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ABSTRACT: There is a difference between the calibration of partial factors of safety for a new code of
practice intended for design, and the development of factors for assessment. In particular, the treatment
of load combination factors for code calibration is often a source of conservatism, as is reasonable.
However, for the assessment of an existing structure, this conservatism is not desirable. Consequently a
means of deriving load combination factors that simultaneously satisfy several limit states is sought.
This paper examines the various methods used for load combination factors in the literature and assesses
them for use in the assessment of bridges. A simple formula is proposed and demonstrated using several
case studies, and compared with the results from the usual heuristic practice. It is shown that the
proposed method offers a valuable means of deriving load combination factors for bridge assessment.

1. INTRODUCTION

Modern structural design codes are mainly based
on reliability calibration. Many of the loading vari-
ables in the design problem are time-varying. Us-
ing the First-Order Reliability Method (FORM),
the appropriate partial factors for each load can
be determined. However, the reduced probability
of the simultaneous occurrence of extreme realiza-
tions of multiple time-varying loads must be con-
sidered through a load combination factor. While
there is much guidance in the literature on the esti-
mation of partial factors, far less attention has been
given to the estimation of load combination factors.

Melchers and Beck (2017) provides an excel-
lent development of the load combination problem.
In particular, the simplifications of the more gen-
eral (and complex) problem that were introduced
by Ferry Borges and Castanheta (1972) and Turk-
stra and Madsen (1980) are commonly used in code
calibration work. However, while these describe
means to combine loading processes, they do not
specify the determination of partial and load com-

bination factors. Indeed, many structural reliability
textbooks describe the determination of partial fac-
tors, but not load combination factors; e.g. Nowak
and Collins (2013); Melchers and Beck (2017);
Haldar and Mahadevan (1999). Thoft-Cristensen
and Baker (1982) provides one of the earliest de-
scriptions of both partial and load combination fac-
tor calibration, in particular describing the heuristic
design value method we examine later. Sørensen
(2004) provides an comprehensive description of
both partial and load combination factor calibra-
tions using the results of reliability analysis.

We review the calibration problem and the de-
termination of partial and load combination factors.
We highlight the methods used to-date for the cal-
ibration of load combination factors, and suggest a
new method. We apply the approaches to some pro-
totypical examples and illustrate the differences. A
particular concern of the new approach is for the
calibration of suitable load combination factors for
the assessment of existing structures, and this as-
pect is highlighted.
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2. BACKGROUND
2.1. FORM Basis

This section briefly introduces the aspects of
FORM relevant to the calibration of partial and load
combination factors. Refer to structural reliability
textbooks for more details (e.g. Nowak and Collins
(2013) and Melchers and Beck (2017)).

At the most probable failure point, and in physi-
cal coordinates, the limit state equation is

g(x∗1,x
∗
2, . . .) = 0 (1)

where x∗i is the design point of the ith random vari-
able, Xi. In general the distributions of the random
variables are non-normal, and so the isoprobabilis-
tic transformation used is

x∗i = F−1
Xi

[Φ(u∗i )] (2)

in which u∗i = αiβ is the corresponding design
value in standard normal (or u-) space, and αi is
its direction cosine.

For design purposes, a nominal or characteristic
value of the variable X is used, xk. Since the design
values satisfy the limit state function (Equation (1)),
they will yield a design with reliability, β . Thus, the
partial factor to apply to the characteristic value of
the variable, to yield the appropriate design value,
is

γi =
x∗i
xi,k

. (3)

2.2. Code Format
The prototypical equation to be satisfied in struc-

tural design is

φRk ≥ ∑
i

γSiSki, (4)

in which Rk is the characteristic value of the resis-
tance variable, and Ski that of the ith loading vari-
able. Each variable has its respective partial factor,
γ , often denoted φ in the case of the resistance vari-
able.

The loading variables, Si, can be classified as
permanent and temporal, or varying. That is,
permanent loads, such as dead loads—although
uncertain—have just one realization from its distri-
bution, for the lifetime of the structure. Conversely,

varying loads, such as traffic or wind loads, have
realizations occurring from the parent distribution
continuously. Of course, this can include periods
where the value of loading is zero, such as when
there is no traffic on the bridge (i.e. zero-inflated
distributions).

For a designer to satisfy Equation (4), the combi-
nation of permanent and varying loads should allow
for each varying load achieving a maximum value
while the others remain at their point-in-time val-
ues, within the time frame being considered. As a
result, Equation (4) will have to be checked n times,
as each varying loading variable achieves a maxi-
mum.

As a special (but important) case, consider there
to be a permanent dead load, G, a varying live load
Q, and a varying wind load W . Equation (4) then
becomes:

φR ≥ γGGk + γQQk + γWWk. (5)

The difficulty here is that the live and wind loads are
varying, and (most likely) uncorrelated. So to sat-
isfy Equation (5) when either varying load reaches
a maximum within the period being considered, the
designer will then seek to satisfy two load cases:

LC1: φR ≥ γGGk + γQmaxQmax
k + γWpitW

pit
k (6)

LC2: φR ≥ γGGk + γQpitQ
pit
k + γWmaxW

max
k (7)

where the live and wind loads achieve their max-
imum (max) distribution respectively, while the
other remains at its point-in-time (pit) value.

In Equation (6), each varying load is now char-
acterized by four values rather than two: its char-
acteristic point-in-time and maximum values, and
their corresponding partial factors. This signif-
icant increase in the number of parameters (i.e.
4n) required to represent each stochastic variable
is clearly undesirable for practical structural design
codes. To rationalize the number of parameters re-
quired, most code formats have adopted a model
which can be expressed as

φR ≥ γGGk + γSd Sd,k +ψγSaSa,k, (8)

in which d is the dominating varying load, a is the
accompanying varying load, and ψ is a load combi-
nation factor. This representation means that each
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load is parameterized by just a single partial factor
γ and a characteristic value Sk. It is the load combi-
nation factor ψ that accounts for the reduced proba-
bility of both loads achieving their maximum value
simultaneously. With this rationalization, Equa-
tion (6) can be expressed as:

LC1: φR ≥ γGGk + γQQk +ψW γWWk, (9)
LC2: φR ≥ γGGk +ψQγQQk + γWWk. (10)

Some code formats will merge the load combina-
tion and partial factor for the accompanying load
and specify a reduced (composite) partial factor
(i.e. ψγ) when used in combination. Other code
formats will retain the partial factor but provide for
a reduced characteristic value (i.e. ψSk) when used
in combination. Whatever means is used to repre-
sent the problem in codes, the implication for code
calibration is that the load combination factor must
be estimated.

3. LOAD COMBINATION FACTORS
3.1. Design Value Method

Thoft-Cristensen and Baker (1982) gives an em-
pirical estimate of load combination factors. When
the variables are ranked in order of their directional
cosines αi, the ith variable can be considered to
have a relative direction cosine of:

α̃ =
√

i−
√

i−1. (11)

This recommendation can be coupled with the αR =
−0.8 and αS = 0.7 estimate (from ISO 2394:2015
(2015)) to yield estimates of partial and combina-
tion factors (Equations (3) and (12)). Although ap-
proximate, experience has shown that this approach
gives reasonable results.

3.2. Coefficient Method
Sørensen (2004) explains this method as the ob-

vious extension of the FORM result for a single
limit state function (or loadcase), to that for two
loadcases. Consider the two limit state functions
of Equation (9). For calibration, the design values
for both loadcases are found for a single target re-
liability index, βT . This yields a set of partial fac-
tors (following Equation (3)) for each variable, for
each limit state. That is, for example, the wind load

will have γW,1 and γW,2, corresponding to the cali-
bration for each loadcase. Rationalization of these
partial factors is then done such that a single value
of the partial factor for each variable results, e.g.
γW . With the single set of partial factors and the de-
sign point known, the load combination factor for
the secondary varying loading becomes:

ψX =
x∗

γX xk
(12)

from which it is clear that the required design point
is retrieved from the stipulated partial factor and
characteristic value.

While this method gives the precise results for a
problem with two time-varying loads, extension to
problems with more becomes problematic. It re-
sults in unique estimates for partial load factors γ

but estimates of ψ and φ that vary per load case. In
such cases, there are too many degrees of freedom
in the problem and a trial and error estimation re-
sults. The multiplicity of estimates compounds the
difficulties of further rationalization of partial and
combination factors using optimization or calibra-
tion.

4. GENERAL METHOD
4.1. Matrix Solution

Here we propose an extension to the coefficient
method in which a unique set of load combination
factors is found; a single one for each varying load.
It is supposed that a single load combination factor
is desired for each variable, and that a set of partial
factors has been determined.

To introduce the method, we consider an exam-
ple with three time-varying loads, and then show
how it can extend to the general case. We consider
that each time-varying load must be considered act-
ing at its maximum (i.e. dominating), and so for n
such loads, there will be n limit state functions to
be satisfied:

φR ≥ γGG+ γ1S1 +ψ2γ2S2 +ψ3γ3S3 (13)
φR ≥ γGG+ψ1γ1S1 + γ2S2 +ψ3γ3S3 (14)
φR ≥ γGG+ψ1γ1S1 +ψ2γ2S2 + γ3S3 (15)

in which the subscript k is dropped for clarity, it be-
ing understood that these variables are at their char-
acteristic values. Aligning the varying load terms
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containing the unknown ψi to the left hand side of
the equation, we get

0ψ1 + γ2S2ψ2 + γ3S3ψ3 ≤ φR− γGG− γ1S1 (16)
γ1S1ψ1 +0ψ2 + γ3S3ψ3 ≤ φR− γGG− γ2S2 (17)
γ1S1ψ1 + γ2S2ψ2 +0ψ3 ≤ φR− γGG− γ3S3 (18)

Now rewrite this in matrix form, separating the un-
known ψi from the remaining known values as fol-
lows: 0 γ2S2 γ3S3

γ1S1 0 γ3S3
γ1S1 γ2S2 0


ψ1
ψ2
ψ3

≤


φR−Q1
φR−Q2
φR−Q3

 (19)

in which the total permanent and dominating design
loads are denoted

Qi = γGG+ γiSi. (20)

For the limiting equality case, clearly Equation (19)
can then be easily solved for the ψ vector by matrix
inversion to yield a single set of load combination
factors, ψi, that satisfy Equation (13).

In a reliability calibration (see later examples),
each loadcase in Equation (19) will be separately
calibrated. Consequently, there will (in general)
be a different design point for the resistance vari-
able, r∗ = φR in each row. Of course, for struc-
tural design purposes, the maximum calibrated re-
sistance must be used in order to satisfy all load-
cases. Calculation of the load combination fac-
tors can be done with the individual resistance de-
sign points, or with the maximum resistance design
point.

4.2. Closed-Form Expression
While Equation (19) can be extended to consider

n ≥ 2 varying loads, it is desirable to determine an
algebraic expression for the general case. On the
assumption of a single value for the resistance de-
sign point, Equation (19) can be solved for the gen-
eral case in closed form using Gaussian elimina-
tion. The result is:

ψi = 1−
∑

n
j γ jS j + γGG−φR

(n−1)γiSi
. (21)

This provides a closed-form expression for n load
combination factors given calibrated partial factors
and characteristic design values.

5. EXAMPLES

5.1. Two Varying Loads
5.1.1. Description

Here we consider an example from Sørensen
(2004, p. 190) with two time-varying load sources.
The limit state function is

g = zR− (0.4G+0.6Q+0.3W ), (22)

in which z is a scalar design parameter (e.g. a de-
terministic nominal strength design to achieve the
target reliability) and the other variables have their
usual interpretations. The basic variables are given
in Table 1. The distributions specified for the vary-
ing loads are the annual maximum distributions.
From the number of occurrences in the 1-year ref-
erence period, it can be found that the point-in-time
distributions for the imposed and wind loads have
expected values of 0.89 and 0.77 respectively (the
CoV remains unchanged).

Equation (22) is used to calibrate the design pa-
rameter z for two loadcases: when the imposed load
has its annual maximum distribution, and the wind
load is at its point-in-time distribution, and vice-
versa. A target reliability index of βT = 4.3 is used
for the calibration. The resulting design points and
design variable values for the two calibration load-
cases are shown in Table 1. Further, it is considered
that the characteristic values of the imposed and
wind loads are given by the 98-percentiles of the an-
nual maximum distributions, and so are Qk = 1.518
and Wk = 2.037. With these values, the partial fac-
tors are:

γQ =
Q∗

1
Qk

=
1.624
1.518

= 1.069, (23)

γW =
W ∗

2
Wk

=
2.246
2.037

= 1.103. (24)

5.1.2. Coefficient Method
The load combination factors can be worked out

using the coefficient method as:

ψQ =
Q∗

2
γQQk

=
1.513
1.624

= 0.9262, (25)

ψW =
W ∗

1
γWWk

=
2.017
2.246

= 0.9037. (26)
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Table 1: Random variables of Example 1; τ is the occurrence rate of the varying load, and r is the number of
such of such occurrences within the reference 1-year period. (*Note: although 360 recurrences per year is rea-
sonable and sated in Sørensen (2004, p. 190), the problem was actually worked out using 2, and this ‘error’ is
retained here for comparison with the source.)

Symbol Load Distribution E[X] CoV τ r x∗1 x∗2
z Design parameter - - - - - 3.043 3.048
R Capacity Lognormal 1.0 0.15 - - 0.655 0.655
G Dead Normal 1 0.10 - - 1.037 1.037
Q Imposed Gumbel 1.0 0.20 0.5 years 2 1.624 1.513
W Wind Gumbel 1.0 0.40 1 day 2 (360*) 2.017 2.246

5.1.3. Design Value Method
For comparison, the design value method de-

scribed in Thoft-Cristensen and Baker (1982) gives
(see Equation (11)):

α = 0.7× (
√

2−
√

1) = 0.29 (27)

which compares to the actual values of α = 0.54
(which are the same for both the imposed and
wind loads). Nevertheless, when dominating, the
design points for the imposed and wind loads
are 1.945 and 2.661; and when secondary 1.173
and 1.117, respectively. From which, the partial
factors are 1.945/1.518 = 1.28 for imposed and
2.661/2.037 = 1.31 for wind. Finally, the load
combination factors become 1.173/1.945 = 0.60
for imposed and 1.117/2.661 = 0.42 for wind.
These values are clearly quite different from the co-
efficient method.

5.1.4. Matrix Method
Using the individual calibrations for each load

case, renders Equation (19) in the following form:[
0 0.6737

0.9741 0

]{
ψ1
ψ2

}
=

{
0.6081
0.9077

}
(28)

from which the solution for the load combination
factors is easily found to be:

ψ = [0.9318 0.9026] (29)

which are not very different from those of the coef-
ficient method.

5.1.5. Closed-Form Equation
To calculate the result for the closed-form equa-

tion (Equation (21)) we stipulate that the charac-
teristic values of the resistance and dead load are at
the 5- and 95-percentiles of the distributions, giving
Rk = 0.774 and Gk = 1.164. The design points for
these variables are at 0.655 and 1.037 respectively,
giving partial factors of φ = 0.655/0.774 = 0.847
and γG = 1.037/1.164 = 0.891 (impractically less
than 1.0). The partial factors for the remaining vari-
ables are otherwise as for the coefficient method.
Using Equation (21), and taking the design param-
eter as z=max(z1,z2), the load combination factors
are:

K = 0.6×1.624+0.3×2.246
+0.4×1.037−3.048×0.655
= 0.066

ψQ = 1− K
0.6×1.624

= 0.9326 (30)

ψW = 1− K
0.3×2.246

= 0.9026. (31)

These are practically the same as those from the co-
efficient and matrix methods, and match the results
given in Sørensen (2004, p. 191) to two decimal
places.

5.2. Three Varying Loads
5.2.1. Description

Here we extend the previous example and
demonstrate that the coefficient approach does not
yield a single set of load combination factors; a
problem resolved using the proposed matrix ap-
proach. The limit state function for the problem
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becomes:

g = zR− (0.2G+0.6Q1+0.35Q2+0.25Q3) (32)

and the variables are described in Table 2. For the
calibration of the design parameter z, a target relia-
bility of βT = 4.8 is used. The design points for the
three load cases in which each time-varying load
is considered as combination in turn are shown in
Table 2.

5.2.2. Coefficient Method
Similar to Equation (19), we can write the coeffi-

cients of the time-varying loads as a matrix. Divid-
ing the design point values by their characteristic
values yields: γ1 ψ2,1γ2 ψ3,1γ3

ψ1,2γ1 γ2 ψ3,2γ3
ψ1,3γ1 ψ2,3γ2 γ3,3

 (33)

from which the partial factors are found as the di-
agonal elements to be:

γQ = [1.3634 1.1072 1.2269] (34)

Consequently, dividing each column by its partial
factor yields the coefficient method estimate of the
load combination factors:1.0000 0.7291 0.8627

0.7743 1.0000 0.9463
0.8273 0.7925 1.0000

 (35)

As is evident, there is not a single solution for
the load combination factor for each time-varying
loads. Although not evident from the literature,
presumably past practice has then yielded the load
combination factors from these results as ψi =
max j ψi, j giving:

ψ = [0.8273 0.7925 0.9463] (36)

Proceeding with these values, and using the design
parameter z=maxi zi yields achieved reliabilities of

β = [5.0028 5.0708 5.1493] (37)

which are all quite in excess of βT = 4.8.

5.2.3. Matrix Method
Applying the matrix approach to the problem,

and using the individual resistance design points in
each row, yields: 0. 0.6044 0.4668

1.1233 0. 0.4668
1.1233 0.6044 0.


ψ1
ψ2
ψ3

=


0.8434
1.3421
1.4754

 ,

from which the unique solution for the load combi-
nation factors is:

ψ = [0.8787 0.8079 0.7607] . (38)

Using the maximum calibrated design parameter
z as before, with these combination factors gives
achieved reliabilities for each load case as:

β = [4.8499 4.9150 4.9931] . (39)

Although these still exceed the target reliability (as
desired), they do so by a lower amount than the tra-
ditional coefficient method. The proposed matrix
approach offers a least-squares optimum solution
for the load combination factors.

5.2.4. Closed-Form Equation
Selecting the largest design parameter value z =

maxi zi = 3.5045 and its associated resistance, vari-
able R = 0.6194, gives the resistance design point
as φR = 2.1707. From which, we then find:

K = 1.1233+0.6044+0.4668
− (2.1707−0.2×1.0207)
= 1.9665

ψ1 = 1− K
2×1.1233

= 0.8920 (40)

ψ2 = 1− K
2×0.6044

= 0.7992 (41)

ψ3 = 1− K
2×0.4668

= 0.7400. (42)

Using the maximum calibrated design parameter
z as before, with these combination factors gives
achieved reliabilities for each load case as:

β = [4.8197 4.8843 4.9623] . (43)

These again exceed the target reliability as desired,
but to a smaller degree than the traditional coeffi-
cient method.
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Table 2: Random variables of Example 2.

Distribution
Annual Max. Point-In-Time Characteristic Design Points
E[X] CoV E[X] CoV Percentile xk x∗1 x∗2 x∗3

z - - - - - - - 3.5045 3.4546 3.3951
R Lognormal 1.0 0.15 - - 0.05 0.7738 0.6194 0.6137 0.6124
G Normal 1.0 0.10 - - 0.50 1.0000 1.0194 1.0202 1.0207
Q1 Gumbel 1.0 0.20 0.887 0.183 0.95 1.3732 1.8722 1.4497 1.5489
Q2 Gumbel 1.0 0.30 0.828 0.278 0.95 1.5597 1.2591 1.1270 1.3686
Q3 Gumbel 1.0 0.40 0.802 0.416 0.90 1.5218 1.6108 1.7667 1.8671

6. DISCUSSION & CONCLUSIONS

6.1. Discussion
All of the literature on the calibration of par-

tial and load combination factors has focussed on
just one or two time-varying variables. This is cer-
tainly appropriate for code-calibration for generic
limit state functions, typical of those in building
or other simple structures. Bridges on the other
hand—especially railway bridges—must cope with
a wide variety of time-varying loading variables
and loadcases. For example, rail bridges must be
designed or assessed for wind loads, live loads,
braking forces, and track nosing forces; all of which
vary in time. Little attention seems to have been
given to the calibration of load combination factors
for such cases of many n > 2 time-varying loads.
For design codes this has not necessarily caused a
problem, since it is relatively inexpensive to build in
some conservatism at the construction stage. How-
ever, as the population of bridges around the world
ages dramatically, probability-based bridge assess-
ment offers a rational and quantitative means of en-
suring safety. But in doing so, it is no longer accept-
able to rely on ad-hoc methods of load combination
factor calibration, such as the traditional coefficient
method for n > 2.

6.2. Conclusions
In this work on the calibration of load com-

bination factors, we have demonstrated a matrix-
based approach for the simultaneous satisfaction
of n loadcases when there are n time-varying load
components in a linear limit state system. The
general matrix method is shown when the individ-
ual loadcase resistance design points are used. A

closed-form expression is also derived for the usual
case when a single resistance is known. The impli-
cations of these methods are demonstrated against
current practice, and it is shown that they yield co-
efficients that render the calibrated limit state func-
tions closer to the target reliability index, than the
current ad-hoc coefficient approach. Consequently,
these expressions, or the ideas more generally, can
be used towards a more rational calibration of load
combination factors for linear limit state functions
with multiple time-varying load components. This
problem is particularly appropriate for the calibra-
tion of partial and load combination factors for ex-
isting rail bridges.
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