ)(y− ȳ)T ] ≡ E[(y− ȳ)⊗
(y− ȳ)] = E[(y− ȳ)2].

3. VINE COPULAS
3.1. Copulas and Sklar’s theorem

A copula can be described by a multivariate cu-
mulative distribution function (CDF), Cx, that com-
bines univariate marginal probability distributions
with a particular dependence structure. A multivari-
ate joint distribution with specified marginal distri-
butions can be thus constructed for an appropriate
Cn based on Sklar’s theorem (Nelsen, 2007):

F (x) =Cx (F1(x1), · · · ,Fn(xn)) (4)

where F is a joint CDF with univariate CDFs
F1, · · · ,Fn. Eq. (4) shows that any joint CDF can
be expressed in terms of its marginals and a n-D
copula. Sklar’s theorem can also be re-stated using
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Figure 2: C-vine (left) and D-vine (right) in 4-D

the chain rule as:

f (x)=
∂ nF(x)

∂x1 . . .∂xn

= cx {F1 (x1) , . . . ,Fn (xn)} ·
n

∏
i=1

fi (xi)
(5)

where cx(u) = ∂ nCx(u)
∂u1...∂un

is a copula density function,
and fi(xi) are the marginal PDFs.

3.2. Vine copulas and Rosenblatt transforms
When the input dimension increases, defining a

suitable Cx that properly describes the higher-order
dependencies among the input variables becomes
increasingly challenging. The main idea of vine
copulas is hence to decompose a n-D copula den-
sity into bivariate copulas, also called pair-copulas,
such that the n-D copula can be practically repre-
sented based on conditioning and a graphical tool,
as shown in Figure 2. The structures are also known
as vines and, depending on their formation, differ-
ent pair-copula constructions emerge, as the C-vine
and D-vine ones in Figure 2. For further details,
we refer to (Bedford and Cooke, 2002; Aas et al.,
2009).

The joint PDF f (x) can be then factorised as:

f (x) = f (x1) f (x2 | x1) · · · f (xn | x1, · · · ,xn−1)
(6)

where the univariate conditional PDFs in the gen-
eral form of f (xi | v) can be expressed as:

f (xi | v) = cxiv j|v− j

{
F
(
xi | v− j

)
,F

(
v j | v− j

)}
· f
(
xi | v− j

)
(7)

where v j is an arbitrarily excluded element from
vector v, and v− j denotes the vector excluding v j.

By combining Eqs. (6) and (7), we can derive a de-
composition of f (x) that only consists of marginal
distributions and pair-copulas. The joint PDF f (x)
corresponding to the C-vine in Figure 2, for in-
stance, is expressed as:
f (x) = f1 (x1) · f2 (x2) · f3 (x3) · f4 (x4)
·cx1x2 {F (x1) ,F (x2)} · cx1x3 {F (x1) ,F (x3)}
·cx1x4 {F (x1) ,F (x4)} · cx2x3|x1 {F (x2 | x1) ,F (x3 | x1)}
·cx2x4|x1 {F (x2 | x1) ,F (x4 | x1)}
·cx3x4|x1x2 {F (x3 | x1,x2) ,F (x4 | x1,x2)}

(8)
We should note that there are various forms to de-
compose f (x) because of many different choices of
v j, as also illustratively shown in Figure 2. The
C-vine and D-vine are two major types of regular
vines. The vine copulas involve marginal condi-
tional distributions of the form F(xi | v) which can
be evaluated using a recursive formula derived as
(Joe, 1997):

F(xi | v) =
∂Cxiv j|v− j

{
F
(
xi | v− j

)
,F

(
v j | v− j

)}
∂F

(
v j | v− j

)
(9)

A general transformation that maps an input vec-
tor X onto a vector Z with independent components
is the Rosenblatt transform. Its inverse transforms
reversely the independent random variables into de-
pendent ones. However, the Rosenblatt transfor-
mation and its inverse require knowledge of a joint
PDF, or several conditional ones, which are hardly
known in practical applications. The vine copu-
las can thus alleviate this issue by enabling one to
construct such a joint PDF even for complex high-
dimensional cases.

4. COPULA-BASED QPEM
The Rosenblatt transformation supported by the

vine copulas could allow the QPEM to be more
flexible in modeling the complex dependencies be-
tween variables. However, there are many different
ways of representing a joint PDF with vine copu-
las. The critical step for the PDF construction thus
lies in the determination of the vine structure and its
parameters based on available information. Given,
in particular, a vine model of the input dependen-
cies, inferred from available data, the z-space gen-
erated sigma points can be mapped onto the original
x-space by the inverse Rosenblatt transformation.
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Table 2: Algorithm of copula-based QPEM for cases with arbitrary distributions and complex dependence struc-
tures

Input: Available data (xℓ1, . . .xℓn) , ℓ= 1, . . . ,N.
Output: First four output moments.

1: Determine regular vine copula specification.
1.1: Select T1 that maximizes the sum of the absolute empirical Kendall’s τ using Maximal
Spanning Tree (MST) (Cormen et al., 2022).
1.2: Fit and select the pair-copula families (copula and corresponding parameters) in T1 based
on the Stepwise Semiparametric Estimator (SSP) with the lowest AIC (Haff, 2013).
1.3: Apply again MST to the graph of all nodes of T2 with all edges allowed by proximity.
1.4: Continue alike with the remaining trees.

2: Fit and select marginals based on the given data.
3: Construct the joint PDF based on the selected vine copulas and marginals.
4: Generate sigma points and weights in z-space with Eq. (1).
5: Transform sigma points generated in z-space into the original x-space using an inverse Rosenblatt

transformation supported by the computed vine copulas and marginals.
6: Estimate probabilistic output moments with Eqs. (2) and (3).

As mentioned, however, since the number of pos-
sible vine structures grows rapidly with the dimen-
sions, it is generally infeasible to find the glob-
ally best-fitted vine copula. Dißmann et al. (2013)
developed a sequential heuristic method to select
a regular vine structure. Starting by defining the
first tree T1 of the vine based on available data,
the rest of the vine structure is sequentially de-
termined, T2, . . . ,Tn−1. Even though this process
still does not guarantee a global optimum, because
every tree is examined separately, the determined
vine structure is a reasonable one (Dißmann et al.,
2013). The general algorithm of the copula-based
QPEM is summarized in Table 2. For the details of
MST and SSP in the sequential method, we refer to
the cited literature. Kendall rank correlation coeffi-
cient, commonly referred to as Kendall’s τ , is used
in this work as a measure of dependence, since it
can measure dependence independently of the dis-
tribution type.

5. NUMERICAL EXAMPLES
In this section, the following two examples are

studied to evaluate the copula-based QPEM. MC
simulation with 106 samples is used as a reference
solution in this work. In order to compare with
the copula-based QPEM with 2n2 +1 needed sam-
ples, variance reduction sampling techniques, i.e.,
LHS and QMC with 2n2 + 1 samples, sparse grid

Figure 3: Schematic representation of a rock slope

quadrature, i.e., Smolyak Gauss-Hermite quadra-
ture (SGH3) with 2n2+2n+1 needed samples, and
one of the most well-known and popular PEMs,
Hong’s PEM (HPEM) (Hong, 1998), with 2n+ 1
needed samples have been employed.

5.1. Rock slope example

This example considers a two-dimensional rock
slope with a water-filled tension crack, shown in
Figure 3. The factor of safety for the slope is given
as (Hoek, 2007):

Fs(X) =
hA+N′ tanφ

W (sinψp +α cosψp)+V cosψp −T sinθ

(10)
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Table 3: Marginals of random variables of the rock
slope example

Variable Distribution Mean STDa

h [kPa] Lognormal 140 14
φ [◦] Lognormal 30 3
z [m2] Lognormal 14 2.1

r
Truncated
Exponential [0,1] 0.3 0.3

α [g]
Truncated
Exponential [0,0.15] 0.02 0.02

aSTD=standard deviation

where
A = (H − z)/sinψp
z = H

(
1−√

cotψ f tanψp
)

N′ =W (cosψp −α sinψp)−U
−V sinψp +T cosθ

W = 0.5γH2{[1− (z/H)2]cotψp − cotψ f }
U = 0.5γwzwA
V = 0.5γwz2

w
r = zw/z

in which γ=unit weight of rock=2.6×104N/m3,
γw=unit weight of water=1.0×104N/m3, ψ f =angle
of slope=50◦, ψp=angle of failure surface=35◦,
T =force applied by anchor system=0N,
θ=inclination of anchor=0◦ and H=height of
the overall slope=60m. Five random variables
(n=5) are involved in this case: the cohesion h
and the friction angle φ of the failure surface; the
tension crack depth z; the height of water zw in
the tension crack; and the horizontal earthquake
acceleration α . The information regarding their
marginals is tabulated in Table 3.

We assume here that h− φ and r − z are corre-
lated respectively with Frank copula rotated by 90◦

(θ=2) and t-copula (ρ=-0.6, ν=10). There are no
other variable dependencies assumed in this exam-
ple. 500 random samples have been generated and
are considered as the available data. Based on these
data, the vine copula specification is estimated by
the sequential method explained in Section 4. Hav-
ing now defined the input model, the first four mo-
ments of the response model in Eq. (10) can be es-
timated. The computed results based on all used
methods are summarized in Table 4. The relative
error of each method is plotted in Figure 4.

Generally, the first two moments are estimated
reasonably compared to the higher-order moments.

Table 4: Moment estimations for the rock slope exam-
ple

Method
Sample

size Mean STD Skewness Kurtosis

MC 106 1.5409 0.1223 0.1281 3.1326
LHS 51 1.5429 0.1357 0.8177 4.0762
QMC 51 1.5389 0.1025 0.3359 2.5612
SGH3 61 1.5404 0.1250 0.1123 2.6267
HPEM 11 1.5417 0.1347 0.4462 2.1086
QPEM 51 1.5406 0.1257 0.1197 2.9809

Figure 4: Relative errors related to the rock slope ex-
ample

For the skewness and kurtosis, however, LHS and
QMC have a substantial relative error, because their
51 sample points, as many as the QPEM ones
(2× 52 + 1), are not sufficient to achieve accurate
results. In contrast, the QPEM has a much lower
relative error for the skewness (6.56%) and kurto-
sis (4.84%) than these variance reduction sampling
methods. The SGH3 seems quite competitive in
calculating the first two output moments, but the
quadrature technique indicates quite higher errors
for the higher-order output moments. The reason is
that the SGH3 produces significant errors in repre-
senting the higher-order input moments compared
to the QPEM. In this example, it can be seen that
the copula-based QPEM offers a quite accurate ap-
proximation of the first four moments of the highly
nonlinear response function and it is overall more
efficient than the other utilized methods.

5.2. Rock tunnel excavation example
This example involves a rock tunnel excavation

adapted from (Li and Low, 2010). The tunnel ex-
cavation problem is shown in Figure 5, and signif-
icant stresses and displacements can be present in
the rock mass near the excavation site. The an-
alytical solution for the induced inward displace-
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Figure 5: Schematic drawing of a circular tunnel exca-
vation in a rock mass

ment based on the Mohr-Coulomb failure criterion
is given as:

uip = R [(1+ v)/E] [2(1− v)(p− pcr)(Rpl/R)2

−(1−2v)(p− pi)]

(11)

where R=radius of excavation of a circular tun-
nel, uip=the inward displacement of the tunnel lin-
ing, p=the hydrostatic pressure, E=the Young’s
modulus, v=the Poisson’s ratio, and pcr=critical
pressure=2p−σc

k+1 in which k=1+sinφ

1−sinφ
, σc=h(k−1)

tanφ
,

h=cohesion, and φ=friction angle. The uniform
support pressure pi is considered here determinis-
tic with a value of 0.868MPa. If pi is less than pcr,
a plastic zone exists, and the radius of the plastic
zone Rpl is given as:

Rpl = R
[

2(p+ s)
(k+1)(pi + s)

]1/(k−1)

(12)

with s = σc/(k−1). For pi ⩾ pcr, uip is given as:

uip = R [(1+ v)/E] (p− pi) (13)

Suppose the permissible inward displacement is
1% of the tunnel radius. Thus the response model
can be defined as:

g = 0.01−uip/R (14)

Again, five parameters (n=5) are modeled
as random variables, as also shown in Table 5,
that include the Young’s modulus E, the co-
hesion h, the friction angle φ , the Poisson’s
ratio v, and the hydrostatic stress p. A C-vine
is now used with the five variables shown as

Table 5: Marginals of random variables of the tunnel
excavation example

Variable Distribution Mean STD
E [MPa] Lognormal 373 48
h [MPa] Lognormal 0.23 0.023
φ [◦] Lognormal 22.85 1.31
v Beta [0.2, 0.4] 0.3 0.05
p [MPa] Beta [1.5, 3] 2 0.3

Figure 6: Vines for the tunnel excavation example

Figure 6. Various pair-copulas are assigned to
each edge, such as CEh=CEφ =Clayton (θ=1.2),
CE p=Clayton (θ=0.6), CEv=Frank rotated by 90◦

(θ=1.5), Chφ |E=Frank rotated by 90◦ (θ=2.0) and
Chv|E=Chp|E=Cφv|Eh=Cφ p|Eh=Cvp|Ehφ =Gaussian
(ρ=0). Similar to the previous example, the vine
copula configuration has been estimated by the
sequential method in Table 2 based on 500 random
samples generated from the above vine copulas.

The first four moments of the response model
have been estimated by the aforementioned meth-
ods, i.e., LHS, QMC, SGH3, HPEM, and QPEM.
Table 6 and Figure 7 show the estimated first
four moments and their relative errors using each
method, respectively. Like the previous example,
the variance reduction techniques have the same
sample size as the QPEM, and the SGH3’s sample
size is larger than the QPEM’s one. The QPEM
results are considerably superior in relation to all
methods, particularly for skewness and kurtosis
estimation. The copula-based QPEM is thus most
competitive in estimating the first four moments
for this case with complex dependencies between
variables. By accurately estimating the first four
output moments, the QPEM can also be advanta-
geous for any reliability analysis method that relies
on output moments.
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Table 6: Moment estimations for the tunnel excavation
example

Method
Sample

size Mean STD Skewness Kurtosis

MC 106 0.0059 0.0009 -1.0389 4.8973
LHS 51 0.0059 0.0009 -1.6271 9.3274
QMC 51 0.0060 0.0008 -0.6905 3.1146
SGH3 61 0.0059 0.0009 -0.8611 3.3880
HPEM 11 0.0059 0.0009 -0.8056 2.8343
QPEM 51 0.0059 0.0009 -1.0223 4.6503

Figure 7: Relative errors for tunnel excavation example

6. CONCLUSIONS
The QPEM has been recently proposed aiming

to estimate accurately and efficiently, with 2n2 + 1
sample (sigma) points, probabilistic output mo-
ments of nonlinear models. The QPEM offers ad-
vantages over other PEMs in the literature in that
analytical expressions for all sigma point character-
istics are provided, without any need for an opti-
mization process, and is able to completely repre-
sent up to fifth-order input moments in the Gaus-
sian space, including the cross moments. In ad-
dition, higher-order input moment information can
be uniquely incorporated by adapting the scaling
parameters without any additional computational
cost. As presented in this work, the QPEM can
also efficiently work with general copula struc-
tures, and particularly vine copulas representing
complex non-Gaussian dependencies. Two com-
mon geotechnical engineering problems presented
in this work also showcased the validity, accuracy,
and computational efficiency of the copula-based
QPEM, for cases with non-Gaussian distributions
and complex dependence structures. In both ex-
amples, the first four output moments computed
by the QPEM have been compared to numerous
well-known sampling methods, showcasing supe-
rior characteristics. Future work can further extend

the QPEM in estimating complete output distribu-
tions, and the authors are already working toward
that direction.
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