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ABSTRACT: A major challenge of structural reliability analysis is estimating the failure probability 

based on a small number of function calls. This issue can be addressed using metamodeling, which 

approximates a computationally expensive model with a simpler metamodel, then classical reliability 

analysis methods can be combined with metamodeling. Kriging models based on active learning are 

widely used in engineering structural reliability analysis to reduce computational burden. The selection 

of sampling points has a significant impact on the accuracy and efficiency of metamodels. In most 

traditional methods of selection, which ignore the location information of Monte Carlo simulation 

(MCS), experimental samples are selected in unimportant regions. In this regard, unsupervised clustering 

builds reduced samples from MCS points. To further boost the efficiency of active learning, a sample 

selection strategy is proposed that finds training samples with high variance and is close to the limit state 

surface in this paper. Four numerical examples have been solved to evaluate the efficiency of the 

proposed method and the results are compared with those of MCS and the first-order reliability method 

(FORM). 

1. INTRODUCTION 

The primary objective of structural reliability 

analysis is to estimate the failure probability 

associated with some relevant limit states to 

assess the effect of uncertainties. Uncertainties 

can occur depending on the physical properties of 

the systems, such as material strength, 

manufacturing tolerances, operating conditions 

like applied loads, environmental conditions, and 

incomplete or lacking knowledge. To improve the 

Kriging model and achieve the desired 

approximate accuracy, an active learning method 

is used to sequentially choose training samples. 

Using a small number of training samples, it is 

possible to improve prediction accuracy by 

incorporating nearly informative training samples 

into the Kriging model using active learning 

method. The aim of this paper to propose an 

efficient method to determine structural 

probability failure using Kriging model with 

clustering technique. 

2. METHODOLOGY 

2.1. Create metamodel 

The first set of training samples represents the 

input samples of Kriging algorithm that can be 

obtained from unsupervised clustering (K-Means 

Clustering) and builds a reduced samples from 

MCS samples along with the three conditions 

given in Eq. (1). The elbow method for K-means 

clustering is used to determine the number 𝑘 

when partitioning randomly generated samples 

using probability distribution into 𝑘 clusters. To 

begin, the algorithm creates a set of 𝑘 centroids, 

one for each cluster, using a random selection 

technique among the samples in the data. To build 

the groups, each point is assigned to the nearest 

centroid by Euclidean Distance, then the centroids 
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are recalculated. It is repeated until the centroids 

are no longer modified by taking the average of 

the old cluster samples. Samples 𝑋 =
{𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁} is 𝑉 dimensional data divided 

into 𝑘  known clusters using the k-means 

algorithm, where 𝑘 < 𝑁  then three samples 

(𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃3)  in each cluster are selected as 

follows: 

𝑃1 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷𝑐,𝑠); 

𝑃2 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝜇𝑐,𝑠); 

𝑃3 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐷𝑐,𝑠) 

(1) 

 
𝐷𝑐,𝑠 = 

√(𝑥𝑐1 − 𝑥𝑠1)
2 + (𝑥𝑐2 − 𝑥𝑠2)

2+ . . . +(𝑥𝑐𝑉 − 𝑥𝑠𝑉)
2 (2) 

where 𝐷𝑐,𝑠 = {𝐷𝑐,𝑠
1 , 𝐷𝑐,𝑠

2 , 𝐷𝑐,𝑠
3 , . . . , 𝐷𝑐,𝑠

𝑠 }  refers to 

the 𝑠th Euclidean distance between centroid (𝑥𝑐) 
and samples (𝑥𝑠) within the 𝑘th cluster, where 𝑠 
is the number of samples. The mean of 𝐷𝑐,𝑠 is 𝜇𝑐,𝑠 
given by Eq. (3). 

𝜇𝑐,𝑠 =
1

𝑠
∑𝐷𝑐,𝑠

𝑖

𝑠

𝑖=1

  
(3) 

Total number of training samples Xtrain = 3× 𝑘. 

The response of the structure is determined using 

LSF. Then performance function is approximated 

by Kriging model. 

The statistical parameters are first defined by 

the training samples of the Kriging model, after 

which it can provide estimated responses for any 

unsampled points. A Kriging model assumes that 

the substitution function is the result of a Gaussian 

process denoted by 𝑦(𝑥). Kriging model consists 

of a global tendency and a local deviation, which 

is expressed in Eq. (4). 

𝑦(𝑥) = 𝐺(𝑥) + 𝑧(𝑥) (4) 

𝐺(𝑥), which is expressed as a linear combination 

of basic polynomial functions and the 𝑧(𝑥) 
represents the local deviation with mean zero and 

variance 𝜎2 . The squared exponential function 

𝑅(𝑎, 𝑏) is considered in the present study as given 

in Eq. (5) where 𝑎𝑖 and 𝑏𝑖 are the 𝑖th coordinate 

of 𝑎 and 𝑏. 

𝑅(𝑎, 𝑏) = 𝑒𝑥𝑝 [−∑𝜃𝑖|𝑎𝑖 − 𝑏𝑖|
2

𝑚

𝑖=1

] 
(5) 

 

The correlation between the samples is impacted 

by theta, an m-dimensional vector, where 𝑚 is the 

dimension of 𝑥. For more details about Kriging 

model read the reference (Zhang and Quek 2022; 

Jia and Wu 2022; You et al. 2022). 

2.2. Updating metamodel in concern domain 

According to the empirical rule in statistics, if 𝑋 

is an observation from a normally distributed 

random variable and 𝜇  and 𝜎  are mean and 

standard deviation respectively, then the 

mathematical probability function can be written 

as Eq. (6). 

𝑃𝑟(𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎) ≈ 95.45% (6) 

Identify the concern domain (samples lies 

between −2𝜎  and +2𝜎 ), where the samples at 

higher risk of misclassification are close to the 

boundary state, or have a high Kriging variance, 

or both. In this regard, K-Means clustering, along 

with the three conditions given in Eq. (1), is used 

to represent the concern domain and to obtain a 

second set of training samples. The second set of 

training samples are added to the first set of 

training samples and the Kriging model is 

updated. 

2.3. Sequentially updating metamodel 

For updating the Kriging model, a point has been 

selected to close to the LSF in the safe domain 
(�̅�(𝑥) > 0) and a point has been selected to close 

to the LSF in the unsafe domain (�̅�(𝑥) < 0) to 

avoid misclassification. Two samples (𝑆𝑛𝑝
1  and 

𝑆𝑛𝑝
2 )  are identified from total samples (𝑋)  by 

using Eq. (7): one sample is selected from safe and 

another one has been selected from unsafe domain 

based on the magnitudes of the estimated �̅�(𝑥) by 

the previous updated Kriging model. 
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𝑆𝑛𝑝
1 =  𝑎𝑟𝑔𝑚𝑖𝑛( �̅�(𝑥) = 0) in the safe 

domain. 

𝑆𝑛𝑝
2 =  𝑎𝑟𝑔𝑚𝑖𝑛( �̅�(𝑥) = 0) in the unsafe 

domain. 

(7) 

The maximin criterion (Johnson et al. 1990) is 

applied in the safe and unsafe domain sequentially 

to prevent misclassifications with high variance in 

the concern domain. Roy and Chakraborty (2022) 

used the maximin criterion effectively to fill the 

reduced space. Two samples are selected using 

Eq. (8), one in the safe and another in the unsafe 

domain from the samples located in the concern 

domain (CRpt). 

𝑚𝑎𝑥

𝑋
       

𝑚𝑖𝑛

𝑋𝑡𝑟𝑎𝑖𝑛, 𝐶𝑅𝑝𝑡 ∈ 𝑋
𝑑(𝑋𝑡𝑟𝑎𝑖𝑛 , 𝐶𝑅𝑝𝑡) (8) 

2.4. Stopping criteria 

A crucial component of the active learning 

algorithm is the stopping criterion, which 

effectively ends the Kriging model update and 

regulates the estimation accuracy of the failure 

probability. Active learning method can be 

stopped by using an estimated relative failure 

probability (Xiang et al. 2020). The stopping 

criterion of Kriging model is considered based on 

the estimated relative failure probabilities two 

consecutives iterations. If the stopping value of 

three consecutive iterations is less than 0.01 then 

metamodel is considered as accurate enough and 

to stop the learning process. If it is not fulfilled, 

then the training samples will be increased and the 

metamodel is updated accordingly. 

3. RESULTS AND DISCUSSION WITH 

NUMERICAL EXAMPLES 

The failure probability (𝑃𝑓) results obtained using 

the proposed method is compared to those 

obtained using direct MCS (𝑃𝑓,𝑀𝐶𝑆). In this paper, 

relative error (∈𝑃𝑓)  has been calculated and 

compared with the results of MCS using Eq. (9). 

∈𝑃𝑓=
|𝑃𝑓 − 𝑃𝑓,𝑀𝐶𝑆 |

𝑃𝑓,𝑀𝐶𝑆
× 100 % (9) 

Example 1: The schematic diagram of a two-span 

beam is shown in Figure 1. The length (𝐿) of each 

span is 6m. The maximum permissible deflection 

of a two-span beam is 
𝐿

360
. 

 
Figure 1: Schematic diagram of two-span beam. 

LSF of the two-span beam for deflection is given in 

Eq. (10). 

𝑔(𝑤, 𝐸, 𝐼) =
𝐿

360
−

𝑤𝐿4

185𝐸𝐼
  (10) 

Where 𝑤, 𝐸  and 𝐼  represent the distributed load 

applied to the beam, the modulus of elasticity of 

the beam material and the moment of inertia of the 

beam cross section respectively. Probabilistic 

characteristics of random variables are given in 

Table 1. For two-span beam, mean and standard 

deviation of 𝐸 𝑎𝑛𝑑 𝐼 have been considered as per 

the literature (Li et al. 2006). 

 
Table 1: Probabilistic characteristics of random 

variables of Example 1. 

Random 

variable 

(unit) 

Mean Standard 

deviation 

Distribution 

type 

w  
(kN/m) 

12 0.5 Normal 

𝐸  
(kN/m2) 

2
× 107  

0.5 × 107 Normal 

𝐼 (m4) 8
× 10−4 

1.5
× 10−4  

Normal 

 

For two-span beam, first iteration is to 

generate 105 samples randomly using probability 

distribution. A K-means clustering is used to 

divide the samples into six clusters, and 18 

training samples are selected using Eq. (1) to train 

the Kriging model. In the second iteration, using 

the elbow method obtained 18 samples from six 

clusters, which were then combined with the first 
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iteration training samples to update the Kriging 

model. Then, in each iteration, four training 

samples are added sequentially using Eq. (7) and 

Eq. (8) until the stopping criterion is met. The 

results show that the failure probability has been 

converged after six iterations (𝑁𝑐𝑎𝑙𝑙 = 18 + 18 +
4 × 4 = 52). The reliability index obtained at the 

5th iteration is 2.638 using FORM. The failure 

probabilities obtained from direct MCS, FORM, 

and the proposed method are given in Table 2, and 

relative errors have been determined based on the 

direct MCS result. To determine failure 

probability failure using the FORM method, the 

generalized reliability index and failure 

probability relationship (𝑃𝑓 = Ф(−𝛽))  are 

considered as a reference (Marelli and Sudret 

2018).  

 
Table 2: Obtained failure probabilities of Example 1. 

Method 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 ∈𝑃𝑓 (%) 

MCS 106 0.00559 -- 

FORM -- 0.00417 25.40 

Proposed method 52 0.00588 5.19 

 

Example 2: A 23-bar truss structure is shown in 

Figure 2, which has been investigated in (Su et al. 

2014; Hong et al. 2022). Probabilistic 

characteristics of random variables are provided 

in Table 3.  𝐴1 is the cross-sectional area, 𝐸1 is the 

modulus of elasticity of horizontal bars, and  𝐴2 

is the cross-sectional area, 𝐸2  is the modulus of 

elasticity of diagonal bars. Six external loads are 

applied to the truss (𝑃1 to 𝑃6). LSF is given in Eq. 

(11), where 𝑉(𝑥) denotes vertical displacement at 

the mid-span. 

𝑔(𝑥) = 0.11 − 𝑉(𝑥) (11) 

 
Figure 2: 23-bar truss structure. 

 

Table 3: Probabilistic characteristics of random 

variables of Example 2. 

Random 

variable 

(unit) 

Mean Standard 

deviation 

Distribution 

type 

𝐸1  
(N/m2) 

2.1
× 1011 

2.1
× 1010  

Lognormal 

𝐸2 

(N/m2) 
2.1
× 1011  

2.1
× 1010  

Lognormal 

𝐴1(m
2) 2.0

× 10−3  
2.0
× 10−4  

Lognormal 

𝐴2(m
2) 1.0

× 10−3  
1.0
× 10−4  

Lognormal 

𝑃1(𝑁) 5.0
× 104  

7.5
× 103  

Gumbel 

𝑃2(N) 5.0
× 104  

7.5
× 103  

Gumbel 

𝑃3(N) 5.0
× 104  

7.5
× 103  

Gumbel 

𝑃4(N) 5.0
× 104  

7.5
× 103  

Gumbel 

𝑃5(N) 5.0
× 104  

7.5
× 103  

Gumbel 

𝑃6(N) 5.0
× 104  

7.5
× 103  

Gumbel 

 

Using the method of joints and unit load 

method, Eq. (11) can be written as Eq. (12). 

𝑔(𝐸1, 𝐸2, 𝐴1, 𝐴2, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6) = 0.11 − 

(864𝑃1 + 2400𝑃2 + 3360𝑃3 + 3360𝑃4 + 2400𝑃5 + 864𝑃6) 

24𝐴1𝐸1

−
2√2(24𝑃1 + 72𝑃2 + 120𝑃3 + 120𝑃4 + 72𝑃5 + 24𝑃6) 

24𝐴2𝐸2
   

      (12) 

From 105  randomly generated samples, 18 

samples are obtained in the first iteration by six 

clustering. Nine samples are added in the second 

iteration to represent the concern domain. Failure 

probability has been converged after 17 iterations, 

and a total of 87 function calls (𝑁𝑐𝑎𝑙𝑙 = 18 + 9 +
4 × 15 = 87)  are needed to achieve the 

convergence. The reliability index is 2.574, and it 

converges in the fourth iteration when using 

FORM. The failure probabilities obtained from 

direct MCS, FORM, and the proposed method are 
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given in Table 4, and relative errors have been 

determined based on direct MCS result.  

 
Table 4: Obtained failure probabilities of Example 2. 

Method 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 ∈𝑃𝑓 (%) 

MCS 106 0.00883 -- 

FORM -- 0.00502 43.15 

Proposed method 87 0.00885 0.23 

 

Example 3: A benchmark problem of a nonlinear 

oscillator for the dynamic response (Pan and Dias 

2017) is considered for investigation in this paper 

and schematic diagram is shown in Figure 3. 

 

 
Figure 3: Nonlinear oscillator. 

 

LSF is given in Eq. (13). 

𝑔(𝑚, 𝑐1, 𝑐2, 𝑟, 𝐹1, 𝑡1) = 3𝑟 − 𝑆𝑚𝑎𝑥  (13) 

𝑆𝑚𝑎𝑥 =

{
 
 

 
 2𝐹1

𝑚𝜔0
2 ;                            𝑡1 ≥

𝜋

𝜔0
2𝐹1

𝑚𝜔0
2 sin (

𝜔0𝑡1
2
) ;        𝑡1 <

𝜋

𝜔0
 

         

Where 𝜔0 = √
𝑐1+𝑐2

𝑚
 , and 𝑆𝑚𝑎𝑥  is maximum 

displacement. 𝑟 is displacement where one of the 

springs yields. 𝑚 stands for the mass and inertial 

characteristics of the structure, 𝑐1  and 𝑐2  are its 

elastic restoring force and potential energy 

storage respectively, and 𝐹(𝑡)  is the time-

dependent external forces acting on the structure. 

Probabilistic characteristics of random variables 

are given in Table 5. 

 

Table 5: Probabilistic characteristics of random 

variables of Example 3. 

Random 

variable 

Mean Standard 

deviation 

Distribution 

type 

𝑚 1.0 0.05 Normal 

𝑐1 1.0 0.1 Normal 

𝑐2 0.1 0.01 Normal 

𝑟 0.5 0.05 Normal 

𝐹1 1.0 0.2 Normal 

𝑡1 1.0 0.2 Normal 

 

In the first iteration, the Kriging algorithm 

uses 18 training samples obtained from 105 

random samples using probability distribution, 

and the LSF is used to determine the response of 

these input samples. Subsequently, 12 training 

samples are selected for the second iteration to 

represent the concern domain. The failure 

probability converges after seven iterations, and 

50 function calls (18 + 12 + 4 × 5 = 50)  are 

required. Based on FORM, the reliability index 

obtained at the 5th iteration is 1.897. The failure 

probabilities obtained from direct MCS, FORM, 

and the proposed method are tabulated in Table 6.  

 
Table 6: Obtained failure probabilities of Example 3. 

Method 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 ∈𝑃𝑓 (%) 

MCS 106 0.0282 -- 

FORM -- 0.0289 2.48 

Proposed method 50 0.0279 1.06 

 

Example 4: A two degree of freedom dynamic 

system (Keshtegar 2016; Zhu et al. 2020) is given 

in Eq.    (14). 

𝑔 = 𝐹𝑠 − 𝐾𝑠 × 𝑃(𝐸[𝑥𝑠
2])1/2   (14) 

𝐹𝑠 = force capacity, 𝐾𝑠 = the stiffness of second 

spring, P = the peak factor that is considered as 3; 

𝐸[𝑥𝑠
2] =  the mean-square relative displacement 

response, which is given in Eq.   

  (15). 

𝐸[𝑥𝑠
2] =

𝜋𝑆0

4𝜉𝑠𝜔𝑠
[

𝜉𝑎𝜉𝑠

𝜉𝑝𝜉𝑠(4𝜉𝑎
2+𝜃2)+𝛾𝜉𝑎

2 ×

(𝜉𝑝𝜔𝑝
3+𝜉𝑠𝜔𝑠

3)𝜔𝑝

4𝜉𝑎𝜔𝑎
4 ]     (15) 
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Where, mass ratio 𝛾 =
𝑀𝑠

𝑀𝑝
; average frequency 

𝜔𝑎 =
𝜔𝑝+𝜔𝑠

2
; average damping ratio 𝜉𝑎 =

𝜉𝑝+𝜉𝑠

2
; 

tuning parameter 𝜃 =
𝜔𝑝−𝜔𝑠

𝜔𝑎
; 𝑆0 = intensity of 

the white noise; 𝐾𝑃 = 𝜔𝑝
2𝑀𝑝; 𝐾𝑠 = 𝜔𝑠

2𝑀𝑠. Table 

7 presents the probabilistic characteristics of 

random variables. 

 
Table 7: Probabilistic characteristics of random 

variables of Example 4. 

Random 

variable 

mean Standard 

deviation 

Distribution 

type 

𝑀𝑝 1 0.1 Lognormal 

𝑀𝑠 0.01 0.001 Lognormal 

𝐾𝑝 1 0.2 Lognormal 

𝐾𝑠 0.01 0.002 Lognormal 

𝜉𝑝 0.05 0.02 Lognormal 

𝜉𝑠 0.02 0.01 Lognormal 

𝑆0 100 10 Lognormal 

𝐹𝑠 15 1.5 Lognormal 

 

In this problem, the Kriging model is trained 

using 60 samples that represent the entire domain 

in the first iteration. The second iteration uses 21 

training samples that are situated in the concern 

domain to update the Kriging model. 257 function 

calls (60 + 21 + 44 × 4 = 257) are required to 

converge the failure probability after 46 iterations. 

The failure probabilities obtained from direct 

MCS, and the proposed method are tabulated in 

Table 8. According to Zhu et al. (2020), using 

FORM, the reliability index for this problem is 

𝛽 = 2.016  Probability of failure is 0.02188) 

when the number of function calls is 436. 

 
Table 8: Obtained failure probabilities of Example 4. 

Methods 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 ∈𝑃𝑓 

MCS 106 0.00416 -- 

Proposed Method 257 0.00415 0.24 

 

4. CONCLUSIONS 

The active learning method is used in this study to 

estimate failure probability accurately with less 

computational effort. The suggested procedure is 

divided into these steps: (i) selecting first set of 

training samples and build a metamodel, (ii) the 

metamodel is updated adding the second set of 

training samples which are selected from the 

concerned domain. (iii) then, four training 

samples are chosen sequentially in each iteration 

until the stopping criterion has been met, (iv) the 

updated metamodel which represents the failure 

boundary is used to calculate failure probability. 

To demonstrate the accuracy and efficiency of the 

active learning method, four numerical examples 

are presented, and results of the proposed method 

have been compared with these of MCS and 

FORM. The proposed method requires lower 

number of function calls 
(𝑁𝑐𝑎𝑙𝑙)  which is quite efficient for complex 

engineering problems. In each problem, it has 

been shown to be efficient for estimating failure 

probability. According to the numerical results, 

the proposed method predicts failure probability 

more accurately than the FORM in terms of 

relative error (∈𝑃𝑓). The high dimensional and 

low failure probability problem will be focused in 

the future research work. 
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