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ABSTRACT: Compound coastal flooding i.e. coastal flooding driven by storm surge, rainfall, and 

riverine dynamics poses a significant and complex hazard. We present a novel framework for statistical 

modeling of this hazard as applied in a preliminary pilot study in Louisiana. This framework extends the 

Joint Probability Modeling with Optimal Sampling (JPM-OS), previously used for purely surge and wave 

driven flooding, with a stochastic rainfall field generator to produce an empirical distribution of 

compound surge-rainfall events with pre-computed surge and wave behavior modeled via ADCIRC + 

SWAN and hydrologic behavior modeled via HEC-HMS. A clustering-based discretization scheme is 

then applied to the sampling distribution in order to reduce set of outcomes to a size which can be 

tractably simulated via HEC-RAS while minimizing the square error induced by discretization. While 

model improvements are ongoing, the clustering-based discretization scheme is highly generalizable, 

provides guaranteed convergence to local optima, and performs well in preliminary analysis. 
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1. INTRODUCTION 

Compound coastal flooding, i.e., flooding driven 

by interacting pluvial, riverine, and coastal 

dynamics, poses a significant hazard which in 

some areas is much greater than can be attributed 

to inland or coastal dynamics separately [1]–[4]. 

Characterizing this hazard requires two major 

model components: a physically driven 

simulation model or metamodel thereof which 

estimates flood depths resulting from a given 

storm event, and a statistical model which 

estimates the probability distribution of the 

number and characteristics of storm events in a 

given year. While physically driven simulation of 

compound flood events represents an active area 

of research [5], the methods discussed here focus 

on the statistical modeling of compound flood 

hazard from tropical storms specifically.  

1.1. The structure of statistical models of 

compound tropical flood hazard 

Statistical models of compound flooding from 

tropical cyclones consist of three major 

components. The first component, the recurrence 

rate analysis, estimates the rate at which tropical 

cyclones occur. The second describes the 

continuous joint distribution of tropical cyclone 

features which drive hazard when tropical 

cyclones occur. The third discretizes the 

continuous distribution of tropical cyclone 

features to a set of events which can tractably be 

run through physically driven simulations.  

The recurrence rate analysis is typically done 

with the capture zone or kernel function weighting 

approach [6], [7]. The capture zone approach 

simply counts and averages the number of storms 

passing through a specified area per year. The 

kernel function weighting approach applies a 

smoothing kernel to the travel paths or “tracks” of 

historical storms and integrates the resulting 

kernel frequency density over a length of 

idealized coastline or region of interest.  

The continuous joint distribution of tropical 

cyclone features is typically captures using 

copulas, physically driven Monte Carlo 

ensembles, and joint probability methods. 

Copulas are common in the literature and easy to 

use, as they require only specified marginal 

distributions and simplified dependence 

structures between hazard drivers such as peak 

surge and total rainfall [8]–[10], but in practice 

can only produce dependency structures which 

match one or at most two dependency measures of 

the true joint distribution [11], e.g. the meta-

gaussian copula which captures rank correlation 

only. Physically driven Monte Carlo ensembles 

are less common, and are generated by randomly 

seeding tropical cyclone vortices and evolving 

them with deterministic meteorological 

simulations [12], which carries the advantages for 

the physical realism of individual cyclones but 

may or may not reflect the true joint variance 

structure of storm features. Joint probability 

methods are uncommon in compound flood 

hazard analysis and more commonly used for 

purely coastal i.e., surge and wave driven flood 

hazard characterization. Joint probability methods 

leverage empirically derived statistical 

relationships and conditional independence 

structures permitting analysts to flexibly express 

the joint distribution of tropical cyclone features 

as a series of conditional distributions or Bayesian 

factorization [13]–[15]. 

Continuous joint distributions of tropical 

cyclone features are typically discretized in one of 

three ways: naïve Monte Carlo sampling [16], 

structured samples [15], and optimization-driven 

subsampling of larger Monte Carlo or structured 

samples[13], [17]. The idealized discrete storm 

events in the resulting distribution are referred to 

as synthetic storms. Naïve Monte Carlo sampling 

directly samples from the continuous joint 

distribution but requires a large sample size. A 

structured sample can more efficiently span 

tropical cyclone parameter space but relies on a 

heuristic integration scheme to assign probability 

masses and may also require a large sample size. 

Optimization-driven subsampling is often used to 

reduce the set of synthetic storms to a size for 

which flood depths can be more tractably 

simulated in coastal flood risk analysis [18], [19], 

but requires initial simulation of the original set 
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[17] or unrealistic assumptions about the variance 

structure of conditional flood depth exceedance 

probabilities for Bayesian quadrature [18]. 

1.2. Project Context 

The methods presented here were developed in 

the course of a preliminary pilot analysis for the 

Louisiana Watershed Initiative and applied in an 

illustrative case study to the Amite River Basin. 

Efforts towards a revision of this pilot study to 

finalize methods before eventual coastwide 

implementation are ongoing and will be noted as 

appropriate.  

2. METHODS 

It was decided at the outset of the project that 

the statistical model of joint flood hazard would 

extend the CLARA model used in Louisiana’s 

2023 Coastal Master Plan [17]. This version of 

CLARA used a one-dimensional capture zone 

(i.e. line-crossing) approach for recurrence 

analysis, although ongoing development has 

replaced this with a kernel density weighting 

approach. CLARA  uses a joint probability 

method to characterize the continuous joint 

distribution of five tropical storm parameters at 

landfall: landfall location, central pressure, radius 

of maximum windspeed, heading angle, and 

forward velocity. While CLARA supports 

discretization via a structured set of 645 synthetic 

storms, it was decided due to computational 

constraints to use a reduced set of 50 synthetic 

storms using subsampling methods previously 

applied in the 2023 Coastal Master Plan [17] 

which performs well in approximating the 

distribution of surge hazard. In future analysis, 

any subsetting of the larger synthetic storm set 

will be conform to optimal sampling methods for 

compound hazard described below. 

The distribution of rainfall conditionally on 

the five tropical cyclone parameters used in 

CLARA was modelled using the stochastic 

rainfall generator for tropical cyclone produced 

by Villarini et al. [20]. This generator estimates 

the expected rainfall associated with a synthetic 

storm and samples from a parameterized model of 

the residual variance. In doing so it captures and 

samples from the aleatory uncertainty in rainfall 

from associated with each synthetic storm. 

Further investigation revealed bias in the stage IV 

data initially used to calibrate the generator, taken 

from the National Centers for Environmental 

Prediction. This resulted in five equiprobable bias 

correction factors applied to rainfall fields 

produced by the generator, and future analysis 

will instead use a similar generator calibrated 

using the alternative Analysis of Record for 

Calibration dataset [21]. Additionally, it was 

found that the distribution of antecedent 

conditions could be reasonably represented using 

three equiprobable cases, although future analysis 

will instead utilize five probability-weighted 

cases. The joint distribution of coastal and inland 

flood drivers was therefore characterized with a 

discrete distribution of 50 probability-weighted 

synthetic storms each of which with an arbitrarily 

large set of equiprobable stochastic rainfall fields 

(50 as implemented although more will be used in 

the future), each with five bias correction factors 

and three antecedent conditions cases. In practice 

this resulted in an empirical distribution 

characterized by a set of 37,500 events  

Flood depths for discrete events were 

simulated via HEC-RAS with upstream 

hydrological boundary conditions from HEC-

HMS and downstream boundary conditions from 

ADCIRC+SWAN, although future analysis will 

utilize updated HEC-RAS with rain-on-grid for 

the full model domain in lieu of upstream 

hydrological modeling. While future analysis will 

use a substantially better-optimized HEC-RAS 

model, the computational efficiency of the HEC-

RAS model available was such that the initial 

pilot analysis was limited to 200 HEC-RAS 

simulations. 

This required the use of a novel optimal 

sampling discretization procedure for compound 

coastal flooding. The available budget of 200 

HEC-RAS simulations was insufficient to 

evaluate even a single rainfall field over all five 

bias corrections for each synthetic storm and 

antecedent conditions case combination. 

However, ADCIRC+SWAN simulation output 
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was already available for each synthetic storm 

from the 20203 Coastal Master Plan, and the 

HEC-HMS model used to calculate upstream 

hydrological boundary conditions was orders of 

magnitude faster than the HEC-RAS model. We 

therefore evaluated discharge behavior of each of 

50 stochastic rainfall fields for each of the 50 

synthetic storms with each of the 5 bias correction 

factors for each of the three antecedent conditions 

cases, extracted features of each simulation run 

which combined with features of surge behavior 

were taken to represent the joint distribution of 

compound flood drivers given the occurrence of a 

tropical cyclone. This distribution was then 

discretized using a clustering-based approach to 

minimize the integrated square error induced by 

discretization. We refer to the methods used in 

their totality as the extended joint probability 

method with optimal sampling (EJPM-OS). 

2.1. Optimal sampling discretization for 

compound coastal flood risk 

The goal of optimal sampling discretization for 

compound coastal flood risk is to discretize a 

continuous random variable or to more coarsely 

discretize a discrete random variable while 

introducing as little error as possible. We define 

the error induced by discretization as a loss 

function in Equation 1.  

𝐿𝑋(𝑋′) = ∫ ||𝑋(𝜔) − 𝑋′(𝜔)||
Ω

2

𝑑𝑝(𝜔) (1) 

Here 𝑋 is the original (multivariate) random 

variable, 𝑋′  is the discretized random variable, 

𝐿𝑋(𝑋′) is the loss function or error induced by 

approximating 𝑋  as  𝑋′ . The right-hand side of 

the equation invokes the measure-theoretic 

definition of a random variable. A random 

variable is defined as a function 𝑋: Ω → ℝ where 

Ω is a sample space consisting of possible events. 

Our multivariate random variables are vectors of 

univariate random variables 𝑋 = (𝑋1, 𝑋2, … ) , 

𝑋′ = (𝑋1
′ , 𝑋2

′ , … ) . The loss function or 

approximation error can be interpreted as the 

Euclidean distance between the true 

representation of an event 𝜔 ∈ Ω, 𝑋(𝜔) ∈ ℝ𝑛 , 

and its approximated representation after 

discretization 𝑋′(𝜔) ∈ ℝ𝑛 , integrated over the 

space of events Ω with probability measure 𝑝. 

In the case of a continuous original random 

variable, we approximate the continuous random 

variable with one constructed from an arbitrarily 

large random sample, resulting in Equation 2. 

Note that in the case that the original random 

variable is already discrete Equation 2 holds with 

equality. 

𝐿𝑋(𝑋′) ≈ ∑ ||𝑋(𝜔) − 

Ω

𝑋′(𝜔)||2𝑝(𝜔) (2) 

We wish to select 𝑋′  so as to minimize the 

approximated loss function. We see that this is 

achieved by performing weighted k-means 

clustering of 𝑋(𝜔) and setting 𝑋′(𝜔) equal to the 

centroid of the cluster containing 𝑋(𝜔) . This 

follows from equation 2. In equation 3 were-

express equation 2 in terms of outcomes 𝑥 =
𝑋(𝜔)  and set 𝑋′(𝜔) =  𝜇𝑖  where 𝑖  is selected 

such that 𝑋(𝜔) ∈ 𝑆𝑖  where 𝑆𝑖  is the cluster 

containing 𝑋(𝜔) , and we observe that the 

approximated value of our loss function from 

equation 2 is exactly equal to the within-cluster 

variance which is minimized by observation-

weighted k-means clustering as we see in equation 

3. 

𝐿𝑋(𝑋′) ≈ ∑ ∑||𝑥 − 𝜇𝑖||
2

𝑝(𝑥)

𝑥∈𝑆𝑖

𝑘

𝑖=1

(3) 

Note that 𝑘 is the number of clusters or discrete 

values of 𝑋′, which we set a-prior based on our 

computational constraints. While k-means 

clustering algorithms guarantee convergence only 

to locally optimal clusterings, repeated 

optimization with randomly initialized centroids 

ensures results which are close to globally 

optimal. 

The most significant weakness of this 

approach as initially implemented is that optimal 

sampling on boundary condition features i.e. 

surge and discharge information is not necessarily 

the same as optimal sampling on peak water 

surface elevation, which is ultimately the hazard 

of interest. However, HEC-RAS is a deterministic 

simulation, so a discretization of the hazard 
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distribution which induces no error in the 

distribution of boundary conditions would 

similarly induce no error in the distribution peak 

water surface elevations. While a discretization 

which induces no error is of course impossible 

both for fundamental reasons and because the 

features of surge and discharge behavior used for 

discretization are much lower-dimensional than 

the full spatially explicit time series used as 

boundary conditions, this leads us to believe that 

a discretization which performs well in 

minimizing error in the distribution of boundary 

conditions will similarly perform well in 

minimizing the error in peak water surface 

elevation. Future analysis using a much better-

optimized HEC-RAS model will permit us to 

empirically investigate this assumption. 

Additionally, due to the availability of better-

optimized HEC-RAS models, future work will 

use the output of HEC-RAS model runs with a 

coarser computational mesh for discretization 

rather than HEC-HMS and ADCIRC+SWAN 

results. 

An additional limitation of this method in 

practice is that there is no observation at the exact 

centroid of each cluster, so the observation nearest 

each cluster centroid is used instead. 

Investigations into how many stochastic rainfall 

fields per synthetic tropical cyclone are required 

to adequately characterize the aleatory uncertainty 

in rainfall, as well as how many clusters are 

required to adequately capture the variability of 

the full distribution are ongoing. Work is also 

ongoing to refine pre-processing steps and 

implementation details of the clustering-based 

optimal sampling scheme, detailed below. 

2.2. Implementation of optimal sampling 

discretization 

We start by extracting peak discharge, runup time, 

and drawdown time from each major inlet to the 

HEC-RAS domain, as well lag time between time 

of peak surge and peak discharge and surge 

characteristics including average peak surge 

depth, runup time, and drawdown time among 

representative points. Discharge runup times are 

calculated by treating the discharge from the time 

at which discharge first exceeds its mean value 

over the hydrograph up to the time of peak 

discharge as the left half of a gaussian density 

function and calculating the corresponding 

standard deviation. Drawdown times were 

similarly calculated from the time of peak 

discharge up to the point at which discharge 

receded below its mean value over the 

hydrograph. Surge runup and drawdown times 

were similarly calculated.  A log transformation 

was applied to peak, runup, and drawdown of 

discharge and surge in the preliminary study due 

to pronounced skewness, but future analysis will 

not apply the log transformation as doing so 

reduces the effective weight of extreme results. 

All features were then standardized to have mean 

zero and standard deviation equal to 1, and future 

analysis will have all feature scaled by the square 

root of an assigned importance weight. The 

importance weights will likely be assigned such 

that the total weight assigned to surge behavior is 

equal to that of discharge behavior, and half of the 

weight placed on both surge and discharge 

behavior will be placed on peak values. 

Preliminary results are believed to have placed 

insufficient weight on surge compared to 

discharge, and insufficient weight on peak values 

compared to runup and drawdown rates. Further 

analysis is required to investigate the impacts of 

these feature weights. Events were heuristically 

observation-weighted according to the CLARA-

derived probability mass of their corresponding 

synthetic storms by use of repeated observations, 

permitting us to treat the set of events as a random 

sample of equiprobable events. Future analysis 

will permit continuous observation weights 

instead. 

Following extraction and standardization 

(and feature weighting in future analysis), we 

apply principal component analysis to the 

empirical distribution. The dimensionality and 

size of the sample did not require dimensionality 

reduction in preliminary analysis, but principal 

component analysis was helpful in holistically 

evaluating the performance of the sampling 

approach. Future analysis may or may not require 
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dropping small principal components for 

computational tractability. 

From this point the sample was clustered and 

discretized such that the observation nearest the 

centroid of each cluster was assigned the summed 

probability mass of observations in the respective 

cluster. Several synthetic storms were 

unrepresented in the resulting discretization, 

likely due to aforementioned under-weighting of 

storm surge features. In the preliminary analysis 

this led to an adjustment which replaced certain 

cluster centroids with nearby events from 

unrepresented synthetic storms so as to minimize 

additional error induced by the adjustment, but 

this adjustment is unlikely to be included in future 

analyses both due to the anticipated effects of 

feature-weighting prior to clustering on the 

diversity of synthetic storms in the optimal sample 

and due to the larger set of synthetic storms which 

will be used in future analysis.  

3. RESULTS 

While the methods described above as 

implemented in the preliminary analysis reflect a 

non-negligible contribution to the state of practice 

of statistical modeling of compound coastal flood 

hazard, they reflect development for an 

exploratory and preliminary analysis and are not 

fully reflective of the final methods which will be 

used for the Louisiana Watershed Initiative or the 

revised pilot study of the Amite River Basin. As 

noted throughout, it contains several 

methodological details which will be revised and 

improved upon. For this reason, this report does 

not contain any results or figures which could be 

construed as flood maps or hazard estimates. 

Instead, the results presented here reflect the 

performance of the optimal sampling 

discretization scheme.  

3.1. Fidelity of optimal sampling results to 

original sample 

The clustering-based optimal sampling scheme 

for compound coastal flood hazard presented 

here, despite the various implementation issues 

described which had yet to be adjusted, performed 

surprisingly well at approximating a distribution 

characterized by 37,500 events in 16 dimensions 

(50 synthetic storms, 50 rainfall fields, five bias 

correction factors, and three antecedent 

conditions cases with peak surge, surge runup and 

drawdown, lag time between peak surge and peak 

discharge, and peak discharge and discharge 

runup and drawdown for four inlets). Figure 

Figure 1: Cumulative distribution functions of 

first principal component value and peak 

discharge at the largest inlet of the HEC-RAS 

domain, characterized by the original sample and 

the optimal subsample. shows the cumulative 

distribution functions of the first principal 

component of the sample and of peak discharge at 

the largest inlet to the HEC-RAS domain. The 

optimal subsample matches the distribution of the 

first principal component of the original sample 

almost exactly. The optimal subsample appears to 

underestimate peak discharge for extreme events. 

We expect this to improve in future analyses when 

we no longer apply the log transformation in pre-

processing.  

 
Figure 1: Cumulative distribution functions of first 

principal component value and peak discharge at the 
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largest inlet of the HEC-RAS domain, characterized by 

the original sample and the optimal subsample. 

 

3.2. Agreement between coastal hazard 

characterization of original sample and 

optimal subsample 

 

 
Figure 2: Difference between surge-only flood hazard 

estimated by EJPM-OS as implemented and previous 

CLARA methods, expressed in feet at the 10-, 50-, and 

100-year return periods. Only pixels with a difference 

of 6 inches or greater are shaded. 

 

The clustering-based optimal subsampling 

approach will typically result in clusters 

containing storm events generated from more than 

one synthetic storm and therefore results in 

changes to the probability masses assigned to each 

synthetic storm compared to those in the original 

sample. To investigate the magnitude of this 

effect, we compared surge-driven flood hazard 

estimated by the original CLARA model with 

surge-driven flood hazard estimated using 

probability masses for each synthetic storm 

corresponding to the results of the optimal 

subsampling procedure from EJPM-OS. The 

results are shown in Figure 2. We see broad 

agreement between the methods at the 10- and 

100-year return periods, although we do see that 

the EJPM-OS-derived probability masses 

underestimate the 50-year flood depth by about a 

foot in a section of the model domain. We expect 

this performance to only improve as we increase 

the weight placed on surge features in the optimal 

sampling process.  

4. CONCLUSIONS 

The extended joint probability method with 

optimal sampling (EJPM-OS) represents a novel 

approach for statistical modeling of compound 

coastal flood hazard. Preliminary implementation 

has shown good performance over several 

measures, and more detailed evaluation of 

assumptions and methodological details will be 

published in the future as a part of the Louisiana 

Watershed Initiative. 

The clustering-based optimal sampling 

procedure used in EJPM-OS is highly 

generalizable to statistical characterization of 

natural hazards where the outcome of interest of a 

random event is calculated with a computationally 

expensive model, and for which boundary 

conditions or lower-fidelity estimates (via coarser 

model structure or metamodeling) can be 

produced more efficiently. It can be applied 

directly in cases where the distribution of events 

is represented as an empirical distribution or 

random sample, and it can be applied to a large 

Monte Carlo sample of an arbitrary joint 

distribution without requiring any assumptions 

about the variance structure of the hazard. The 

optimality guarantee associated with this 

approach, that of minimizing integrated square 

error in discretization, is highly appropriate from 

the perspective of viewing natural hazards 

through the lens of multivariate random 

processes. 
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