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ABSTRACT: Post-disaster recovery is a significant challenge, especially in developing countries. As a 

result of various technical, environmental, socioeconomic, political, and cultural factors influencing post-

disaster recovery, methodologies relevant in developed nations may not be directly applicable in Global 

South contexts. This study introduces a probabilistic framework for modeling the post-disaster recovery 

of buildings in developing countries. The proposed framework combines a building-level assessment of 

individual assets to evaluate the post-disaster functionality state of a building portfolio. As part of the 

framework, a stochastic network analysis approach is proposed to estimate the recovery time of damaged 

buildings while accounting for technical, environmental, socioeconomic, political, and cultural factors, 

quantified using data gathered from past events in developing countries. A case study is presented to 

illustrate the application of the proposed framework to model the post-earthquake recovery of a synthetic 

low-income residential community. The analysis showed that negative technical, environmental, 

socioeconomic, political, and cultural factors could amplify the reconstruction time of damaged buildings 

by a factor of almost three. The proposed framework can support decision-makers in disaster planning 

and management strategies for vulnerable low-income communities.

1. INTRODUCTION 

Recent catastrophic events worldwide have 

emphasized the challenges to achieve rapid post-

disaster recovery, particularly in Global South 

contexts. For example, the majority of the 

occupants of the over 500,000 buildings 

demolished after the 2015 Gorkha earthquake 

continued to live in temporary shelters for over 18 

months after the disaster (The Asia Foundation 

2016). About 65,000 displaced people were still 

homeless five years after the 2010 Haiti 

earthquake (IOM 2015).  

The delayed recovery process in some of 

these countries is often influenced by various 

technical, environmental, socioeconomic, 

political, and cultural aspects (e.g., the presence 

of political conflicts or war, availability of stable 

governance, land disputes, and lack of technical 

know-how, among many other factors). For 

example, Sharma et al. (2018) reported that the 

absence of local government resulted in several 

months of delays before reaching out to specific 

regions affected by the 2015 Gorkha earthquake. 

Furthermore, resolving fundamental issues (e.g., 

tender process, building permits, and land 

acquisition) took at least four times the required 

time. Data presented by Weerakoon et al. (2007) 

show that the recovery rate of buildings in Sri 

Lanka following the 2004 Indian Ocean tsunami 

was eight times larger in conflict zones compared 

to zones outside the conflict region. Furthermore, 

reports (e.g., Gharaati and Davidson 2008; 

Kennedy et al. 2008) have highlighted that poor 

management skills can lead to construction 

delays, rejection by beneficiaries, rework, and 

demolition of newly constructed buildings. 

Delays associated with poor management skills 
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reportedly impeded recovery time by a factor of 

up to three. 

It is essential for local authorities and other 

stakeholders in disaster-prone regions to have 

access to efficient computational tools that can 

help forecasting and plan/shape recovery 

trajectories while explicitly considering the 

various technical, socioeconomic, political, 

environmental, and cultural factors in their 

communities. 

Recovery modeling frameworks available in 

the literature are either building-specific or 

community-level. Regarding building-level post-

disaster recovery modeling, various studies (e.g., 

Almufti and Willford 2013) have been developed 

to evaluate the downtime and recovery trajectory 

of damaged buildings. However, these studies 

focus mainly on repair downtime modeling. 

Therefore, they may be unable to capture long-

term recovery facets of low-income countries 

typically dominated by reconstruction and not 

repair. Furthermore, these studies do not consider 

the diversity in disaster resilience between 

countries due to various geographic, technical, 

environmental, socioeconomic, political, and 

cultural factors. As such, some of the existing 

frameworks may not be easily extrapolated to 

regions outside of the United States, for instance. 

Similar conclusions can be reached for most 

community-level recovery modeling studies (Lin 

and Wang 2017a) focusing on developed nations. 

It is noted that studies (e.g., Burton et al. 2017) 

have developed post-disaster housing frameworks 

that implicitly consider socioeconomic factors. 

However, existing methodologies lack a 

harmonized framework to adequately account for 

the previously mentioned factors that strongly 

influence recovery processes in developing 

countries. This is a research gap that needs to be 

filled.  

Based on these remarks, the current study 

proposes a framework for post-disaster recovery 

modeling of disaster-struck marginalized 

communities. The proposed framework combines 

a building-level assessment of the structural and 

non-structural seismic performance of each 

building to estimate the post-disaster functionality 

state. A stochastic network analysis (SNA) 

approach is then used to probabilistically estimate 

the recovery time of damaged buildings. The SNA 

accounts for technical, socioeconomic, political, 

environmental, and cultural factors influencing a 

community’s recovery trajectory at a system and 

building level, demonstrating the influence of 

such factors on post-disaster reconstruction 

projects. Finally, a case study is presented to 

demonstrate the applicability of the proposed 

framework to model the post-earthquake recovery 

of a residential community. The proposed 

framework can serve as a tool to inform decision-

makers on disaster planning and management 

strategies. For example, local authorities can use 

information from recovery trajectories to manage 

short-term and long-term shelter needs, among 

other issues. 

2. PROPOSED FRAMEWORK 

2.1. Overview 

The proposed methodology combines five distinct 

modules to evaluate the probabilistic post-disaster 

recovery trajectory of buildings (Figure 1). The 

subsequent subsections provide a summary of 

each module. 

2.2. Hazard analysis 

The hazard analysis simulates the local hazard 

intensity measures (IMs; e.g., earthquake-induced 

ground shaking, flood-induced water depth, 

typhoon-induced wind speeds) at each building 

location for a particular event scenario. The 

hazard analysis adequately accounts for the 

spatial distribution of the intensities throughout 

the region of interest (Markhvida et al. 2018). 

2.3. Post-disaster functionality assessment 

The functionality level assessment 

implemented in this study builds on the work by 

Lin and Wang (2017b) to classify a damaged 

building into four functionality levels (FL0, FL1, 

FL2, and FL3) based on the damage states of the 

structural and non-structural components and 
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utility service availability (See Figure 2a for a 

description of each functionality level).  

Post-disaster damage assessment of 

structural and non-structural systems is performed 

by relating hazard-induced IMs (e.g., peak ground 

accelerations and spectral accelerations in the 

case of earthquake hazard) and/or hazard-induced 

engineering demand parameters (EDP) (e.g., 

interstory drifts and peak floor accelerations) to 

building-level and/or component-level damage 

and loss estimates. This is done through fragility 

models expressing the probability of various 

building-level damage levels as a function of a 

hazard IM (e.g., Gautam et al. 2021; Martins and 

Silva 2021) or the probability of various 

component-level damage levels as a function of 

an EDP (e.g., FEMA  2012) for both structural and 

non-structural components/systems within a 

building. 

2.4. Decision-making on intervention 

Once the functionality level is determined, a 

decision is made on the appropriate intervention 

strategy. A decision-making flowchart is 

presented in Figure 2b. The flowchart assumes 

that buildings in FL1 and FL0 are in a reparable 

state, and any minor damage to the systems will 

not compromise the response of the building in an 

aftershock. However, it is also assumed that 

repairs that are not safety-critical can be done 

while the building is in continued use. An FL3 

building requires partial or total replacement, and 

relocation may be necessary in some instances 

(e.g., buildings located in liquefiable soil). 

A decision-making analysis is required to 

decide whether an FL2 building would be 

decommissioned or not. Such analysis could be 

done by comparing the mean loss ratio (i.e., the 

ratio of the repair cost to the total replacement cost 

of the building) to a predetermined threshold (e.g., 

FEMA 2012), a cost-benefit analysis, or a 

multicriteria decision-making analysis. The 

choice of the analysis type is dependent on the 

decision-makers. 

2.5. Intervention prioritization at the community 

level 

Community-level intervention requires 

substantial resources – including workforce, time, 

funding, and material. Therefore, appropriate 

resource allocation is essential to mitigate the 

adverse socioeconomic impacts of a prolonged 

recovery process.  

To achieve an inclusive recovery process in 

government (or any centrally)-managed 

intervention projects, it is crucial to adopt an 

intervention prioritization model incorporating all 

socioeconomic, political, and cultural factors. 

Key factors to consider include the political 

importance of buildings requiring intervention, 

social vulnerability indicators of people in 

affected buildings, and the historical and cultural 

significance of the affected buildings. 

Intervention prioritization could be based on the 

work by Ghannad et al. (2020), which adopts 

 
Figure 1 – Proposed framework 
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multicriteria decision-making analysis and 

multiobjective optimization for post-disaster 

intervention prioritization. Interested readers are 

referred to Ghannad et al. (2020) for more 

discussions on the approach. 

2.6. Recovery time modeling using stochastic 

network analysis 

This study uses an SNA technique to model 

buildings’ recovery time. In this SNA, the 

probabilistic distribution of the recovery time is 

developed through critical path analysis using 

Monte Carlo sampling (MCS). The critical path 

indicates the required minimum timeframe to 

complete a given project.  

The recovery time Rt to attain a given 

functionality level Q(t) is defined as a function of 

the mobilization time Mt and the intervention time 

It and can be expressed as 
 

     Rt (Y) = f [Mt (Y), It (Y),Q(0),Q(t)] (1) 

 

where Y is a set of variables characterizing the 

selected intervention strategy for the building 

(i.e., repair, retrofit, replacement, or relocation), 

and Q(0) is the initial post-disaster functionality 

level.  

Each task in the intervention and 

mobilization phases is characterized by three 

durations – the optimistic duration (a), the most 

likely duration (m), and the pessimistic duration 

(b). The three duration parameters for each task 

are defined from the average time (w) to complete 

a task in an ideal (typically pre-disaster) scenario 

using recovery time amplification and mitigation 

factors which have been quantified from field data 

(Opabola and Galasso 2023) (See Table 1). 

The optimistic duration (a) for task i can be 

estimated using Equation (2).  

1

( ) ( )
p

i li i

l

a t MF t w
=

=   (2) 

In Equation (2), w is the average time to 

complete a task in an ideal pre-disaster situation, 

l is the number of mitigation factors (MF) (l = 1, 

2, .., p) influencing task i. As previously 

mentioned, mitigation factors may be time-

dependent, which must be accounted for when 

calculating a. 

 
Table 1 –  Parameters for modeling recovery times 

Parameter Factor 

Time amplification factors 

Land dispute resolution 1.25 – 2 

Pandemic 1.5 – 3 

Delay in material procurement 1.2 – 2.5 

Hostile political conditions 1.5 – 5 

Poor management skills 1.5 – 3 

Funds disbursement 1.25 – 3 

Technical delays 1.2 – 2.5  

Time mitigation factor 

Voluntary mobilization 0.5 – 0.9 

 

The pessimistic duration (b) is the maximum 

time to complete a task assuming all the time 

amplification factors are activated, and there are 

no time mitigation factors. The pessimistic 

duration (b) can be estimated using Equation (3).  

 
 

(a) (b) 

Figure 2 – (a)functionality assessment module  (b) decision-making module 
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The most likely duration (m) captures the 

highest likelihood of completing the task in a 

given timeframe. m is defined to be closer to a if 

there is a higher likelihood that the mitigation 

factors would be more prevalent than the 

amplification factor or closer to b otherwise. 

When uncertain, m can be defined as 0.5(a+b).  

The defined duration parameters (i.e., a, m, 

and b) are then used to generate a PERT 

distribution for each task duration. The defined 

probabilistic duration parameters for each task are 

then used to carry out MCS. This entails 

conducting critical path analyses (for a chosen 

number of iterations) using randomly chosen task 

durations in each iteration. The expected critical 

path and critical path duration (i.e., expected 

recovery time) are evaluated for each iteration. 

Once the iterations are completed, it is then 

possible to evaluate the recovery time distribution 

required to attain the functionality level after each 

intervention task is completed – the analysis 

output.  

3. APPLICATION 

3.1. Overview 

The proposed framework is illustrated 

through two case studies (and multiple scenarios 

for each case study) to model the post-earthquake 

recovery of a synthetic small-scale residential 

community with a population of 22,500 people 

(Figure 3). Each case study intends to demonstrate 

how local authorities can adopt the proposed 

framework as a disaster risk management tool for 

specific objectives. 

The synthetic residential community consists 

of a building stock of 450 reinforced concrete 

(RC) frame buildings comprising 150 two- and 

300 four-story frames. Most buildings in the 

residential community (90%) are assumed not 

designed to modern seismic codes and are 

susceptible to non-ductile behavior. The 

remaining 10% of the building stock is code-

conforming.  

 
Figure 3 – Case study community 
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at the building site. The seismic fragility models 

of the structural systems and non-structural 

components are based on Villar-Vega et al. (2017) 

and FEMA (2022), respectively. For each of the 

thousand realizations of spatially correlated 

spectral accelerations that were simulated, the 

post-disaster functionality level of each building 

is evaluated as described in the methodology 

section.  

Given that the case study looks at long-term 

recovery, the recovery analysis focuses on 

reconstructing buildings recommended for 

reconstruction. The calculation assumes that all 

displaced households are in temporary shelters 

until permanent buildings are reconstructed. A 

key assumption in this analysis is that no life was 

lost during the disaster, and each displaced 

household is provided with a new one-story 

single-family residential house.  

The intervention sequence of the 

reconstruction process entails sourcing for 

reconstruction funds, planning, and building 

design, securing relevant permits, tender process 

and contracting engineers and builders, site 

clearing, site mobilization, and construction. The 

average time to complete each task in an ideal pre-

disaster situation (w), adopted in Equations (2) 

and (3), for the reconstruction projects are based 

on information derived from actual construction 

projects of one-story single-family residential 

houses in Palu, Indonesia. The time amplification 

factors considered for each task and each scenario 

(to estimate the pessimistic time b) are based on 

the maximum of the range presented in Table 1. A 

unity factor is used to estimate the optimistic time 

(a). The most likely time is assumed to be 

0.5(a+b). 

Figure 4 compares the recovery curves of the 

three considered scenarios. As shown in the 

figure, accounting for socioeconomic factors 

significantly increases the time required for 

several families to return to permanent housing.  

According to the case study, community 

conflicts and bureaucratic delays increased 

community-level recovery time to more than five 

years (twice the period required in scenario 1-1).  

Decision-makers could use such information 

to develop appropriate mechanisms that can 

ensure full recovery in communities susceptible to 

communal conflicts, especially in cases where 

post-disaster conditions could escalate such 

conflicts.  

Delays associated with material 

procurement, construction worker skills, and 

funds issues (scenario 1-3) could result in less 

downtime than in scenario 1-2. This is attributed 

to the fact that funds issues may be present during 

the initial phases of the project (the case assumed 

in the analysis). However, if funds-related issues 

are prevalent in each phase of the recovery 

project, the time to achieve full recovery may be 

prolonged.  

3.4. Case study 2: Impact of structural retrofit 

policies on long-term community-level 

recovery 

This case study demonstrates how the 

proposed methodology can capture the influence 

of retrofit policies on community resilience. This 

study assumed a similar social vulnerability index 

for the entire community. Hence, the selection of 

   
(a) Scenario 1-1 (b) Scenario 1-2 (c) Scenario 1-3 

Figure 4 - Community-level housing capacity restoration for (a) Scenarios 2-1; (b) 2-2; and (c) 2-3. 
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low-code buildings for retrofit is based mainly on 

distance from the fault (i.e., low-code buildings 

closer to the fault are considered for retrofit). This 

assumption is adopted because the same fragility 

functions were adopted for the buildings (but 

different sets of fragility functions for different 

building heights). The fragility functions for the 

retrofitted buildings are based on Opabola et al. 

(2021). 

Four scenarios are considered. Scenario 4-1 

assumes no retrofit (i.e., 90% of the entire 

building stock remains non-ductile). Scenario 4-2 

considers retrofit of 25% of the total low-code 

buildings closest to the fault (irrespective of the 

number of stories) – a total of 101 buildings are 

retrofitted. Scenario 4-3 considers retrofit of 50% 

of total low-code buildings closest to the fault. 

Scenario 4-4 assumes retrofit of 75% of the total 

low-code buildings closest to the fault. Finally, 

scenario 4-5 considers retrofit of all low-code 

buildings.  

Regarding recovery-impeding factors, only 

delays due to material procurement are 

considered. A similar workforce (i.e., 80 

construction crews) is assumed for all scenarios. 

Figure 5 compares the normalized median 

post-earthquake housing capacity (defined as the 

ratio of the number of non-displaced households 

to the total number of households), the median 

time to achieve full community recovery (i.e., 

construct all new permanent houses), and the 

proportion of retrofitted low-code buildings. For 

example, as shown in the figure, retrofitting 50% 

of the low-code buildings increases the 

normalized median post-earthquake housing 

capacity to 90% (from 70%) and reduces the 

median full recovery time by 40%.  

Case study 2 is relevant in cases where local 

authorities want to identify buildings that need to 

be prioritized for retrofit because retrofitting such 

buildings significantly enhances community-level 

recovery.  

 
Figure 5: Relationship between normalized median 

post-earthquake housing capacity (defined as the 

ratio of the number of non-displaced households to 

the total number of households), the median time to 

achieve full community recovery (i.e., construct all 

new permanent houses), and the proportion of 

retrofitted low-code buildings 

4. CONCLUSIONS 

Local authorities and decision-makers need 

to access efficient and reliable disaster planning 

and management tools to achieve desirable levels 

of community resilience. This study proposes a 

probabilistic framework for modeling the post-

disaster recovery pathway of a community while 

accounting for technical, socioeconomic, 

political, environmental, and cultural factors that 

can impede or speed up post-disaster recovery. 

The output of the proposed framework is the 

probabilistic distribution of recovery times and 

various resilience indicators (e.g., the proportion 

of displaced households).   

The proposed framework is demonstrated 

using a hypothetical community subjected to an 

earthquake scenario. The case study is used to 

capture the influence of various technical, 

environmental, socioeconomic, political, and 

cultural factors on post-disaster housing 

reconstruction. The analysis shows that, due to 

negative socioeconomic, political, and cultural 

factors, internally displaced people might remain 

homeless for up to five years after the disaster. 

The analysis also shows how community-level 

building retrofit policies can be designed by 

accounting for the quantified benefits of the 

retrofit to improve community resilience. 
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Based on the outcome of the case study, it is 

recommended that local authorities invest in 

policies that ensure the considered factors (i.e., 

consider the influence of conflicts within the 

community, bureaucratic delays, lack of 

community participation, and poor onsite 

construction management) are mitigated. 
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