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ABSTRACT: The performance loss of infrastructure caused by hazards can disrupt regular economic 
activities, obstruct emergency responses, and be detrimental to society's recovery. Network analysis 
methods, including topology-based and flow-based methods, are valuable tools for infrastructure 
functionality assessment. Topology-based methods capture connectivity patterns of network components 
with relatively low computational costs. However, topology-based methods fail to model the flow of 
resources from source facilities to consumers. On the other hand, flow-based methods are 
computationally intensive but can provide on the flow performance of infrastructure by modeling the 
operational dynamics. This paper introduces a novel hybrid approach to provide comparable functionality 
assessment to flow-based methods with computational efficiency by introducing flow-related 
characteristics into topological connectivity metrics. This hybrid approach supports efficient 
optimization and probabilistic analysis of infrastructure life cycles. This approach is then illustrated with 
a real-world example modeling the functionality of potable water infrastructure in Shelby County, 
Tennessee, in a post-earthquake scenario. 

1. INTRODUCTION 
Infrastructure reliability ensures community well-
being and prosperity. However, efforts to improve 
infrastructure functionality subject to disruptions 
involve making complex decisions and large 
investments requiring risk assessment (Gardoni et 
al. 2016). An essential element in risk assessment 
is the functionality assessment of damaged 
infrastructure to capture the immediate impact of 
hazards and the ability of infrastructure to recover 
(Boakye et al. 2019). 

Various methods are available for 
functionality assessment, such as network-based, 
statistical, and hybrid methods (Vaiman et al. 
2012). Network-based methods can describe 
detailed topological properties and flow patterns 

of infrastructure. Most of the current literature 
classifies network-based methods into topology-
based and flow-based methods (Ouyang 2014). 

Topology-based methods capture properties 
such as network connectivity and its changes. 
These methods demand limited data because they 
do not require physical attributes of components 
(Agathokleous et al. 2017). Furthermore, 
topology-based methods have low computational 
costs (Pagano et al. 2019) because they do not 
model the flow of resources. Therefore, 
topological methods only provide partial and 
approximate results (Yazdani et al. 2011). 
Weighted topology-based network models can 
use the information on component attributes to 
quantify the component criticality in vulnerability 
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analysis (Hajibabaei et al. 2022) and resilience 
assessment (Herrera et al. 2016). However, few 
studies have used weighted topology-based 
network models to assess the time-varying 
performance of disrupted networks. 

Flow-based methods adopt equations that 
govern the flow of services or commodities on 
networks (Lee et al. 2007). These methods model 
the performance and resilience of infrastructure to 
disruptions (Liu et al. 2020; Sharma et al. 2020). 
Flow-based methods can offer high-fidelity 
results of the ability of infrastructure to deliver 
services to communities and their abilities to 
withstand and recover from disruptions. However, 
considering all the physical attributes of 
components and detailed operating mechanisms 
of infrastructure networks make flow-based 
methods data and computationally intensive, 
especially for large infrastructure networks 
(Yazdani and Jeffrey 2012). Thus, the granularity 
and resolution should be carefully selected when 
adopting flow-based methods (Nocera and 
Gardoni 2022; Sharma and Gardoni 2022).  

This paper proposes Functional Connectivity 
Analysis (FCA) to pursue a trade-off between 
providing functionality information comparable 
to flow analysis and saving computational costs in 
modeling the functionality of infrastructure. We 
first briefly describe the current methods and then 
present the general procedure to perform FCA of 
infrastructure. Next, building on the general 
procedure of FCA, we develop a specific FCA for 
potable water infrastructure, which we illustrate 
as an example of the potable water infrastructure 
in Shelby County, Tennessee, subjected to 
earthquake hazards. Finally, we compare the 
results from connectivity analysis, flow analysis, 
and FCA regarding the information on 
functionality and computational cost for the 
immediate impact analysis and the recovery 
process. 

2. CURRENT APPROACHES IN 
INFRASTRUCTURE PERFORMANCE 
ANALYSIS 

This section briefly describes the current 
formulations in topology-based and flow-based 
methods. 

2.1. Network connectivity analysis 
Topological methods represent infrastructure 
using graph theory. These methods capture 
specific features of the graph and infer their 
performance and reliability (Hernandez-Fajardo 
and Dueñas-Osorio 2011). One way to analyze 
these topological features is to study the 
connectivity of the nodes (i.e., connectivity 
analysis). 

Two of the most popular metrics of network 
connectivity in the literature are diameter (also 
known as characteristic path length) and 
efficiency (Albert et al. 1999). Nodal efficiency 
can describe the connectivity of a specific node to 
the rest of the nodes in the network and is more 
useful to assess the extent of the loss of 
connectivity than nodal diameter. Nodal 
efficiency 𝜂𝜂𝑖𝑖  is defined as the average of the 
inverse of the shortest path between the given 
node 𝑖𝑖 and the rest of the nodes in the network, 
shown as (Latora and Marchiori 2001)  

 𝜂𝜂𝑖𝑖 = 1
(𝑛𝑛−1)

∑ ℎ𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

 (1) 

where ℎ𝑖𝑖𝑖𝑖 = 1 𝑑𝑑𝑖𝑖𝑖𝑖⁄  for 𝑖𝑖 ≠ 𝑗𝑗  and ℎ𝑖𝑖𝑖𝑖 = 0 
otherwise. 𝜂𝜂𝑖𝑖  ranges from 0 (no connections 
between node 𝑖𝑖 to any other node) to 1 (node 𝑖𝑖 is 
connected with all the other nodes of the 
network). To capture the nodal importance in 
calculating 𝜂𝜂𝑖𝑖 , Guidotti et al. (2017) proposed 
weighted nodal efficiency for node 𝑖𝑖, 𝜂𝜂𝑤𝑤,𝑖𝑖, written 
as 

 𝜂𝜂𝑤𝑤,𝑖𝑖 = 1
𝑛𝑛−1

∑ ℎ𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

 (2) 

2.2. Flow analysis  
Flow analysis, also known as flow-based 
methods, can accurately measure component 
functionality as their ability to deliver goods and 
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services to satisfy demand. For example, 
hydraulic flow analysis can provide information 
on whether potable water infrastructure can meet 
desired pressure head and demand. 

Flow analyses also use graph theory to 
represent infrastructure systems; however, to 
model the dynamics, the nodes, and links have 
additional attributes describing their 
operation/function. These additional attributes are 
in the form of vectors representing the state 
variables x(𝑡𝑡) , capacities C(𝑡𝑡) , demands D(𝑡𝑡) , 
and supply 𝑆𝑆(𝑡𝑡) (Sharma and Gardoni 2022). The 
performance assessment of infrastructure carried 
out by flow analysis is developed on these 
measures. Sharma and Gardoni (2022) define the 
derived performance measure Q(𝑡𝑡) = [S(𝑡𝑡) ⊘
D(𝑡𝑡)] ⊙ 1{D(𝑡𝑡)>0} as the fraction of demand 
served at the demand nodes, where ⊘  the 
element-wise division operator, and 1{D(𝑡𝑡)>0} 
ensures Q(𝑡𝑡)  is defined for non-zero demands. 
For example, in potable water infrastructure, Q(𝑡𝑡) 
refers to the demand satisfaction of an end-user in 
terms of flow or pressure head of water. 

3. FUNCTIONAL CONNECTIVITY 
ANALYSIS (FCA) 

This section introduces Functional Connectivity 
Analysis (FCA) which uses performance-
weighted connectivity metrics for comprehensive 
and computationally efficient assessment of 
infrastructure performance.  

Step 1: Define the states of functionality. 
Performance assessment should serve the need of 
the consumers. In general, such a performance can 
be measured on a continuous scale, say, 𝑄𝑄 ∈
[0,1] , where 𝑄𝑄 = 0  defines a completely not 
functional state, 𝑄𝑄 = 1 defines a fully functional 
state and 𝑄𝑄 = (0,1) denotes some partial levels of 
functionality. In fact, during a post-disaster 
scenario, most consumers are concerned about 
whether they have access to goods and services 
(e.g., food, potable water) and whether these 
resources satisfy certain minimum requirements 
rather than the exact amounts. Furthermore, in 
most infrastructure systems, the functionality 
states of 𝑄𝑄 = 0 and 𝑄𝑄 = 1 are much more likely 

than the intermediate intervals. We can reduce the 
continuous performance assessment scale to a 
small set of ordinal states. We define the 
performance measure of demand node 𝑖𝑖 , 𝑄𝑄𝑜𝑜,𝑖𝑖 ∈
 {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚 }, 𝑚𝑚 = 1, 2, 3, … , where 𝑞𝑞𝑚𝑚  are 
ordinal states denoting the levels of functionality. 
Compared with a continuous scale, an ordinal 
scale can help create simpler models for 
functionality. Therefore, we reduce the 
computational cost while sufficiently encoding 
consumers' utility from the functionality 
assessment by defining a small set of functional 
states 𝑄𝑄𝑜𝑜,𝑖𝑖. 

Step 2: Select the relevant metrics for 
network connectivity and define their 
performance-weighted forms. For functionality 
assessment of networks, other than topological 
connectivity, we incorporate performance-related 
information of network components by 
introducing nodal weight based on performance to 
connectivity metric. For commodity flow 
networks, they account for the connectivity 
between sinks and sources rather than 
connectivity between each pair of nodes (Ouyang 
et al. 2009). Hence, for a commodity flow 
network, we can write weighted nodal efficiency 
for demand node 𝑖𝑖, 𝜂𝜂𝜅𝜅,𝑖𝑖, as  

 𝜂𝜂𝜅𝜅,𝑖𝑖 = 1
𝑁𝑁𝑠𝑠
∑ ℎ𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖

 
𝑖𝑖∈𝑉𝑉𝑠𝑠

 (3) 

where 𝑁𝑁𝑠𝑠 is the number of source nodes; 𝑉𝑉𝑠𝑠 is the 
set of source nodes. for node 𝑖𝑖 . We use 𝑊𝑊𝑖𝑖  to 
represent different performance related 
information for different types of networks.  For 
example, if we are interested in the pressure at 
each demand node for potable water 
infrastructure, then the nodal weight is pressure 
related. 

Step 3: Define the mapping from 
performance-weighted connectivity metric to 
categorical states of functionality. Performance-
weighted connectivity metric alone cannot 
directly predict the functional state of demand 
nodes. We define a surjective mapping from the 
metric to the ordinal states of functionality. If we 
have the performance-weighted connectivity 
metric, 𝐶𝐶𝑤𝑤,𝑖𝑖, for each demand node 𝑖𝑖 in a network, 
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then we define the following mapping function 𝛭𝛭 
from 𝐶𝐶𝑤𝑤,𝑖𝑖 to 𝑄𝑄𝑜𝑜,𝑖𝑖: 

𝑀𝑀:𝐶𝐶𝑤𝑤,𝑖𝑖 ↦ �

𝑄𝑄𝑜𝑜,𝑖𝑖 = 𝑞𝑞1, Not functional 
𝑄𝑄𝑜𝑜,𝑖𝑖 = 𝑞𝑞2, Partially functional

⋯ ⋯
𝑄𝑄𝑜𝑜,𝑖𝑖 = 𝑞𝑞𝑚𝑚, Fully functional

(4) 

Step 4: Limited simulations to calculate the 
nodal weights. In FCA, we use limited number of 
simulations to estimate the supply at node 𝑖𝑖 for a 
damaged network without performing a detailed 
flow analysis. Then, 𝑊𝑊𝑖𝑖 at demand node 𝑖𝑖 can be 
calculated as the proportion of the supply under 
damaged conditions to the supply under normal 
operation conditions, written as 𝑊𝑊𝑖𝑖 =
𝑆𝑆𝑖𝑖(𝑡𝑡 = 0+) 𝑆𝑆𝑖𝑖(𝑡𝑡 = 0−)⁄ , where 𝑆𝑆𝑖𝑖(𝑡𝑡 = 0+) is the 
supply measure at demand node 𝑖𝑖  when the 
infrastructure network is damaged; 𝑆𝑆𝑖𝑖(𝑡𝑡 = 0−) is 
the supply measure at demand node 𝑖𝑖 when the 
infrastructure network is under normal operating 
conditions.  

Step 5: Use weighted connectivity analysis to 
predict functionality. Once we have determined 
the nodal weight 𝑊𝑊𝑖𝑖 for each demand node 𝑖𝑖, we 
can calculate 𝐶𝐶𝑤𝑤,𝑖𝑖. Then, for each demand node 𝑖𝑖, 
𝑄𝑄𝑜𝑜,𝑖𝑖, can be determined through 𝛭𝛭. 

4. FUNCTIONAL CONNECTIVITY 
ANALYSIS (FCA) FOR POTABLE 
WATER INFRASTRUCTURE  

In this section, we present an application of the 
general theory of FCA in the case of potable water 
infrastructure. One of the essential functional 
performances in potable water infrastructure is 
whether the demand nodes are satisfied with the 
required pressure (Yang et al. 1996). Hence, in 
this paper, we mainly discuss the functional state 
of a demand node regarding its pressure. We treat 
reservoirs as source nodes and customers as 
demand nodes. Furthermore, we represent 
pumping stations and pipes as links connecting 
sources and demand nodes.  

Step 1: Define the states of functionality in 
potable water infrastructure. When the pressure 
head at a demand node 𝑖𝑖, 𝑃𝑃𝑖𝑖, is above the required 
pressure 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟, consumers can receive the desired 

water supply (Wagner et al. 1988). When the 
pressure at a demand node is below the minimum 
pressure 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 , consumers cannot receive any 
water (Wagner et al. 1988). When the pressure is 
between 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , consumers can only 
receive part of the desired amount. Hence, here we 
use 3 ordinal functional states to represent the 
consumer perspective, shown in Eq. (5), that is, 
not functional, corresponding to the performance 
state when 𝑃𝑃𝑖𝑖  is smaller than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ; partially 
functional, corresponding to the performance 
state when 𝑃𝑃𝑖𝑖  is greater than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛  while smaller 
than 𝑃𝑃𝑟𝑟𝑟𝑟 ; fully functional, corresponding to the 
performance state when 𝑃𝑃𝑖𝑖 is greater than 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟.  

�
𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛,               Not functional
𝑃𝑃𝑟𝑟𝑟𝑟 > 𝑃𝑃𝑖𝑖 ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛,   Partially functional
𝑃𝑃𝑖𝑖 ≥ 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,                Fully functional

 (5) 

In this paper, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 is set to 15 psi, and 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 is set 
to 10 psi. 

Step 2: Select the relevant metrics for water 
network connectivity and define their 
performance-weighted forms. We select weighted 
nodal efficiency for demand node 𝑖𝑖, 𝜂𝜂𝜅𝜅,𝑖𝑖

′ , as the 
performance-weighted connectivity metric for 
water networks, written as  

 𝜂𝜂𝜅𝜅,𝑖𝑖
′ = 1

𝑁𝑁𝑠𝑠′
∑ ℎ𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖

 
𝑖𝑖∈𝑉𝑉𝑠𝑠

 (6) 

where 𝑁𝑁𝑠𝑠′  is the number of the chosen nearest 
source nodes, 𝑉𝑉𝑠𝑠′, to demand node 𝑖𝑖. 𝑉𝑉𝑠𝑠′ is only a 
subset of all the source because for a damaged 
water network, even though the demand node may 
be connected to a distant source, this source may 
not supply water to the demand node 𝑖𝑖 because of 
pipe damage. Based on our computational 
experiments, we recommend using 2 or 3 nearest 
sources for an urban potable water network. 

Step 3: Define the mapping from 
performance-weighted connectivity metric to 
categorical states of functionality. We propose to 
use the weighted nodal efficiency loss 𝐿𝐿𝑖𝑖 to reflect 
the loss of the weighted nodal efficiency of 
demand node 𝑖𝑖  when there is damage and no 
damage to the water network. We define 𝐿𝐿𝑖𝑖  as 
𝐿𝐿𝑖𝑖=1- 𝜂𝜂𝑖𝑖,𝑑𝑑𝑑𝑑 𝜂𝜂𝑖𝑖,𝑢𝑢𝑛𝑛𝑑𝑑𝑑𝑑⁄ , where 𝜂𝜂𝑖𝑖,𝑑𝑑𝑑𝑑  is the weighted 
nodal efficiency of demand node 𝑖𝑖 when there is 
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damage to the water network, and 𝜂𝜂𝑖𝑖,𝑢𝑢𝑛𝑛𝑑𝑑𝑑𝑑 is the 
weighted nodal efficiency of demand node 𝑖𝑖 when 
there is no damage in the water network. Here we 
propose to use the 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖⁄   and 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖⁄  as 
two thresholds of the ordinal functional states of 
demand node 𝑖𝑖, shown as Eq. (7).  

𝑀𝑀:

⎩
⎪
⎨

⎪
⎧𝐿𝐿𝑖𝑖 > 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖
, Not functional

𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚
𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖

≤ 𝐿𝐿𝑖𝑖 < 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖

, Partially functional

𝐿𝐿𝑖𝑖 ≤
𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚
𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖

, Fully functional

 (7) 

Step 4: Limited simulations to calculate the 
nodal weight for functionality. We define the 
nodal weight 𝑊𝑊𝑖𝑖  for demand node 𝑖𝑖  as 𝑊𝑊𝑖𝑖 =
 𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖 𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖⁄ , where 𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖 is the pressure of demand 
node 𝑖𝑖  under normal operating conditions, and 
𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖 is the pressure of demand node 𝑖𝑖 when there 
are only damages to pipes. First, we obtain 𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖 
by performing the hydraulic flow analysis of the 
water network under normal operating conditions 
(without damage to any components). Next, we 
obtain 𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖 by performing a simplified hydraulic 
flow analysis, referred to as pipe damage analysis, 
of the water network to reduce computational 
costs. That is, we only consider damage to pipes, 
including leaks and breaks (assuming other 
elements, like pumping stations and storage tanks, 
are undamaged).  

Furthermore, hydraulic flow analysis 
requires a high temporal resolution (hourly or 
higher) for the convergence of the dynamic flow 
equations (Sharma and Gardoni 2022). In 
contrast, FCA supports using low temporal 
resolution (daily or lower) because it is good 
enough for mitigation decision-making compared 
to the high temporal resolution required for flow 
analysis. In this paper, we use daily resolution in 
FCA. For a damaged water network, the worst 
performance within a day occurs when the water 
demand is high and the damage to the network is 
severe. When assessing the performance 
immediately after the damaging event, we only 
perform pipe damage analysis for peak demand 
periods. During the recovery process, we perform 

the flow analysis for peak demand periods and the 
first two hours of that day. Because for the first 
few hours, we have the worst status of damaged 
pipes within that day, and that is when the 
minimum 𝑊𝑊𝑖𝑖 might occur. 

Step 5: Use the nodal weight in the weighted 
connectivity analysis to predict the functional 
state. Once we have 𝑊𝑊𝑖𝑖, we calculate 𝐿𝐿𝑖𝑖. Then, we 
determine 𝑄𝑄𝑜𝑜,𝑖𝑖  for each demand node 𝑖𝑖  in the 
water network through the mapping function 𝛭𝛭. 

5. PREDICTION OF THE PHYSICAL STATE 
OF POTABLE WATER 
INFRASTRUCTURE DURING IMPACT 
AND RECOVERY  

FCA predicts the functionality and performance 
of infrastructure in conjunction with predicting 
the physical states of infrastructure components. 
There are two main processes, deterioration 
(gradual and shock processes resulting from 
natural and anthropogenic hazards) and recovery, 
affecting the physical states of components (Jia 
and Gardoni 2018).  

5.1. Modeling of impact analysis 
The analysis to assess the performance 
immediately after a damaging event is referred to 
impact analysis. First, we estimate the direct 
physical damage to the network components. We 
use seismic fragility curves for nodal elements, 
including tanks (FEMA 2020), pumping stations 
and booster pumps (Hwang et al. 1998) and repair 
rate curves (ALA 2001) for pipelines. Once we 
have determined the physical damage to network 
components, we can assess the immediate 
performance of the potable water network using 
connectivity analysis, flow analysis, and FCA. 

For connectivity analysis, the failure of the 
pipe occurs when the pipe needs at least one repair 
(Poljanšek et al. 2011), thus the probability of 
failure of the pipe, 𝑃𝑃𝑓𝑓, can be calculated as 

𝑃𝑃𝑓𝑓 = 1 − 𝑃𝑃(𝑁𝑁 = 0) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 (8) 

where 𝑁𝑁 is the number of ruptures for a pipeline 
with length 𝐿𝐿; 𝜆𝜆 is the repair rate, which is the 
number of ruptures per unit length. Failed 
elements, for example, storage tanks, pumping 
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stations, and pipes, are directly removed from the 
water network. 

For flow analysis, a pressure-dependent 
hydraulic flow analysis (Klise et al. 2017) is 
performed, and the hydraulic flow network model 
is from Sharma et al. (2020).  

5.2. Modeling of the recovery process 
In this paper, the recovery durations of damaged 
pumping stations, booster pumps, and storage 
tanks are from HAZUS (FEMA 2020). The 
detailed recovery schedules of damaged pipelines 
are from Sharma et al. (2020). 

6. COMPARING CONNECTIVITY, FLOW, 
AND FCA FOR POTABLE WATER 
INFRASTRUCTURE IN SHELBY 
COUNTY 

We illustrate the proposed FCA using an example 
of modeling the potable water infrastructure in 
Shelby County, Tennessee, USA. In the example, 
we consider a 7.7 magnitude scenario earthquake 
with epicenter at 35.93°𝑁𝑁 and 89.92°𝑊𝑊, which is 
approximately the north-west of Shelby County 
(details in Sharma et al. 2020). 

In the case of connectivity analysis, if a 
demand node 𝑖𝑖 is connected with at least one 
source node, its functional state is defined as 
connected. Otherwise, its functional state is 
defined as disconnected. For flow analysis, the 
interested performance measure is the pressure 
head at demand nodes. To see whether FCA can 
predict the functional state as accurately as flow 
analysis instead of showing the exact number of 
𝑃𝑃𝑖𝑖, we categorize 𝑃𝑃𝑖𝑖 into three states, which are, 𝑃𝑃𝑖𝑖 
is greater than 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟; 𝑃𝑃𝑖𝑖 is greater than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 while 
smaller than 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟; and 𝑃𝑃𝑖𝑖 is smaller than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛. For 
FCA, as described in Section 4, we define three 
functional states, which are fully functional, 
partially functional, and not functional, 
corresponding to the above three functional states 
in flow analysis. 

Tables 1-3 present the number of demand 
nodes in the most likely functional state of flow 
analysis and FCA for 𝑡𝑡 = 0+  day (immediate 
impact), 𝑡𝑡 = 3 days, and 𝑡𝑡 = 21 days respectively. 

The diagonal terms in the three tables are the 
number of demand nodes analyzed by FCA that 
match the corresponding state analyzed by flow 
analysis. For example, on  𝑡𝑡 = 0+ day, there are 8 
demand nodes that are predicted by FCA to be 
fully functional, meanwhile, flow analysis also 
gives out that the pressure of these 8 demand 
nodes is most likely to be greater than 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟. The 
large number of diagonal terms in the three tables 
shows that FCA predicts each functional state of 
demand nodes nearly as accurately as flow 
analysis.  
 
Table 1: The match of each functional state for FCA 
and flow analysis (𝑡𝑡 = 0+ day: immediate impact). 

  FCA 

  Fully 
functional  

Partially 
functional  

Not 
functional  

Flow 
analysis 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑖𝑖 8 0 15 
𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑖𝑖
< 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 0 0 1 

𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 1 0 930 
 
Table 2: The match of each functional state for FCA 
and flow analysis (𝑡𝑡 = 3 days). 

  FCA 

  Fully 
functional 

Partially 
functional  

Not 
functional  

Flow 
analysis 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑖𝑖 35 0 37 
𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑖𝑖
< 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 0 0 2 

𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 14 0 867 
 
Table 3: The match of each functional state for FCA 
and flow analysis (𝑡𝑡 = 21 days). 

  FCA 

  Fully 
functional  

Partially 
functional  

Not 
functional  

Flow 
analysis 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑖𝑖 795 0 0 
𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑖𝑖
< 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 0 5 0 

𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 0 0 155 
 
Figure 1 shows the ratio of CPU time needed 

per day for FCA and connectivity analysis 
compared to flow analysis. Compared with flow 
analysis, FCA can save substantial computational 
costs because the main part of computational cost 
comes from the calculation for 𝑊𝑊𝑖𝑖 . When 
calculating 𝑊𝑊𝑖𝑖, we only perform the pipe damage 
analysis for required range of hours within a day, 
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while flow analysis needs to be performed for the 
entire 24 hours to obtain the worst performance, 
𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 , for the demand nodes. Moreover, for the 
overall trend, the ratio of computational time 
needed per day for FCA compared to flow 
analysis decreases with the increasing number of 
days, illustrating that performing FCA can save 
more cost with the increasing days of the recovery 
process. This is because if we want to assess the 
functional performance of the water network for  
𝑡𝑡 = 𝑛𝑛 days, FCA can be performed for 𝑡𝑡 = 𝑛𝑛 days 
only, while we need to perform flow analysis from 
𝑡𝑡 = 0+ day to  𝑡𝑡 = 𝑛𝑛 day continuously to obtain the 
same results. 

 

 
Figure 1: The ratio of CPU time needed with respect 
to traditional flow analysis. 

7. CONCLUSIONS 
This paper proposed a novel Functional 
Connectivity Analysis (FCA) to achieve a trade-
off between providing information on 
functionality comparable to flow analysis and 
saving computational costs in modeling the 
functionality loss and recovery process of 
infrastructure subjected to hazards. Then, 
following the general procedure of FCA, the 
paper developed a specific FCA for potable water 
infrastructure. An example then illustrated the 
implementation of FCA on the potable water 
infrastructure in Shelby County subjected to 
earthquake hazard. In the example, we made 
comparisons of connectivity analysis, flow 
analysis, and FCA in terms of computational costs 
and the functional state of demand nodes in 
immediate impact analysis and the recovery 
process. The results indicated that FCA can 
provide comparable results of the functional states 
of demand nodes to flow analysis while saving 
huge computational costs. The proposed FCA 

allows for the assessment of the infrastructure 
functionality in probabilistic analysis and 
optimization applications for mitigation. 
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