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ABSTRACT: In recent years, various studies have attempted to predict the structural response of a cable 
bridge based on collected structural health monitoring data. However, it is still a challenging task to 
predict the structural response and assess the structural condition of a cable bridge because it involves 
various sources of uncertainty. In addition, because the number of sensors attached to a cable bridge is 
generally large, it is computationally expensive and impractical to use all of the sensor data for the 
response prediction. Therefore, this study proposes a new method to probabilistically predict the 
structural response of a cable bridge based on structural health monitoring data obtained from various 
sensors. To select meaningful sensor data for response prediction, a new index is developed based on 
their correlation coefficients. The proposed method employs Gaussian process regression (GPR), a 
nonparametric Bayesian method, to build a probabilistic prediction model based on the selected 
measurement data. The proposed method is tested by predicting the cable tension forces of an actual 
cable-stayed bridge in the Republic of Korea. Among the various sensors deployed on the target bridge, 
the new correlation-coefficient-based index allows us to select only the sensors that provide meaningful 
measurement data, which significantly increases the computational efficiency of the prediction. In 
addition, the prediction results show good agreement with the actual measurement results, thereby 
verifying that the proposed method can be used for the structural health monitoring of cable bridges.

1. INTRODUCTION 
Since wireless smart sensor technology has been 
developed in previous studies (Jang et al., 2010; 
Sim et al., 2013; Park et al., 2014), structural 
health monitoring techniques have been widely 
applied to assess and monitor the structural 
condition of a cable bridge. For this purpose, 
several sensors are often deployed to provide 
various information such as displacement, strain, 
tension force, and temperature. Particularly, 

previous studies have attempted to predict the 
structural response of cable bridges based on the 
collected measurement data. 

However, there are various sources of 
uncertainty involving with the response prediction 
of a bridge, owing to model misspecification, 
limited data size, etc., and one needs to consider 
such uncertainty (Lee et al., 2018). Previous 
studies have attempted to consider the uncertainty 
of the measurement data by employing 
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probabilistic methods (Lee et al., 2018; Lee et al., 
2019). 

Because the number of sensors deployed on 
a cable bridge is generally large, it may cause low 
accuracy in predictive models and the prediction 
can be computationally expensive. Saunders et al. 
(2006) proposed an approach to feature selection 
to reduce the dimensionality of data and improve 
prediction accuracy and computational efficiency, 
which shows that it is necessary to select 
meaningful input data from various measurement 
data (Cai et al., 2018). 

This study proposes a new method to 
probabilistically predict the structural response of 
a cable bridge based on structural health 
monitoring data obtained from various sensors. 
The proposed method selects relevant sensor data 
to improve the accuracy of the predictive model 
using a new correlation-coefficient-based index. 
In addition, the proposed method employs GPR to 
obtain a probabilistic prediction of the target 
response. 

2. PROPOSED METHOD 
In this study, a new probabilistic method is 
proposed for an optimal prediction model. The 
proposed method improves the accuracy and 
efficiency of the prediction model while dealing 
with the multiple cables of a cable bridge. In this 
regard, it involves two steps as shown in Figure 1. 
First, to improve a predictive model, meaningful 
input data is selected among the entire 
measurement data. Second, the selected input data 
is applied to a probabilistic predictive model 
employing GPR. 

 

 
Figure 1: Framework for proposed method. 
 

2.1. Index for feature selection 
Although multiple measurement data are obtained 
by various sensors deployed on a cable bridge, it 
is not rational to construct a predictive model 
using all input data, because the corresponding 
high-dimensional data analysis leads to the 
complexity of a predictive model and can 
decrease learning accuracy. Therefore, to remove 
such irrelevant and redundant input data, Cai et al. 
(2018) suggested an evaluation measure for 
feature selection based on the Pearson correlation 
coefficient.  

However, in the case of dealing with multiple 
tension forces (i.e., multiple output data), it is 
difficult to set a specific criterion based on 
correlation coefficients. To resolve this issue, in 
this study, the Pearson correlation coefficients 
among data sets are normalized as follows: 

𝑍𝑍𝑗𝑗 =   
�𝜌𝜌𝑖𝑖,𝑗𝑗�−�𝜌𝜌𝑗𝑗�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�𝜌𝜌𝑗𝑗�𝑠𝑠𝑠𝑠𝑠𝑠
                    (1) 

where 𝑍𝑍𝑗𝑗 is the normalized correlation coefficient 
(termed the Z-score) of the j-th output, �𝜌𝜌𝑖𝑖,𝑗𝑗� is the 
absolute value of the Pearson correlation 
coefficient between the i-th input and j-th output, 
and �𝜌𝜌𝑗𝑗�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and �𝜌𝜌𝑗𝑗�𝑠𝑠𝑠𝑠𝑠𝑠  are the mean and 
standard deviation of the j-th output, respectively. 
Figures 2 and 3 show the maximum and minimum 
values of the Pearson correlation coefficients and 
Z-scores of output datasets, and Figure 3 is 
observed the Z-score has a more uniform 
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distribution, which helps establish a more 
consistent selection criterion. 

 
Figure 2: The maximum and minimum values of the 
Pearson correlation coefficients. 

 

 
Figure 3: The maximum and minimum values of Z-
scores. 

 

2.2. Gaussian process regression 
This study suggests a new probabilistic method 
for the prediction of tension force using GPR that 
is a machine learning-based non-parametric 
regression method and provides standard 
deviations as well as mean values in prediction. 
This section briefly describes GPR; the detailed 
theory of GPR can be found in Rasmussen (2003) 
and Lee et al. (2018). 

GPR is described in relation of the input and 
output data by multivariate normal distribution as 
Equation 2, given as: 

�
𝑓𝑓(𝐗𝐗)
𝑓𝑓∗(𝐗𝐗∗)� = 𝑁𝑁�O, �K + 𝜎𝜎𝑛𝑛2I K∗

K∗
𝑇𝑇 K∗∗ + 𝜎𝜎𝑛𝑛2I

��, (2) 

where 𝐗𝐗, 𝐗𝐗∗ are respectively the training and test input 
matrices, 𝑓𝑓(∙) is the prior function of 𝐗𝐗, and 𝑓𝑓∗(∙) is 
the posterior function of 𝐗𝐗∗. Additionally, 𝑁𝑁(∙) is the 
multivariate normal distribution, O is the zeros matrix, 

𝜎𝜎𝑛𝑛2 is constant variance of the noise, and K, K∗, K∗∗ are 
covariance matrix with embodied the kernel function 
that indicate the relationship of data. 
 

3. APPLICATION EXAMPLE 
To test the proposed method, it is used to predict 
the cable tension forces of an actual cable-stayed 
bridge in the Republic of Korea, the 2nd Jin-do 
bridge. Figure 4 briefly shows the target bridge 
and the locations of sensors. The input dataset 
comprises information on the temperature, wind 
speed, and the direction of wind. In addition, the 
tension force is predicted by the learning model. 
For all datasets, five-week measurement results 
were used: for four weeks as training data and for 
a week as test data. 

 
Figure 4: Location of sensors at the 2nd Jin-do bridge. 

 
To evaluate the prediction performance, in 

this study, the prediction error is defined as the 
symmetric mean absolute percentage of error 
(sMAPE) (Hyndman and Koehler, 2006) which is 
a method based on a ratio, which calculates the 
quantity of the error between the mean prediction 
and measurement data. In addition, for a 
comparison purpose, two cases of selecting 
datasets based on the Pearson correlation 
coefficients and Z-scores are addressed. 

3.1. Composition of Criterion: Pearson 
correlation coefficient 

In this case, the criterion of feature selection is 
established as an absolute value of the Pearson 
correlation coefficient. That is, after the absolute 
value of the correlation coefficient between each 
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output and input data is calculated, the input data 
is selected as a specific criterion. 
 

 
Figure 5: The flowchart of feature selection and 
probabilistic prediction using Pearson correlation 
coefficients. 

 
Figure 5 shows the flowchart of feature 

selection and probabilistic prediction using 
Pearson correlation coefficients, and Figure 6 
shows the analysis results. In the figure, the 
selection criterion constitutes the interval of 
correlation coefficient with 0.05 for the prediction 
accuracy, and it was observed that improved 
accuracy can be achieved in prediction with a 
certain selection criterion for each cable. However, 
the optimal selection criteria vary from cable to 
cable, which makes it difficult to establish a 
consistent selection criterion. 

 

 
Figure 6: All cable’s error of prediction means based 
on absolute values of Pearson correlation coefficients. 

 

3.2. Composition of criterion: normalization of 
correlation coefficient (Z-score) 

 

 
Figure 7: The flowchart of feature selection and 
probabilistic prediction using Z-scores. 

 
In this case, the criterion of feature selection is 
established based on the Z-score described in 
Equation 1, and Figure 7 shows the flowchart of 
feature selection. 

To investigate the performance of the Z-
score-based selection criterion, it was tested with 
the interval of Z-score with 0.25. Table 1 shows 
the Z-score-based selection criterion and the 
number of minimum prediction errors for target 
cables, and Figure 8 shows the analysis results. 
0.5 and 0.75 shows better performance than the 
others as a threshold value. In addition, because 
the error sum was slightly smaller with 0.5, in this 
example, it was decided that 0.5 was the best 
threshold value for the Z-score-based selection 
criterion. 

 
Table 1: Z-score-based selection criterion and the 
corresponding number of minimum prediction errors. 

Z-score-based 
criterion 

The number of 
minimum prediction 

errors 
𝑧𝑧 ≥ −1 3 
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𝑧𝑧 ≥ −0.75 2 
𝑧𝑧 ≥ −0.5 0 
𝑧𝑧 ≥ −0.25 3 
𝑧𝑧 ≥ 0 1 

𝑧𝑧 ≥ 0.25 2 
𝑧𝑧 ≥ 0.5 7 
𝑧𝑧 ≥ 0.75 7 
𝑧𝑧 ≥ 1 6 

 

 
Figure 8: All cable’s error of prediction means based 
on Z-scores. 

 

4. CONCLUSIONS 
This study proposes a new data-driven 

method to probabilistically predict the structural 
response of a cable bridge based on structural 
health monitoring data obtained from various 
sensors. The proposed method used a feature 
selection technique based on the Z-score to 
improve the accuracy of prediction models. In 
addition, to consider the uncertainty of 
measurement data, the proposed method 
introduces the GPR. Finally, it was applied to an 
application example of an actual cable-stayed 
bridge in the Republic of Korea, and it was 
demonstrated that the proposed method could 
provide rational prediction results. 
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