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ABSTRACT: Regional risk analysis provides information for decisions made by communities, state and 

federal agencies, and the insurance industry. Model validation and updating are crucial since inaccurate 

predictions may lead to suboptimal decisions. Seismic risk (and resilience) analyses feature some of the 

most comprehensive prediction models. While several models and methods have been developed, 

validation of seismic risk analysis models has been limited due to limited data and computational 

challenges. Typical attempts at model validation focus on ground motion prediction equations and 

damage models for buildings and pipelines. In addition, most recent studies on seismic risk and resilience 

analysis have concentrated on more complex formulations for infrastructure functionality, 

interdependencies, or resilience optimization, while implicitly relying on tools like HAZUS and MAEViz 

to predict damage and recovery times. However, evaluating the credibility of sources that have become 

the standard of practice is essential. This paper assesses the state-of-the-art for analyzing the seismic risk 

(and resilience) analysis of physical infrastructures, such as buildings, roads, bridges, water, and 

wastewater systems. The paper uses data from the 2016 Kumamoto earthquake in Japan and compares 

the predicted and recorded impacts. The comparison demonstrates the actual predictive ability of the 

available models and drives future research toward essential enhancements. 

Communities, utility companies, infrastructure 

managers, governing, regulatory, and policy 

bodies, and insurance and re-insurance companies 

have to make critical decisions concerning natural 

hazards. Risk (and resilience) analysis supports 

such decision-making by estimating the 

probabilities of various hazard scenarios and 

predicting their consequences. Seismic risk 

assessment has some of the most extensive suites 

of predictive models. Examples include seismic 

predictive models to simulate the earthquake 

intensity prediction (e.g., ground motion 

prediction equations, GMPEs) and the hazard 

impact on buildings and infrastructure (e.g., 

transportation, electrical power, potable water, 

wastewater). 

Hazard impact models, particularly physical 

damage prediction models, are often building 

blocks in subsequent analysis for assessing 

infrastructure functionality, economic loss, and 

societal impact. Additionally, hazard impact 

models are the basis for developing (optimal) 

mitigation strategies and improving societal 

resilience. Two widely used resources for hazard 

impact analysis are HAZUS (FEMA 2014) and 

MAEViz (MAE Center 2011). They are used 

either as a whole package or by extracting selected 

models needed for the analysis of interest. They 

allow the convenient analysis of the physical 

structures and infrastructure damage with simple 

input data. Their conceptual simplicity, extensive 

coverage of impact metrics, computational 

efficiency, and significant work done to develop 
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them make HAZUS and MAEViz widely used in 

seismic risk analysis in academia and practice. 

However, due to the limited data available for the 

validation of rare events, the fundamental hazard 

impact models are often not carefully validated. 

A handful of past studies have critically examined 

seismic impact assessment results. Ellingwood 

(1988) examined the seismic probabilistic risk 

assessment methods by comparing the factors 

(i.e., hazard characteristics and vulnerability) that 

significantly affect the risk outcomes. Bai et al. 

(2014) conducted a comparative study for 

concrete buildings using the fragility curves from 

the HAZUS and MAEViz. However, the case 

study only compared and highlighted the 

difference between the two predictions (HAZUS 

vs. MAEViz) but not with real-world data. 

Recently, Goda et al. (2016) conducted the 

validation of GMPEs with the recorded data from 

the 2016 Kumamoto Earthquake. While Crowley 

et al. (2008, 2020) and Riga et al. (2021) 

published a comparative analysis for seismic risk 

assessment considering both the GMPEs and 

building damage prediction obtained using the 

European Seismic Risk Model (ESRM20). 

However, these studies only focused on validating 

the GMPEs and the damage of a few building 

types. They did not check the models for other 

structures and infrastructure damage, and the 

structural damage for the few building types 

considered was based on models not widely used. 

Among the critical infrastructure, buried 

pipelines’ fragilities have also been the subject of 

a few investigations using laboratory or real-

world data (Liu et al. 2017; Bellagamba et al. 

2019). However, there remains a consistent 

scarcity of literature that extensively validates the 

predictions. 

This paper evaluates the current state of practice 

for seismic risk assessment. In particular, the 

focus is on the models for predicting hazard 

intensity measures and damage to buildings, and 

components of the transportation, electrical 

power, potable water, and wastewater 

infrastructure. 

1. METHODOLOGY 

We first compile data from past earthquake events 

for validation. We then select the prediction 

models from past research for predicting hazard 

intensity and physical damage. We compare the 

predictive results with the recorded data using 

error maps and confusion matrices.  

1.1. Data compilation 

We consider the damage from the mainshock of 

the 2016 Kumamoto earthquake in Japan. We 

compile and produce the necessary data in 

Mashiki, Kumamoto. We select the study area as 

Mashiki, Kumamoto, Japan, because this region 

has good data availability. Furthermore, this 

community was near the epicenter and 

experienced severe damage to buildings and 

critical infrastructure. 

A considerable effort in conducting this study 

went into compiling validation data. We obtain 

the data for seismic intensity measures from 

USGS ShakeMap and select the measures for 

𝑃𝐺𝐴, 𝑃𝐺𝑉, and 𝑆𝑎 (𝑇 = 0.3𝑠) based on the need 

for building damage prediction.  We then produce 

the data for building inventory and components of 

the lifeline infrastructure. The infrastructure 

includes transportation (i.e., bridges), electrical 

power (i.e., transmission lines, substations, and 

power plants), potable water (i.e., pipeline and 

pumping stations), and wastewater (i.e., pipeline 

and wastewater treatment plant). 

1.2. Prediction models 

We select HAZUS and MAEViz as the two 

representative models for validation. They are 

widely used in academia and practice for risk and 

resilience analysis. Such models provide 

predictions for building and infrastructure damage 

and recovery. In this paper, we use the collected 

inventory data as inputs for HAZUS and MAEViz 

to obtain the predictions. We can validate other 

predictive models following the proposed 

methodology in future work.  

1.3. Error map 

Besides checking the prediction accuracy, we 

compare the recorded and predictive results by 
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measuring their difference (i.e., error). We use the 

relative error (𝛿𝐼𝑀) for comparing hazard intensity 

predictive results. The relative error is defined as  

𝛿𝐼𝑀 =  
(𝐼𝑀 − 𝐼�̂�)  

𝐼�̂�
       (1) 

where 𝐼𝑀 denotes the recorded hazard intensity 

measurements, and 𝐼�̂�  represents the predicted 

hazard intensity we derive from the model. If 

𝛿𝐼𝑀 < 0 , the prediction is considered 

overestimated, and vice versa. 

Most models predict building and infrastructure 

damage in the probability of damage states (e.g., 

Collapse, Extreme, Moderate, and Slight). Past 

studies usually use the most probable damage 

state (i.e., the damage state with the highest 

probability) to represent the predictive damage. In 

this paper, we use the most probable damage state 

to compare with the recorded damage state to 

check the models’ accuracy. However, in some 

scenarios, the most and the second most probable 

damage state have a similar probability. Thus, we 

use the absolute error 𝛿𝐷𝑆  in the models to 

measure the number of errors in the predictions. 

The absolute error 𝛿𝐷𝑆 is defined as 

𝛿𝐷𝑆 = |𝐷𝑆 − 𝐷�̂�|                   (2) 

where 𝐷𝑆 denotes the recorded damage state, and 

𝐷�̂� is the most probable predictive damage state. 

For example, if we have a building in which 𝐷𝑆 is 

recorded as the moderate damage state (𝐷𝑆 = 2), 

and 𝐷�̂� is predicted as collapse (𝐷�̂� = 4), 𝛿𝐷𝑆 is 

the error of two damage states.  

2. COMPARATIVE 

ANALYSIS/VALIDATION OF THE 

PREDICTIVE MODELS 

In this section, we compare the recorded hazard 

intensities and damage with the predictions by 

using the proposed methodology. 

2.1. Hazard intensity map: recorded vs. 

predicted 

We use the GMPEs developed by Boore et al. 

(2014) to predict hazard intensity measures. This 

GMPE is the most suitable for this case, given the 

geological site characteristic (Goda et al. 2016). 

Figure 1 compares the recorded and predicted 

values of 𝑃𝐺𝐴, 𝑃𝐺𝑉, and 𝑆𝑎(𝑇 = 0.3𝑠). We also 

show the 95% confidence intervals associated 

with each prediction. The shade of the dots 

indicates the variation in the distance from the 

fault plane projection on the ground surface, 

known as the Joyner Boore distance 𝑅𝑗𝑏. As the 

distance from the fault plane increases, the 

predicted values go down. However, the accuracy 

of the prediction also seems to be highly 

dependent on 𝑅𝑗𝑏 . As the distance exceeds 250 

km, the points seem to have high bias and depart 

from the 1:1 line. However, the plots are on the 

log scale; thus, looking at the confidence 

intervals, we can see that the prediction has a 

higher variance for low 𝑅𝑗𝑏 . Prediction 

confidence is lowest for the values where the 

hazard intensity is highest, which is undesirable 

because those would be locations expecting the 

most severe damage. We also provide graphical 

maps of the same analysis for Mashiki. Figures 2 
(a)-(f) show the recorded and the median of the 

Figure 1. Comparison between recorded and predicted intensity measures 
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predicted hazard intensities, while Figures 2 (g)-

(i) show the error plots in terms of the percentage 

difference between the median predicted and the 

recorded values. We observe that the predicted 

intensity measures are up to 100% lower than the 

recorded. 

 
Figure 2. Spatial comparisons of intensity maps 

for Mashiki 

2.2. Building damage: recorded vs. predicted 

We show the recorded and the predictive results 

in Figure 3 (a)-(c) using the predicted hazard 

intensity measures (PGA for HAZUS and both 

PGA and Sa for MAEViz). The damage states for 

the buildings include insignificant, moderate, 

heavy, and complete; the definitions of these 

damage states are available in Bai et al. (2014). 

Figures 3 (d) and (e) show the absolute error 

associated with the most probable damage state. 

Figures 4 (a) and (b) show the confusion matrices 

for both models. The blue dots represent the 

predicted value and the recorded value of each 

building. Overall, HAZUS and MAEViz do not 

provide accurate predictions in this case.  HAZUS 

tends to underestimate the complete damage state, 

and MAEViz tends to overestimate the damage. 

However, HAZUS has a more accurate prediction 

for the low- and medium-damage states (i.e., 

Slight and Moderate). MAEViz provides a more  

Figure 3. Comparison between recorded and predicted building damage 

Figure 4. Confusion matrices between recorded and 

predicted building damage 
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accurate prediction of the higher damage state 

(i.e., Extreme and Collapse). HAZUS generally 

has larger prediction errors than MAEViz. 

2.3. Transportation damage: recorded vs. 

predicted 

Figure 5 (a)-(c) shows the recorded and the 

predicted results in HAZUS and MAEViz using 

the predicted hazard intensity measures (PGA and 

Sa for both HAZUS and MAEViz). Figures 4 (d) 

and (e) show the absolute error associated with the 

most probable damage state. Figures 6 (a) and (b) 

show the confusion matrices for both models. 

HAZUS and MAEViz perform relatively better 

than when predicting building damage. It is 

possible partly because the bridge construction is 

more standardized than the general building stock. 

Overall, HAZUS predicts better in the case of no 

damage, and MAEViz tends to overestimate the 

damage. However, HAZUS has larger absolute 

errors compared with MAEViz.  MAEViz’s 

predictions are more consistent and have fewer 

errors. It would likely be easier to recalibrate the 

model.  

 

Figure 5. Comparison between recorded and predicted bridge damage 

Figure 6. Confusion matrices between 

recorded and predicted bridge damage 

Figure 7. Comparison between recorded and predicted in the electrical power infrastructure 
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2.4. Electrical power damage: recorded vs. 

predicted 

Figure 7 (a)-(c) shows the recorded and the 

predicted results in HAZUS and MAEViz using 

the predicted hazard intensity measures (PGA for 

HAZUS and MAEViz). Figures 7 (d) and (e) 

show the absolute error associated with the most 

probable damage state. Figures 8 (a) and (b) show 

the confusion matrices for both models. HAZUS 

and MAEViz do not have models for predicting 

damage to transmission lines. Most transmission 

lines are presumed to be not vulnerable to ground 

shaking. We thus predicted the electrical 

substations' damage for the electrical power 

infrastructure. HAZUS and MAEViz predict the 

damage of the electrical substations relatively 

well. They have a similar prediction in the None 

and Slight damage state. However, HAZUS has a 

larger prediction error than MAEViz.  

2.5. Potable water network damage: recorded 

vs. predicted 

Figure 9 (a)-(c) shows the recorded and the 

predicted results in HAZUS and MAEViz using 

the predicted hazard intensity measures (PGA for 

pumping stations and PGV for the pipeline for 

both HAZUS and MAEViz). Figures 9 (d) and (e) 

show the absolute error associated with the most 

probable damage state. Figures 10 (a) and (b) 

show the confusion matrices for both models.  The 

damage to the pumping station was available in 

the Mashiki water pipeline damage report (The 

Kumamoto Prefecture environmental and living 

office 2018). We present the damage states for the 

pumping stations and repair rates for the pipes. 

The recorded repair rate is ~0.86 repairs per km. 

Figure 8. Confusion matrices between 

recorded and predicted bridge damage 

Figure 9. Comparison between recorded and predicted in the potable water infrastructure 

Figure 10. Confusion matrices between 

recorded and predicted bridge damage 
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Overall, HAZUS and MAEViz tend to 

overestimate the damage to the potable water 

pipelines. MAEviz performs significantly better 

in predicting the repair rates for pipes. For the 

potable water facility, both models are not 

accurate, but the prediction error is only one 

damage state off.  

2.6.  Wastewater network damage: recorded vs. 

predicted 

Figure 11 (a) – (c) shows the recorded and the 

predicted results in HAZUS and MAEViz using 

the predicted hazard intensity measures (PGA (for 

the treatment plant) and PGV (for the pipeline) for 

both HAZUS and MAEViz). Figures 11 (d) and 

(e) show the absolute error associated with the 

most-likely damage state. Figures 12 (a) and (b) 

show the confusion matrices for both models. We 

present the damage states for the wastewater 

treatment plant and the repair rates for the 

wastewater pipes. The recorded repair rate for the 

wastewater pipelines is below 0.5 per km. The 

repair rate prediction models for wastewater 

pipelines are identical to the ones for potable 

water pipelines at the same location because 

HAZUS and MAEViz do not differentiate 

between potable water and wastewater pipes. 

Hence, the trends in the results are similar, with a 

slight overestimation of damages. We only have 

one wastewater facility, and both models predict 

moderate damage, whereas the actual damage 

state is extensive, with only one damage stage off.  

3. CONCLUSIONS 

This paper validated the state of practice for 

predicting the hazard intensity measures and 

damage to buildings, components of the 

transportation infrastructure (i.e., bridges), 

components of the electrical power infrastructure 

(i.e., transmission lines, substations, and power 

plants), components of the potable water 

infrastructure (i.e., pipeline and pumping 

stations), and components of the wastewater 

infrastructure (i.e., pipeline and wastewater 

treatment plant). The paper compared the 

recorded values with those predicted by suitable 

GMPEs, HAZUS, and MAEViz, for Mashiki, 

Kumamoto, Japan, due to the 2016 Kumamoto 

earthquake. We then present the model accuracy 

by using the relative and absolute errors. This 

paper is the first to validate GMPEs and damage 

models comprehensively. Most analyses show 

that the predictive models do not accurately 

Figure 11. Comparison between recorded and predicted in the potable water infrastructure 

Figure 12. Confusion matrices between recorded 

and predicted bridge damage 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 8 

predict the recorded values. Instead, the models 

tend to underestimate the hazard intensity and 

overestimate the damages. The performance is 

better for infrastructure components than 

buildings, which we attribute to higher 

standardization uniformity in infrastructure 

components than buildings. The current paper 

focused on the validation of the damage 

prediction models. Ongoing work is extending the 

validation to other damage prediction models, and 

predictive models for building and infrastructure 

recovery, economic losses, resilience, 

interdependencies, and network functionality. 

Beyond the validation, ongoing work is also 

developing a Bayesian approach for updating the 

model parameters as data becomes available. 
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