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ABSTRACT: This paper presents a methodology for integrating acceleration and strain measurement to
localize structural damage and to update the analytical model of a steel structure, which is validated by a
vibration experiment on a full-scale, one-story, one-bay by one-bay moment-resisting steel frame, where
damage of column bases was simulated by loosening the anchor bolts. The results demonstrated that
model updating based on identified bending-moment mode shapes explicitly provides the rotational
stiffness of the column bases and successfully identifies the localized stiffness reduction.

1. INTRODUCTION
Risk-informed decision making on various ac-

tions for existing civil structures (such as repair,
retrofit, and business continuity planning) requires
a quantitative assessment of seismic performance
for future possible earthquakes that can effectively
deal with and reduce uncertainties. Predicting re-
sponses to earthquake ground motions based on dy-
namic analysis serves this purpose, but there gener-
ally exists a large discrepancy between an analyti-
cal model and the counterpart real structure mainly
due to: (a) modelling error and over-idealization;
(b) variation in construction accuracy; (c) retrofit
or conversion after construction; (d) degradation
due to aging; (e) damages induced by disturbances
like earthquakes. Vibration-based methodologies
for model updating and damage detection thus play
a significant role for improving simulation-based
response prediction and performance assessment.

Most existing vibration-based methods for
model updating and/or structural health monitor-
ing (SHM) used modal properties such as natu-

ral frequencies, damping ratios, and displacement
mode shapes that are identified from measured ac-
celeration responses. Other studies used a dynamic
strain measurement because of its higher sensitiv-
ity to local damages of structural elements (e.g.,
the buckling or fracture of a beam-column con-
nection in a steel structure). They used, for ex-
ample, strain-based frequency response functions
(Esfandiari et al. (2010)), strain-based power spec-
tral density (Pedram et al. (2016)), and strain mode
shapes (Singh et al. (2018)), demonstrating that
strain measurement allows accurate, sensitive, and
informative model updating and damage localiza-
tion. A few studies, furthermore, jointly used both
acceleration and strain measurement for SHM pur-
poses. Lee et al. (2013) used frequency response
functions in terms of both quantities for localizing
damage in a simply supported beam. Iyama et al.
(2021) used both accelerometers and strain gauges
for estimating the stiffness and stress distributed in
an actual building. Integration of acceleration and
strain allows us to relate modal displacements to the
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corresponding stress and thus is expected to directly
provide a better understanding of local stiffness re-
duction.

This paper presents a methodology for integrat-
ing acceleration and strain measurement to local-
ize structural damage and to update the analytical
model of a steel structure. The methodology con-
sists of subspace state space system identification
and bending-moment-based model updating and is
validated by a full-scale vibration experiment on
a moment-resisting steel frame, where structural
damages were simulated by loosening the anchor
bolts of column bases. The following part formu-
lates a procedure for identifying modal properties
including bending-moment mode shapes (Section
2), describes details of a full-scale vibration exper-
iment (Section 3), and demonstrates using the ex-
perimental data that bending-moment-based model
updating successfully quantifies the localized stiff-
ness reduction (section 4).

2. IDENTIFICATION METHOD

2.1. Output-only system identification

To deal with free vibration responses to unknown
inputs, let us consider an output-only system iden-
tification: Subspace State Space System Identi-
fication based on Stochastic Realization Theory
(Katayama (2005)), hereafter termed 4SID-SRT. In
a stochastic realization theory, the following state
space model is considered:

x(t +1) = Ax(t)+w(t) (1)
y(t) = Cx(t)+u(t) (2)

where x∈Rn is the state vector, y∈Rp is the output
vector (observation), w(t) ∈ Rn is the system noise
vector, and v(t) ∈ Rp is the observation noise vec-
tor. A ∈Rn×n and C ∈Rp×n are constant and here-
after called system matrices. The goal of 4SID-SRT
is to obtain these system matrices.

According to Katayama (2005), the matrices A
and C can be obtained in the following procedure.
First, from observations {y(t) | t = 0, ...,N + 2k−
2}, construct the block Teoplitz matrix Yp ∈Rkp×N

(corresponding to ‘past’ data) and the block Hankel

matrix Yf ∈Rkp×N (corresponding to ‘future’ data):

Yp =


y(k−1) y(k) · · · y(N + k−2)
y(k−2) y(k−1) · · · y(N + k−3)

...
...

...
y(0) y(1) · · · y(N −1)


(3)

Yf =


y(k) y(k+1) · · · y(k+N −1)

y(k+1) y(k+2) · · · y(k+N)
...

...
...

y(2k−1) y(2k) · · · y(N +2k−2)


(4)

Using these matrices, compute the Singular Value
Decomposition (SVD) of the covariance matrix
Sfp = YfY⊤

p /N:

Sfp = USV⊤ (5)

where U,S,V ∈ Rkp×kp, and S is a diagonal matrix
whose elements are the singular values, i.e., S =
diag(σ1,σ2, ...,σkp). Ignoring sufficiently small
sigular values σn+1 > σn+2 > ... > σkp, compute
the extended observability matrix O ∈ Rn×n:

O = U1:n diag(
√

σ1, ...,
√

σn) (6)

where U1:n denotes a matrix given by extracting the
first to the n-th columns of U. Finally, the matrices
A and C are given by:

A = 1:(k−1)pO†
1:(k−1)pO (7)

C = 1:pO (8)

where the superscript † represents the pseudo in-
verse, and 1:pO denotes a matrix given by extract-
ing the first to the p-th rows of O.

2.2. Modal parameter estimation
Using the system matrices A and C, the modal

parameters of natural frequencies ω j, damping ra-
tios ζ j, and mode shapes u j ∈ Rp are given by the
following relationships:

ω j =
| logλ j|

∆t
(9)

ζ j =−
log |λ j|
| logλ j|

(10)

u j = Cv j (11)
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Figure 1: The experimental model.

where λ j and v j ∈ Rn are the j-th eigenvalue and
eigenvector of A, and ∆t is the sampling period.

In implementing 4SID-SRT for modal parame-
ter estimation, the number of system order n (i.e.,
the length of the system vector x) and the number
of block rows k are critical parameters that should
be carefully adjusted. Specifically, n is related to
the number of identified vibration modes. Success-
ful 4SID-SRT gives the conjugate pairs of complex
eigenvectors and thus, in a practical sense, results
in n/2 vibration modes.

2.3. Modal bending moments
Using identified vibration modes both in terms

of acceleration and strain, the following proce-
dure provides the bending-moment mode shapes,
or simply called modal bending moments, in a pla-
nar frame. First, the values of the strain mode
shapes (or modal strains) at a cross-section are
transformed into the modal bending moments as
follows.

Mi = (εi,lo − εi,up)EZ/2 (12)

where Mi is the modal bending moment for the i-
th mode, εi,lo,εi,up are the modal strains for the i-th
mode on the lower and upper sides of the section,
and E and Z are the Young’s modulus and the sec-
tion modulus. Then, the normalized modal bending
moment M̂i is computed using the modal accelera-
tion ai on the top of the frame.

M̂i = Mi/(−ai/ω2
i ) (13)
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Figure 2: (a) Plan and (b) section (along B-axis) of the
experimental model with sensor placement.

where ωi is the i-th natrual angular frequency and
thus −ai/ω2

i represents the i-th modal displace-
ment of the top. Normalized modal bending mo-
ments {M̂i} at several cross-sections give the distri-
bution of bending moments in the frame when the
lateral force is applied to induce a unit displacement
of the top of the frame. Thus, integrating accelera-
tion and strain directly provides the relationship be-
tween displacement and stress (i.e., stiffness) with-
out knowledge of the mass, allowing a more infor-
mative model updating.

3. EXPERIMENTAL DATA
3.1. Full-scale vibration experiment

The experimental model, as shown in Figure 1,
is a full-scale, one-story, one-bay by one-bay steel
frame. The story height is 4,000 mm and the plan is
6,350 mm × 4,350 mm. Each of the four columns
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Table 1: Considered cases in the experiment.

Case Columns with loosened bolts
0 (intact)
1 1A
2 1A, 2A
3 1A, 2A, 1B
4 1A, 2A, 1B, 2B
5 all re-tightened

(whose locations are shown in Figure 2(a)) has two
parts with different cross-section dimensions: the
1,500 mm lower part (□− 150× 150× 12; b/t =
12.5) and the 2,600 mm upper part (□− 200 ×
200 × 9; b/t = 22.2), both of which were manu-
factured using the material STKR400, which has
the Young’s modulus 205,000 N/mm2; the yielding
strength 245 N/mm2; the maximum strength 400
N/mm2.

As shown in Figure 2(b), two 3-axis MEMS ac-
celerometers were installed on the top of the test
structure. Elastic strain gauges were also attached
to all four sides of two sections of each column (one
section at the upper part and the other at the lower
part). The wireless sensor data is acquired through
Rasberry Pi units. In total, 4-component accelera-
tion response (two lateral components for each sen-
sor) and 32-component strain response (eight com-
ponents for each column) are used for system iden-
tification.

By manually exciting the structure in the longer-
span direction, free vibration responses were mea-
sured for six different cases, Case 0–5 (listed in Ta-
ble 1). The first case (Case 0) represents the ini-
tial intact state. In the second case (Case 1), the
anchor bolts of the base of column 1A were loos-
ened to simulate its stiffness reduction; in the fol-
lowing three cases (Case 2–4), those of the other
three columns (2A, 1B, 2B) were loosened one by
one. In the last case (Case 5), then, the anchor bolts
of all column bases were re-tightened and an intact
state was simulated again.

3.2. Preprocessing data
Time synchronization of measured signals was

performed based on linear interpolation using
timestamps of each unit. This was firstly performed
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Figure 3: Identified natural frequencies and damping
ratios for all cases.

individually for the strain gauges and accelerome-
ters because of different sampling rates (87 Hz and
125 Hz, respectively). A cosine-tapered bandpass
filter was then used to reduce noise in the low-
frequency (below 1 Hz) and high-frequency (above
10 Hz) bands. Downsampling based on linear in-
terpolation was finally performed so that all sig-
nals including strain and acceleration responses are
synchronized and have the same sampling period
∆t = 0.046s.

4. RESULTS
4.1. Modal identification

System identification based on 4SID-SRT is per-
formed for each case, jointly using strain and accel-
eration responses. The number of system order is
set as n= 6 based on preliminary examinations, and
therefore practically three vibration modes, here-
after termed mode 1–3, are obtained. The number
of block rows is set as k = 30. The time window
(and data length N) used for identification is care-
fully determined for each case.
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Figure 5: Phase of identified strain mode shapes.

Figure 3 shows the identified natural frequencies
and damping ratios for the three vibration modes
(mode 1–3) for all cases. The upper plot shows that,
from Case 0 to Case 4, the natural frequencies of
all modes gradually decrease; from Case 4 to Case
5, the natural frequencies recover and even exceed
the initial level in Case 0. Loosening or tightening
the anchor bolts thus substantially changes the vi-
bration characteristics of the whole structure. The
lower plot shows that the damping ratios are stably
obtained for all cases and have similar values for all
modes.

Figure 4 illustrates in a plan view the real part
of the identified complex mode shapes of displace-
ment at the locations of the two accelerometers for
all modes in Case 0. This suggests that mode 1
and mode 2 respectively represent the translational
modes in the longer-span and shorter-span direc-
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Figure 6: Identified bending moment diagrams of A-
and B- frame for mode 1 for all cases.

tions, and mode 3 represents the planar rotational
mode.

Figure 5 shows, for mode 1 in Case 0, the argu-
ment (phase) of the identified complex mode shapes
of strain at eight locations (for the upper and lower
sensor gauges in each column) both for CH.1 and
CH.2 (see Figure 2(b) for the definition of CH.1 and
CH.2), and that of the corresponding mode shapes
of acceleration in the longer-span direction for the
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Figure 7: Structural model to update (illustrative).

two accelerometers. For the two channels, strain
responses at the upper locations (represented by the
blue dots) have a phase almost opposite to that of
the lower locations (represented by the green dots).
This suggests shear deformation of the columns,
which corresponds to the above finding that mode
1 represents the longer-span direction translational
mode.

Figure 6 shows the distribution of the normalized
modal bending moments both in A-frame and B-
frame identified for mode 1 in Case 0–5, for which
the mean of modal acceleration between the two ac-
celerometers is used as ai in Eq. (13). These dia-
grams suggest that the subsequently induced stiff-
ness reduction of columns 1A, 2A, 1B and 2B are
clearly represented by the reduction of the bending
moments of the corresponding bases; for example,
the bending moment at the base of column 1A de-
creases by more than 10% from Case 0 to Case 1.
This implies that the normalized bending-moment
mode shapes have sufficient sensitivity for locating
damages of the column bases.

4.2. Model updating
A moment-resisting frame with two rotational

springs to represent semi-rigid column bases, as
shown in Figure 7, is assumed for each frame (A-
or B-frame) and updated to fit itself to the identi-
fied modal bending moments. The parameters to
update are the stiffness of the rotational springs, k1
and k2. The mechanical and material properties of
the other elements are fixed to the nominal values,
but the Young’s modulus of element c–d is set as ten
times larger than its nominal value, assuming that
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Figure 8: Updated rotational stiffness of column bases.
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and columns.

the beam is rigidified by its connection to the slab.
The parameters are estimated by the least square
method to minimize the residuals between the iden-
tified values of normalized modal bending moments
at the nodes a, b, c, and d, and the simulated values
when the lateral force P is applied at node c so that
the lateral displacement of the node is 1 mm. De-
noting the bending moments at the nodes a, b, c, d
by Ma,Mb,Mc,Md, the objective function is written
as:

min
k1,k2

∑
j∈{a,b,c,d}

(
Msid

j −Msim
j

)2
(14)
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where the superscripts ‘sid’ and ‘sim’ represent
identified and simulatated values. To solve this,
the trust region reflective algorithm (Branch et al.
(1999)) implemented in a Python package SciPy
(Virtanen et al. (2020)) is used in this study.

Figure 8 shows for all cases the estimated rota-
tional stiffness of all the four column bases. This
figure captures the stiffness reduction of each col-
umn base induced by loosening the anchor bolts as
well as the stiffness increase from Case 4 to Case
5 induced by re-tightening the bolts, demonstrating
the applicability of our model updating method to
structural damage localization.

To examine the sensitivity and robustness of the
methodology, Figure 9 shows the normalized ro-
tational stiffness for all column bases in all cases,
which is computed as follows.

kc,i = kc,i

/(
Nc−1

∏
j=0

kc, j

)1/Nc

(15)

where kc,i is the rotational stiffness of column base
c ∈ {1A,1B,2A,2B} in Case i ∈ {0,1, ...,5}, kc,i is
the corresponding normalized rotational stiffness,
and Nc is the number of intact cases for column c
(e.g., N2A = 3). The value kc,i thus represents the
ratio of the rotational stiffness of a column base to
the geometric mean of the rotational stiffness val-
ues of the same column in all intact cases. The la-
bels in the x-axis are given as ‘column name’_‘Case
number’ (e.g., ‘1A_0’ represents the base of col-
umn 1A in Case 0). The shaded area is the range
[e−2σ ,e2σ ], where σ is the logarithmic standard de-
viation of the normalized rotational stiffness values
of all column bases in all intact cases. All sam-
ples of the loosened and re-tightened column bases
are respectively below and above this range. This
suggests that the stiffness reduction (or increase) of
column bases is more significant compared to the
variability in the intact cases, which may be due to
measurement noise, estimation error, and influence
of other damaged elements, and that the bending-
moment-based model updating allows sensitive and
robust damage localization for steel column bases.

5. CONCLUSIONS
Towards development of a quantitative seismic

performance assessment of structures combining

monitoring, model updating, and response analy-
sis, this paper has presented a methodology for in-
tegrating acceleration and strain measurement to lo-
calize structural damage and to update the analyti-
cal model of a steel structure. The proposed model
updating procedure is based on bending-moment
mode shapes that are obtained using subspace state
space system identification applied to both acceler-
ation and strain responses. To validate the method-
ology, a vibration experiment on a full-scale, one-
story, one-bay by one-bay steel frame structure was
conducted, where damage (stiffness reduction) of
column bases was simulated by loosening the an-
chor bolts. The results demonstrated that bending-
moment-based model updating using strain and ac-
celeration responses explicitly provides the rota-
tional stiffness of the column bases and success-
fully identifies the localized stiffness reduction.
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