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ABSTRACT: In order to evaluate urban earthquake resilience, reliable structural modeling is needed. 
However, detailed modeling of a large number of structures and carrying out time history analyses for 
sets of ground motions are not practical at an urban scale. Reduced-order surrogate models can expedite 
numerical simulations while maintaining necessary engineering accuracy. Neural networks have been 
shown to be a powerful tool for developing surrogate models, which often outperform classical surrogate 
models in terms of scalability of complex models. Training a reliable deep learning model, however, 
requires an immense amount of data that contain a rich input-output relationship, which typically cannot 
be satisfied in practical applications. In this paper, we propose model-informed symbolic neural networks 
(MiSNN) that can discover the underlying closed-form formulations (differential equations) for a 
reduced-order surrogate model. The MiSNN will be trained on datasets obtained from dynamic analyses 
of detailed reinforced concrete special moment frames designed for San Francisco, California, subject to 
a series of selected ground motions. Training the MiSNN is equivalent to finding the solution to a sparse 
optimization problem, which is solved by the Adam optimizer. The earthquake ground acceleration and 
story displacement, velocity, and acceleration time histories will be used to train 1) an integrated SNN, 
which takes displacement and velocity states and outputs the absolute acceleration response of the 
structure; and 2) a distributed SNN, which distills the underlying equation of motion for each story. The 
results show that the MiSNN can reduce computational cost while maintaining high prediction accuracy 
of building responses.

1. INTRODUCTION 
To assess earthquake resilience for large-scale 
urban building clusters, there is a need for a 
detailed structural model of buildings to carry out 
reliable numerical simulations. Because buildings 
in an urban area experience different levels of 
ground motion (GM) severities (primarily due to 
fault rupture location and characteristics, soil 
condition, and the buildings’ fundamental 
periods), the numerical simulations of a building 
need to be carried out under a series of selected 
GMs. More specifically, a considerable number of 
repeated numerical simulations are required to 
assess urban earthquake resilience, which is not 
practical. To address this issue, surrogate models 
can be used to expedite numerical simulations 

while maintaining necessary engineering 
accuracy. 

Surrogate models have drawn significant 
attention in civil, mechanical, and aerospace 
engineering, enabling computationally efficient 
analysis of complex structures. In performance-
based structural engineering, surrogate models 
can promote efficient design, assessment, control, 
and optimization of engineering structures with 
reduced computational effort. Recent studies have 
shown that, owing to state-of-the-art advances in 
artificial intelligence, the use of deep learning 
(e.g., convolutional and recurrent neural 
networks) is a promising approach to establishing 
surrogate models for fast prediction of structural 
dynamic response (Wu and Jahanshahi, 2019; Oh 
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et al., 2020; Stoffel et al., 2020; Zhang et al., 
2020a; Zhang et al., 2020b). Nonetheless, deep 
learning still has some limitations. Training a 
reliable deep learning model requires an immense 
amount of data that contains rich input-output 
relationships, which typically cannot be satisfied 
in most engineering problems. Commonly used 
nonlinear activation functions (e.g., sigmoid, 
hyperbolic tangent, and rectified linear unit) may 
drastically increase model complexity. Moreover, 
deep learning models are a “black box” and highly 
dependent on the representative quality of labeled 
data, leading to overfitting issues and limited 
extrapolation. Even with rich data, the resulting 
trained models are uninterpretable and may not 
make physical sense.  

One approach to overcoming the limitations 
of deep learning is to develop a reduced-order 
surrogate model – model-informed symbolic 
neural network (MiSNN). MiSNN is essentially a 
symbolic neural network designed by leveraging 
domain-specific knowledge and fundamental 
principles of existing surrogate models (e.g., 
shear-beam for building seismic performance 
evaluation, Joyner and Sasani, 2020). MiSNN can 
discover the underlying closed-form formulations 
(differential equations) and accommodate use by 
engineers and practitioners who do not have 
knowledge of deep learning. Unlike deep learning 
models, symbolic neural networks use a 
combination of math operators as activation 
functions (e.g., absolute, sign, exponential, 
sinusoidal, cosine, square, cube, and 
multiplication). Recent studies show that 
symbolic neural networks are capable of finding 
parsimonious and interpretable mathematical 
expressions for generalized regression (Martius 
and Lampert, 2016; 2018; Kim et al., 2020). The 
domain-specific knowledge and fundamental 
principles of existing surrogate models are 
embedded in symbolic neural networks via 
variations of input data and selection of math 
operators. The embedded information can provide 
rigorous constraints to the parameters, alleviate 
overfitting issues, reduce the need for large 
training datasets, and thus, improve the robustness 

of the trained MiSNN for more reliable 
prediction. Additionally, MiSNN can reduce the 
“black box” effect by making the model 
interpretable and providing physical meaning, 
thereby rendering it readily accessible for use by 
engineers and practitioners. 

The underlying closed-form formulations 
discovered by MiSNN can be solved using 
numerical integration methods, such as the fourth 
order Runge-Kutta method (RK4, Dormand and 
Prince, 1980). The Runge–Kutta method is an 
effective and widely used method for solving 
initial-value problems of differential equations 
(Zheng and Zhang, 2017). Compared with 
Newmark and Euler methods, which have the 
maximum orders of accuracy as second and first, 
respectively, the Runge-Kutta method is easy to 
implement and can achieve a higher order of 
accuracy.  

In this paper, the MiSNNs embedded into 
RK4 are used to discover the equations of motion 
for a multi-degree-of-freedom (MDOF) system 
under seismic excitation. 

2. MODEL-INFORMED SYMBOLIC 
NEURAL NETWORK FOR 
APPROXIMATING THE EQUATION OF 
MOTION 

The equation of motion for an MDOF system 
under seismic excitation can be written as  

 �̈�𝑼 + 𝑓𝑓�𝑼𝑼, �̇�𝑼� = −𝜞𝜞𝑎𝑎𝑔𝑔 (1) 

where 𝑼𝑼, �̇�𝑼, and �̈�𝑼 = vectors that represent the 
displacements, velocities, and accelerations of 𝑛𝑛 
DOFs relative to ground; 𝑎𝑎𝑔𝑔  = GM acceleration 
time series; 𝜞𝜞 = influence vector, a 𝑛𝑛 × 1 vector 
with each element ( 𝛾𝛾 ); and 𝑓𝑓�𝑼𝑼, �̇�𝑼�  = mass-
normalized internal restoring force vector learned 
by MiSNNs, which has the same dimension as 𝑼𝑼, 
�̇�𝑼, and �̈�𝑼.  

The 𝑼𝑼, �̇�𝑼, and signs of interstory drift and 
velocity (Δ𝑼𝑼 and Δ�̇�𝑼) are included as inputs to 
MiSNN. A 𝑛𝑛 × 1  vector containing sinusoidal 
functions of time with a phase shift ( sin (𝑻𝑻) 
learned from time via a fully-connected layer with 
weights and bias) is also included in MiSNN to 
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detect possible time-variant structural properties. 
The output of MiSNN is the absolute acceleration 
of a DOF, −�̈�𝑢 − 𝛾𝛾𝑎𝑎𝑔𝑔 . For an MDOF system, 
instead of using one MiSNN with 𝑛𝑛 outputs, it is 
better to use the same number of MiSNNs as the 
number of DOFs (Chen et al., 2022a). Each 
MiSNN has sufficient flexibility to learn the 
contributions from all DOFs’ displacement and 
velocity states to the absolute acceleration of each 
DOF. 

The proposed MiSNN includes two layers of 
multiplication to produce a polynomial function 
up to fourth order to learn the potential complex 
input-output relationship (see Figure 1). 
Analogous to Long et al. (2019), Chen et al. 
(2022a), and Chen et al. (2022b), instead of fully 
connected layers, MiSNN allows inputs (and 
outputs of hidden layers) to pass directly to the 
following layers. This can significantly reduce the 
number of parameters while maintaining high 
accuracy, as observed from parametric studies.  

 

 
Figure 1: Standard MiSNN (solid thick black arrow 
= identity, solid thin red arrow = fully connected 
with weights and bias, dotted green arrow = 
multiplication). 

 
In addition to domain-specific knowledge, 

the fundamental principle of shear-beam is also 
used to develop MiSNN. Shear-beam has been 
proven to be an effective approach to simplify 
building models for dynamic analysis while 
maintaining accuracy (Miranda and Taghavi, 
2005; Khoshnoudian and Ehsan, 2013; Ganhavi et 
al., 2016; Escalona and Wong, 2018; Joyner and 
Sasani, 2020). This type of model idealizes each 
story’s constitutive shear-drift relationship using 

a single shear element, which can significantly 
reduce the computational cost (Joyner and Sasani, 
2020). If a frame structure is considered as a 
shear-beam, the only inputs to MiSNN that are 
needed to estimate the absolute acceleration of a 
given DOF are those from that DOF and its 
adjacent DOFs. If the given DOF is either the first 
or last, the out-of-range states are assumed to be 
the same as the states of the given DOF.  

3. FOURTH ORDER RUNGE-KUTTA 
INTEGRATION 

The underlying closed-form formulations learned 
by MiSNNs can be treated as a system of second 
order differential equations, which can be solved 
using RK4. With displacement and velocity states 
at 𝑡𝑡𝑖𝑖  ( 𝑼𝑼𝑖𝑖  and �̇�𝑼𝑖𝑖 ), the states at 𝑡𝑡𝑖𝑖+1  can be 
estimated as 

𝑼𝑼𝑖𝑖+1 = 𝑼𝑼𝑖𝑖 + 1
6
∆𝑡𝑡(𝑲𝑲𝟏𝟏 + 2𝑲𝑲𝟐𝟐 + 2𝑲𝑲𝟑𝟑 + 𝑲𝑲𝟒𝟒)  (2) 

�̇�𝑼𝑖𝑖+1 = �̇�𝑼𝑖𝑖 + 1
6
∆𝑡𝑡(𝑳𝑳𝟏𝟏 + 2𝑳𝑳𝟐𝟐 + 2𝑳𝑳𝟑𝟑 + 𝑳𝑳𝟒𝟒)   (3) 

where 𝑲𝑲𝟏𝟏 , 𝑲𝑲𝟐𝟐 , 𝑲𝑲𝟑𝟑 , and 𝑲𝑲𝟒𝟒  = vectors consisting 
of slopes of displacement at each DOF (see Figure 
2); 𝑳𝑳𝟏𝟏 , 𝑳𝑳𝟐𝟐 , 𝑳𝑳𝟑𝟑 , and 𝑳𝑳𝟒𝟒  = vectors consisting of 
slopes of velocity at each DOF (see Figure 2); and 
∆𝑡𝑡 = user-defined time interval.  

4. MODEL TRAINING ALGORITHM 
Since the underlying closed-form formulations 
discovered by MiSNNs are solved using RK4, the 
stability of RK4 must be considered. According to 
Hairer and Wanner (2010), the stability region of 
RK4 depends on ∆𝑡𝑡 and the differential equations. 
More specifically, only a reasonably-selected ∆𝑡𝑡 
with well-trained MiSNNs can guarantee the 
stability of RK4.  Training MiSNN independent 
to RK4 may trigger stability issues. To improve 
training efficiency, the MiSNNs are embedded 
into RK4 and trained using the Adam optimizer 
(Kingma and Ba, 2014) with the reducing learning 
rate on plateau strategy (i.e., reducing learning 
rate when the loss metric stops improving). The 
loss function is given by
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Figure 2: Slopes in RK4 (MiSNNs = −𝑓𝑓�𝑼𝑼, �̇�𝑼�, 𝛥𝛥𝑡𝑡 = time interval, 𝑎𝑎𝑔𝑔 �𝑡𝑡𝑖𝑖 + 𝛥𝛥𝛥𝛥

2
� ≈ 𝑎𝑎𝑔𝑔(𝛥𝛥𝑖𝑖)+𝑎𝑎𝑔𝑔(𝛥𝛥𝑖𝑖+𝛥𝛥𝛥𝛥)

2
). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀
∑ 1

𝑊𝑊
∑ (𝒀𝒀𝑖𝑖𝑖𝑖 − 𝒀𝒀�𝑖𝑖𝑖𝑖)2𝑊𝑊
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1  (4) 

where 𝒀𝒀𝑖𝑖𝑖𝑖 = matrix including all recorded 𝑼𝑼𝑖𝑖 and 
�̇�𝑼𝑖𝑖 ; 𝒀𝒀�𝑖𝑖𝑖𝑖  = matrix including all 𝑼𝑼�𝑖𝑖  and �̇�𝑼�𝑖𝑖 
estimated by MiSNNs embedded into RK4; 𝑊𝑊 = 
window, which is the number of time steps used 
in RK4 calculation; and 𝑀𝑀 = number of windows. 
In light of the different magnitudes of 
displacement and velocity, in Eq. (4), 𝑼𝑼𝑖𝑖 and 𝑼𝑼�𝑖𝑖 
are assigned more weight by multiplying them by 
a factor of 10 to match the magnitudes of �̇�𝑼𝑖𝑖 and 
�̇�𝑼�𝑖𝑖. In addition to embedding MiSNN into RK4, 
during the training, ∆𝑡𝑡  can be multiplied by 
factors of 0.5, 0.25, 0.125, and 0.065 to avoid a 
potential stability issue. The corresponding GM 
acceleration is linearly interpolated.   

5. APPLICATIONS 
The linear and nonlinear dynamic analysis results 
of 3-story detailed reinforced concrete (RC) 
buildings under a series of selected GMs are used 
to evaluate the proposed MiSNNs embedded into 
RK4. 

5.1. Model and Data 

5.1.1. 3D detailed reinforced concrete building 
model 

A 3-story representative RC building located in 
Financial District, San Francisco, California, is 
designed according to ASCE 7 (ASCE, 2022) 
Design Level as a Risk Category II building. The 
typical floor plan of the designed building is 
shown in Figure 3. The story heights are 4.27 m 
and 3.66 m for the first story and all other stories, 
respectively. 3D detailed linear and nonlinear 
models of the designed building are developed 

using OpenSees (McKenna et al., 2010). The 
linear model is developed using elastic beam-
column elements. For the nonlinear model, 
distributed plasticity is accounted for using 
nonlinear beam-column elements with sections 
discretized into concrete core, concrete cover, and 
steel fibers. The buckling and bar-slip effects of 
reinforcing bars are also included. More details 
about building design and the corresponding 3D 
detailed model development can be found in Chan 
Esquivel et al. (2023). 
 

 
Figure 3: Plan view of the designed RC buildings 

5.1.2. Ground motion selection and numerical 
simulation 

Using spectral acceleration as the GM intensity 
measure, the GMs are selected using conditional 
spectra (Baker, 2011; Lin et al., 2013; Baker and 
Lee, 2018) at the building’s fundamental period. 
20 GMs are selected to represent the median and 
logarithmic standard deviation of the conditional 
spectrum (Chan Esquivel et al., 2023). Because 
pulse-type GM has a larger damage potential than 
ordinary GM, the selection procedure 
accommodates a portion of the selected GM 
records being pulse-type (NIST, 2011). The 
spectral acceleration of the 20 selected GMs and 
4 (out of the 20) GM acceleration time series are 
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shown in Figures 4 and 5, respectively. The 
numerical simulations of 3D detailed linear and 
nonlinear models of the 3-story RC building under 
the selected GMs are carried out using OpenSees 
(McKenna et al., 2010). Seismic excitation is 
applied to the designed building in a direction 
parallel to the longitudinal frame. 
 

 
Figure 4: Spectral accelerations of the selected 20 
GMs. 

 

 
Figure 5: 4 GM acceleration time series. 

5.2. Linear response estimation 
The linear dynamic analysis results of the 3D 
detailed model of the 3-story RC building are used 
to train the MiSNNs embedded into RK4. The 
building responses and the corresponding GM 
accelerations are interpolated to a time interval of 
0.05 s using a piecewise cubic hermite 
interpolating polynomial (Kreyszig, 2020). The 
training setups are listed in Table 1.  
 
 
 
 

Table 1. Training setups  
Training dataset 18 GMsa 

Test dataset 2 GMs 
Window size 25 

Time in each window 0:0.05:1.20sb 

Epochs 500 
Initial learning rate 0.001 

Initial learning rate decay 25%c 

a 18 GMs are randomly selected.  
b Using relative time in each window can result in 
higher model accuracy than using recorded time (as 
observed by parametric study). 
c The initial learning rate decays by 25% whenever 
the training loss stops decreasing for 4 epochs. 

5.2.1. Standard MiSNN 
The standard MiSNNs embedded into RK4 are 
trained using the setups specified in Table 1. The 
comparisons between the building responses 
estimated by these MiSNNs and those recorded by 
numerical simulation for one test GM are shown 
in Figure 6. The correlation coefficient ( 𝜌𝜌 ) 
between these two building response estimates is 
used as a numerical goodness-of-fit measurement 
(see Figure 6). Both the graphical and numerical 
results indicate that the standard MiSNNs 
embedded into RK4 can capture the dynamic 
behaviors of 3-story RC buildings very well.  
 

 

(a) 
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Figure 6: Comparison between the linear responses 
of the 3-story RC building under one test GM 
estimated by the standard MiSNNs embedded into 
RK4 and recorded by numerical simulation: (a) 
interstory drift, (b) interstory velocity, and (c) 
acceleration relative to ground. 

5.2.2. Shear-beam-based MiSNN 
Shear-beam-based MiSNNs embedded into RK4 
are also trained following Table 1. The 
comparisons for one test GM show that these 
MiSNNs also can predict the linear dynamic 
responses of 3-story RC buildings very well (see 
Figure 7). The correlation coefficients obtained 
for shear-beam-based MiSNNs are slightly lower 
than those obtained using the standard MiSNNs. 
This difference is observed because the data used 
for shear-beam-based MiSNNs training are not as 
extensive as those used for standard MiSNNs 
training due to the out-of-range states. 

 
Figure 7: Comparison between the linear responses 
(interstory drifts) of the 3-story RC building under 
one test GM estimated by the shear-beam-based 
MiSNNs embedded into RK4 and recorded by 
numerical simulation. 

5.3. Nonlinear response estimation 
Considering the complexity of nonlinear 
behavior, two more multiplications and the 
sinusoidal functions of 𝑾𝑾𝑼𝑼𝑖𝑖 + 𝑩𝑩  and 𝑾𝑾�̇�𝑼𝑖𝑖 + 𝑩𝑩 
(where 𝑾𝑾 and 𝑩𝑩 are an 𝑛𝑛 × 𝑛𝑛 weight matrix and 
an 𝑛𝑛 × 1 bias vector, respectively, learned during 
MiSNN training) are included in the MiSNN 
architecture (see Figure 8). Both the standard and 
shear-beam-based MiSNNs are embedded into 
RK4 and trained using the 3-story RC building 
nonlinear dynamic responses obtained for 12 non-
pulse-type GMs. This procedure was 
implemented because the pulse-type and non-
pulse-type GMs have different damage potentials 
for RC buildings (NIST, 2011), and 13 sets of 
building responses under non-pulse-type GM (12 
for training and 1 for test) can provide sufficient 
data for MiSNNs to learn the equation of motion. 
The training setups are the same as those shown 
in Table 1 but with one randomly selected GM for 
test purposes. Table 2 lists the improvements in 
model accuracy by comparing the nonlinear 
responses estimated using the MiSNNs designed 
for linear and nonlinear cases (see Figures 1 and 
8). Although the model accuracy is improved for 
MiSNNs designed for nonlinear cases, the 
MiSNN shown in Figure 8 does not reach a high 
prediction accuracy (say 𝜌𝜌  > 0.95), which 

(b) 

(c) 
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indicates that further studies on MiSNN 
architecture design are needed. 

 
Figure 8: Standard MiSNN designed for nonlinear 
building response estimation (solid thick black arrow 
= identity, solid thin red arrow = fully connected 
with weights and bias, dotted green arrow = 
multiplication). 
 
Table 2. Model accuracy improvement for the test GM  

Response Story 
(𝜌𝜌𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁)𝑎𝑎

𝜌𝜌𝑁𝑁
 

(%) 

Interstory 
drift 

1 6 
2 11 
3 81 

Interstory 
velocity 

1 6  
2 9  
3 46 

a 𝜌𝜌𝑁𝑁𝑁𝑁 and 𝜌𝜌𝑁𝑁 are the correlation coefficients between 
the nonlinear responses of the 3-story RC building 
under the test GM estimated by the standard MiSNNs 
designed for nonlinear (NL, see Figure 8) and linear 
(L, see Figure 1) cases embedded into RK4 and 
recorded by numerical simulation.  

6. CONCLUSIONS 
The MiSNN is designed by leveraging domain-
specific knowledge and fundamental principles of 
existing surrogate models. Embedding MiSNN 
into RK4 can successfully establish a reduced-
order surrogate model to estimate the response of 
MDOF systems under seismic excitation with low 
computational cost while maintaining high 
accuracy. Compared with deep learning models, 

the architecture of MiSNN can significantly 
reduce model complexity while increasing model 
interpretability. MiSNNs embedded into RK4 are 
a user-friendly approach and can be implemented 
easily by engineers and practitioners. 

The following conclusions are drawn based 
on the applications:  

• Including the signs of inter-story drift and 
velocity as inputs and sinusoidal function of 
time with a phase shift in MiSNN architecture 
can improve the model accuracy.  

• The shear-beam-based MiSNN can predict 
RC buildings’ responses with high accuracy.  

• Training MiSNN embedded into RK4 can 
effectively avoid a potential stability issue and 
speed the training process. 

• Further studies on MiSNN architecture design 
are needed to improve the accuracy of 
nonlinear response estimation. 

 
The MiSNN presented in this paper can also 

be solved using numerical integration methods 
other than RK4 and has the potential to be applied 
more widely to other engineering problems.  
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