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ABSTRACT: Power distribution network vulnerability has been a critical component in measuring
community resilience under natural disasters. Given overhead power lines exposed to extreme weather
events are susceptible to large-scale damage and failure, it is imperative to identify if the power
distribution network types are overhead or underground as part of the power outage prediction. As such
data are not publicly available, we propose the application of machine learning techniques for power
distribution network type classification. The purpose of this article is to improve the accuracy and
generalizability of the power network type classification model proposed originally by Zhai et al.
(2020). Given that most power distribution networks follow road networks, we labeled the distribution
network type for over 60,000 selected road locations across major cities in the United States. We then
combine the power distribution network type dataset with nearby building characteristics, road types,
probabilistic hazard maps, and geographical location information to form a complete dataset for the
training of the network type classifier. We predict the network type at the building level, then aggregate
the predictions back to individual road segments. We demonstrate the performance using different
machine learning models, feature combinations, and aggregation methods. As a result, the best
performance model is able to predict the existence of an overhead system with a testing accuracy of over
75% and F1 score over 0.74. We conclude that our machine learning model is an effective and efficient
tool for power distribution network type classification, which can be further applied to evaluate
distribution network damage under natural disasters.

1. INTRODUCTION
All around the world, extreme hazard events such

as flooding, tornadoes, and hurricanes have caused
widespread power network failure for distribution
systems. When Hurricane Irma struck Florida on
September 10, 2017, 6.7 million customers experi-
enced power outages, which represents almost one-
third of the state population, and some areas had
outages longer than a week (Chakalian et al., 2019).

Moreover, large-scale damage to the power dis-
tribution network can have even more severe im-
pacts on the economy. In 2012, Hurricane Sandy
caused power outages for over 8.5 million people,
which contributed to over $7 billion in economic
losses (Nateghi et al., 2016). Overhead systems are
known to be vulnerable to wind hazards (Waseem
and Manshadi, 2020), while underground systems

1



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

are potentially susceptible to flood erosion (Miura
et al., 2021). To understand the potential power
distribution infrastructure vulnerability to different
types of disaster events, it is pivotal to identify if the
power system is overhead or underground in power
system risk analysis and reliability assessment.

Currently, the majority of research on overhead
distribution power lines centers on identifying and
addressing vulnerabilities due to different types of
disaster events. For instance, Zhou et al. (2006)
proposed two methods to predict weather-related
power system failure related to overhead power
lines using Poisson regression and Bayesian net-
work. To evaluate the likelihood of distribution sys-
tem interruption at a large scale for certain types of
disasters, an important first step after obtaining the
power distribution network topology is to identify
the power line type. However, there are very lim-
ited studies focusing on the classification of over-
head and underground power networks. Such infor-
mation is necessary not only because the overhead
and underground power systems are prone to dif-
ferent types of damage. It is also essential to come
to accurate power outage estimations at the hyper-
local level. Power distribution networks are usually
classified information, and the data is not publicly
available. This is pointed out previously by Zhai
et al. (2020) as one of the major drawbacks block-
ing simulation-based power outage analysis. In this
study we have used the road segments as a proxy of
the power distribution network because we do not
have access to sensitive data.

Zhai et al. (2020) previously proposed the
methodology of generating synthetic power net-
works and using a random forest machine learn-
ing model to infer overhead and underground power
networks given nearby building features such as
year built, value, and total square area for Colum-
bus, OH. The paper showed very promising results
for a given city, yet it might not be applicable for a
larger spatial scale prediction. There are also sev-
eral existing studies focusing on overhead power
distribution line recognition from images or point
cloud data. Roussel et al. (2021) published an al-
gorithm used to recognize transmission towers and
overhead power lines from 3D point clouds. Prates

et al. (2019) used Convolutional Neural Networks
(CNN) to detect the insulators in overhead power
lines. Both approaches require using laser scans or
photo-taking at power line locations, which can be
more accurate but expensive to scale to a nation-
wide and global level.

In this study, we further improve upon the
method mentioned by Zhai et al. (2021) on using
machine learning models to predict the existence of
overhead power networks. We aim to use a nation-
wide dataset and include more features than year-
built value and total square area to improve the clas-
sification model’s accuracy and generalizability for
the continental US.

2. METHODOLOGY
The characteristic and topology of a power dis-

tribution network are often not publicly available in
the U.S.. Given the necessity for both power lines
and roads to reach individual buildings, this study
assumes that the road network can serve as a proxy
of the power distribution network, and the power
distribution network type can be inferred from the
surrounding building characteristics. The machine
learning model trained from this study is specifi-
cally for the U.S., and the same methodology can
be generalized to other countries.

2.1. Datasets
The backbone of this study is the ground truth

power network type dataset that was gathered using
map services. By manually looking at over 60,000
road segments across most major cities in the U.S.
to in order to ensure generalization across the en-
tire country, the distribution network types are
recorded, which is the machine learning model’s
response variable. The power network type can
have three different labels: “True” means overhead
power lines are observed in the street view; “False”
means no overhead power lines are observed; “Un-
known” means StreetView is not available. In the
following steps, the locations with “Unknown” la-
bels are excluded. Using the described ground truth
dataset, the target for the trained machine learning
model is to predict if an overhead power network
exists at a given location. Figure 1 visualizes the
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Figure 1: Ground truth road segment points on map

locations of the ground truth power network type
dataset.

There exist various indicators that can be used to
determine whether a given region or community is
dominated by an overhead power system. Building-
related features are the first to be considered. The
year of construction of a building can be a strong in-
dicator. In general, newly constructed communities
are more likely to have underground power lines.
Additionally, the cost of installation is a significant
factor in determining power line types in a partic-
ular region. The installation of underground power
lines incurs higher costs than overhead power lines.
Thus, they are more prevalent in upscale neighbor-
hoods, commercial districts or city centers. Other
than value and year-built information, other build-
ing characteristics of a neighborhood can poten-
tially be dependent variables to power line types,
such as the number of floors, construction type, oc-
cupancy type, etc. Furthermore, the land use type
of a region can also be an important factor. For ex-
ample, a city’s downtown area often prioritizes the
installation of underground power lines. To gener-
alize the assumption, the building density of an area
or the classification of urban or rural regions can be
a contributing factor to the power network type.

On the other hand, a number of non-building
related factors also serve as potential features for
power line type classification, such as exposure
to hazards, road type, and geographical location.
From the perspective of utility companies, main-
tenance of underground power lines presents addi-
tional challenges because excavation is needed for
replacements or repairs when damages occur. Con-

sequently, in regions exposed to repeated flooding
events, it might be more difficult to keep the power
lines underground. On the contrary, a region with
frequent wind exposure might be more inclined to
install underground power lines, as overhead power
lines are vulnerable to damage caused by falling
trees or debris. Additionally, the type of road it-
self might determine the power line type. It is likely
that underground power lines are installed along the
primary road, such as highways or expressways,
while overhead power lines are installed along the
local roads. Lastly, the local government legislature
or geographical location could influence the power
line types. The level of support for installing under-
ground power lines may vary among local govern-
ments. Furthermore, mountainous regions mostly
have overhead power lines because of low popula-
tion density and easy repair.

Four additional datasets are selected to pro-
vide independent variables to the machine learning
model. As previously discussed in the introduction
section, surrounding building characteristics, road
types, hazard exposure, and classification of urban
or rural settings all could contribute to the infer-
ence of power line types. To capture the potential
influence of local government legislation and ge-
ographic location, the political stance of the state
based on the past 13 presidential election votes and
the time zone the buildings are located in are also
introduced as independent variables. The list be-
low summarizes the important datasets used in this
study.

1. Power line type dataset: Ground truth dataset
with power line types manually labeled at over
60,000 road segments

2. Building characteristics dataset: Contains
building characteristics variables including but
not limited to total area square meters, year
built, value, number of floors, occupancy, and
vs30 value at the building locations

3. Road type dataset: Contains MTFCC_Code
variable that categorizes road types (U.S. Geo-
logical Survey, National Geospatial Technical
Operations Center, 2022)
The most common road type in the roads
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dataset is S1400: local neighborhood road, ru-
ral road, city street

4. Wind and flood hazard maps: Contains wind
speed, storm surge depth, and inland flooding
depth at different return periods. Hazard in-
tensity values at a return period of 500 years
are used for interpolation at individual build-
ing locations

5. Urban / Rural classification: Contains geome-
tries corresponding to urban areas, urban cen-
ters, and rural regions (U.S. Census Bureau,
2017)

2.2. Power distribution network classification
framework

We begin compiling the complete dataset by con-
verting all datasets to the individual building level
by applying the 250m buffer. Then split the com-
plete dataset into training and testing datasets. We
then train the machine learning models, aggregate
the building-level prediction result to road segment
level, and evaluate the model performances at ag-
gregated road level.

2.2.1. Data Preprocessing

The first step of the process is to build a com-
plete dataset using all datasets discussed above. For
each road segment, a 1,000-meter buffer is applied
to filter for buildings within the buffer, resulting
in over 18 million buildings included in the com-
plete dataset. The distance between the central
road segment and each building is also recorded as
dist_to_road. The dist_to_road feature becomes a
useful feature in the later steps to further filter for
buildings. The power network type labels and road
types are applied to all buildings within the buffer
based on the central road segment label; building
level features such as the number of floors or value
of the property are left as is; other features such as
urban/rural classification are spatially joined based
on individual building locations. GeoPandas in
python as well as QGIS, was used in this step for
geographical processing.

2.2.2. Feature Selection
The complete dataset has 14 variables in total, in-

cluding both numerical and categorical ones shown
in the list below.

1. year_built: year the building is built
2. value: value of the building
3. total_area_sq_meters: total square meters of

the building
4. floors: number of floors of the building
5. occ: occupancy type of the building:

SFD: Single Family Home, MFD: Multi Fam-
ily Home, IND: Industrial Building, COM:
Commercial Building

6. num_bldg_nearby: Number of buildings exist
around each road within 1000-meter buffer

7. MTFCC_code: MTFCC road type code
8. VS30: VS30 at the building location (the time-

averaged shear-wave velocity to 30 m depth) to
account for seismic hazard

9. wind_speed_RP500: Wind speed at return pe-
riod 500 years at the building location to ac-
count for wind hazard

10. SS_RP500: Storm surge depth at return period
500 years at the building location

11. FL_RP500: Inland flooding depth at return pe-
riod 500 years at the building location

12. UATYP10: Urban / Rural classification with
3 possible values; U: Urban Area, C: Urban
Center, R: Rural

13. time_zone: Time zone the building is located
in: Pacific, Mountain, Central, or Eastern

14. political_stance: Assigned to buildings based
on the State it’s located in. Categorized into 2
groups: red or blue, depending on the past 13
presidential election results

The unit count is another building characteristic
feature. However, it is excluded after we conducted
basic exploratory data analysis. To identify multi-
collinearity in the variables, a confusion matrix is
used on the numerical variables and shown in fig-
ure 2 below. From the confusion matrix, we have
identified that the two most correlated features are
unit counts of the building, and the building’s total
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Figure 2: Covariance matrix of continuous variables

square footage, which makes sense. We have used a
covariance of 0.6 as a threshold to exclude features
with highly correlated variables. The unit count is
hence removed from the selected features.

2.2.3. Data Versions

In the complete dataset, we have selected 14
features in total. However, the scalability of the
trained machine learning modeling also plays a part
in the feature selection. The U.S. has over 100 mil-
lion buildings in total, and preparing the complete
dataset would require major computational power.
For example, the building characteristics related
variables are already in the building dataset and do
not take extra effort to process. The hazard maps re-
lated variables, as well as urban/rural classification
variables, are more difficult to obtain for a new set
of buildings because they would require interpola-
tion at each building location for the hazard values,
and the urban/rural classification variables require
spatial geoprocessing that takes a long time because
of the complicated shapefile geometry. Considering
different variables have different levels of difficulty
to obtain at the building level, we have proposed
several data versions with different sets of features
ranging from easy to more difficult levels of prepro-
cessing. The table 1 below shows the summary of
features included in each data version.

Table 1: Summary of data versions.

Data
Version

Included Features

V1 year_built, total_area_sq_meters

V2
year_built, total_area_sq_meters,
value, floors, occ

V3

year_built, total_area_sq_meters,
value, floors, occ, num_bldgs_nearby,
VS30, FL_RP500, SS_RP500,
wind_speed_RP500, MTFCC_CODE,
UATYP10

V4

year_built, total_area_sq_meters,
value, floors, occ, num_bldgs_nearby,
VS30, FL_RP500, SS_RP500,
wind_speed_RP500, MTFCC_CODE,
UATYP10, time_zone, political_stance

2.2.4. Buildings Filtering
The second step is to determine the buffer dis-

tance that needs to be applied to further filter the
buildings surrounding the road segments. To decide
on the optimal buffer distance, an experiment was
set up to compare classification performances with
buffer distances 50m, 100m, 250m, and 500m. The
same models were used to train on a filtered dataset
using each buffer distance and data version combi-
nation.

Overall, the 250m buffer performs the best across
all data versions and model types (except for the
null model, which is the naive model used for com-
parison). Therefore 250m is the selected buffer dis-
tance for further studies.

2.2.5. Models Training
Applying a 250m buffer and the selected fea-

ture list, the complete dataset is filtered based on
the dist_to_road feature to form the filtered dataset
used for training. The rows with any null values are
dropped. A random 80-20 split is conducted to split
the filtered dataset into training and testing datasets.
Standardization is conducted to the numerical fea-
tures, and the same standardization scaler is saved
and reused in testing.

We choose five commonly-used supervised
learning algorithms for training. Logistic regres-
sion (LR) is the most basic classification machine
learning algorithm that is simple to implement
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Table 2: Model Performance Summary - Aggregated Testing

Data Version V1 Data Version V2 Data Version V3 Data Version V4
Model Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC
LR 67.2% 0.675 0.661 68.9% 0.689 0.665 74.0% 0.734 0.702 73.9% 0.733 0.699
CART 68.8% 0.686 0.662 70.9% 0.710 0.691 70.9% 0.712 0.702 74.8% 0.745 0.718
RF 69.9% 0.683 0.645 72.1% 0.716 0.686 75.4% 0.745 0.708 74.9% 0.740 0.703
GB 69.8% 0.680 0.641 70.1% 0.692 0.656 75.7% 0.752 0.721 75.9% 0.750 0.713
HGB 69.4% 0.686 0.654 71.0% 0.708 0.681 74.7% 0.738 0.701 75.6% 0.747 0.709
Null 62.7% 0.483 0.500 63.4% 0.409 0.500 63.5% 0.494 0.500 63.6% 0.495 0.500

and computationally efficient. The decision tree
(CART) model is chosen because of its ease of han-
dling both categorical and quantitative values. Ran-
dom forest (RF) is selected because it works well
with non-linear data and has a low risk of overfit-
ting. Gradient boosting trees (GB) can be more ac-
curate than random forests but may be more prone
to overfitting and are slow to train. The histogram
gradient boosting (HGB) algorithm accelerates the
training speed of gradient boosting by binning the
continuous input variables.

When training each model, 3-fold cross valida-
tion is conducted with halving grid search to speed
up the cross validation process and conclude on the
best model hyperparameters. After the optimal hy-
perparameters are decided from the cross valida-
tion, they are used to retrain the model with the en-
tirety of the training data. When a road segment
has no buildings nearby, the power line type is as-
signed as overhead, assuming that in remote areas,
overhead power lines are installed because of the
cost-benefit.

2.2.6. Classification Aggregation
After the classification labels are produced at a

building level, the final step is to aggregate the la-
bels back to the road segment points. At this step,
we experimented with different aggregation meth-
ods and decided to aggregate by mode, where we
assign the popular prediction label at the building
level within the 250m buffer to the center road seg-
ment. We have also conducted an inverse distance
weighted aggregation method, where we first cal-
culate the distance between each building and road
point pair and aggregate the label using the inverse
of distance as the weight for the weighted average.
The two methods did not show a significant differ-

ence. Therefore, aggregation by mode is chosen be-
cause of its lower computational cost.

3. MODEL PERFORMANCE
The models are tested both at the individual

building level and the aggregate road segment level,
while model performance is evaluated at the aggre-
gated road segment level. Aggregated testing accu-
racy and other metrics are summarised in table 2.

The Null model is simply assigning the majority
of power line types to all road segments. It is pro-
ducing different aggregated testing accuracies for
each data version because the rows with null values
are dropped, resulting in a slightly different number
of rows for different data versions. From the aggre-
gated testing results, we can see that for data ver-
sions with fewer features, simpler models such as
Logistic Regression and CART decision trees have
better performance. Gradient Boosting and Ran-
dom Forest outperformed the simpler models for
data versions with more features.

Looking at the mean feature importance ex-
tracted from the random forest model, the build-
ing year-built is the most significant contributing
feature. The second most important feature is
the building property value. Wind speed, time
zone, building total area, political stance, number of
floors, and occupancy are also among the top con-
tributing factors to power line type classification.

When comparing across data versions, we can
see that the data version V3 and V4 have similar
aggregated testing accuracy. However, both of the
data versions have at least 12 features. Among the
12 features, hazard related variables such as wind
speed and flood depths will need to be interpo-
lated at building levels, and urban/rural classifica-
tion variable requires spatial processing using the
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Figure 3: Percentage of overhead power lines within each 5km x 5km grid cell of the U.S.

complex shapefile. If data versions V3 or V4 are
used for the classification of the power line types
of all the road segments in the entire US, obtain-
ing the input dataset will be computationally expen-
sive. In comparison, compiling the input dataset
using data version V2 is much easier, considering
all the features are in one single building charac-
teristics dataset. Its aggregated testing accuracy is
also only 5% lower than data version V3. There-
fore, data version V2 with its best-performing ran-
dom forest model, is used for the power line type
classification of the entire US.

4. NATIONWIDE POWER DISTRIBUTION
NETWORK TYPE

After the random forest model for data version
V2 is used for running the entire US, the percent-
age of overhead power lines aggregated at 5km x
5km grid cell level is shown in Figure 3. The hot
spots are located in most major cities, suggesting
that most of the power distribution networks are un-
derground, and the model is indeed capable of cap-
turing such a phenomenon.

We also zoomed into several major cities in the
U.S. to look at the power distribution network clas-
sification in finer resolution. Figure 4 shows the
percentage of overhead power lines within each

250m x 250m grid cell for six of the major US
cities. For New York City (NYC), Chicago, Mi-
ami, Los Angeles (LA), and San Francisco (SF),
we can clearly observe the hot spot for underground
power lines at the city center. For downtown Hous-
ton, however, the model failed to capture the preva-
lence of underground power lines. In fact, we
have observed that for smaller city downtowns, it
is more difficult for the model to correctly identify
the downtown underground power lines.

5. CONCLUSION
This study has presented the approach of using

machine learning for the classification of power dis-
tribution networks. The model was trained and
tested on the ground truth dataset consisting of
around 60,000 road segments and their surround-
ing buildings. The best model achieved an over-
all accuracy of 75.9%. However, considering the
model complexity and data scalability, we choose
to use the model with only 5 features for the clas-
sification task of the entire US: building’s year-
built, total area, property value, number of floors,
and occupancy type, and still maintained an accu-
racy of 72.1%. Overall, this study presents a novel
approach to classifying power line types, which
enables power outage simulation on a nationwide
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Figure 4: Percentage of overhead power lines within each 250m x 250m grid cell at six major cities

scale.
The proposed model has limitations. One aspect

that could influence the network type but was not
considered in this study is the demographics of dif-
ferent regions, such as household median income,
education, and employment status. The model per-
formance can be further improved by using more
accurate data or by combining with more advanced
deep learning approaches such as image-based ob-
ject detection using street view images.
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